共查询到20条相似文献,搜索用时 15 毫秒
1.
A single chamber stackable microbial fuel cell (SCS-MFC) comprising four MFC units was developed. When operated separately,
each unit generated a volumetric power density (Pmax,V) of 26.2 W/m3 at 5.8 mA or 475 mV. The total columbic efficiency was 40% for each unit. Parallel connection of four units produced the
same level of power output (Pmax,V of 22.8 W/m3 at 27 mA), which was approximately four times higher than a single unit alone. Series connection of four units, however,
only generated a maximum power output of 14.7 W/m3 at 730 mV, which was less than the expected value. This energy loss appeared to be caused by lateral current flow between
two units, particularly in the middle of the system. The cathode was found to be the major limiting factor in our system.
Compared to the stacked operation of multiple separate MFCs, our single chamber reactor does not require a delicate water
distribution system and thus is more easily implemented in pre-existing wastewater treatment facilities with serpentine flow
paths, such as fixed-bed reactors, with minimal infrastructure changes. 相似文献
2.
Numfon Eaktasang Hyeong-Sik Min Christina Kang Han S. Kim 《Bioprocess and biosystems engineering》2013,36(10):1417-1425
In this study, a microbial fuel cell (MFC) was used to control malodorous hydrogen sulfide compounds generated from domestic wastewaters. The electricity production demonstrated a distinct pattern of a two-step increase during 170 h of system run: the first maximum current density was 118.6 ± 7.2 mA m?2 followed by a rebound of current density increase, reaching the second maximum of 176.8 ± 9.4 mA m?2. The behaviors of the redox potential and the sulfate level in the anode compartment indicated that the microbial production of hydrogen sulfide compounds was suppressed in the first stage, and the hydrogen sulfide compounds generated from the system were removed effectively as a result of their electrochemical oxidation, which contributed to the additional electricity production in the second stage. This was also directly supported by sulfur deposits formed on the anode surface, which was confirmed by analyses on those solids using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy as well as an elemental analyzer. To this end, the overall reduction efficiencies for HS? and H2S(g) were as high as 67.5 and 96.4 %, respectively. The correlations among current density, redox potential, and sulfate level supported the idea that the electricity signal generated in the MFC can be utilized as a potential indicator of malodor control for the domestic wastewater system. 相似文献
3.
4.
S. P. O'Neill 《Biotechnology and bioengineering》1972,14(2):201-205
It is shown theoretically that in continuous reactions the rate of catalase inactivation by hydrogen peroxide depends on the type of reactor and the order of the chemical reaction. 相似文献
5.
Micro-sized microbial fuel cell: A mini-review 总被引:1,自引:0,他引:1
Hsiang-Yu Wang Angela BernardaChih-Yung Huang Duu-Jong LeeJo-Shu Chang 《Bioresource technology》2011,102(1):235-243
This review presents the development of micro-sized microbial fuel cells (including mL-scale and μL-scale setups), with summarization of their advantageous characteristics, fabrication methods, performances, potential applications and possible future directions. The performance of microbial fuel cells (MFCs) is affected by issues such as mass transport, reaction kinetics and ohmic resistance. These factors are manipulated in micro-sized MFCs using specially allocated electrodes constructed with specified materials having physically or chemically modified surfaces. Both two-chamber and air-breathing cathodes are promising configurations for mL-scale MFCs. However, most of the existing μL-scale MFCs generate significantly lower volumetric power density compared with their mL-counterparts because of the high internal resistance. Although μL-scale MFCs have not yet to provide sufficient power for operating conventional equipment, they show great potential in rapid screening of electrochemically microbes and electrode performance. Additional possible applications and future directions are also provided for the development of micro-sized MFCs. 相似文献
6.
The external resistance is perhaps the easiest way to influence the operation of a microbial fuel cell (MFC). In this paper, three enrichment strategies, whereby the external resistance was fixed at: (1) a high value in order to maximize the cell voltage (U strategy); (2) a low value in order to maximize the current (I strategy); and (3) a value equal to the internal resistance of the MFC to maximize the power output (P strategy), were investigated. The I strategy resulted in increased maximum power generation and the likely reason is that electron transfer was facilitated under low external resistance, which in turn, favored the development of an electrochemically active biofilm. This experiment was conducted in a single-chamber MFC system equipped with a membrane electrode assembly, and a comparison of the performance achieved by five different membranes is also provided. Selemion was found to be a suitable alternative to Nafion. 相似文献
7.
Continuous flow membrane-less air cathode microbial fuel cell with spunbonded olefin diffusion layer
The power production performance of a membrane-less air-cathode microbial fuel cell was evaluated for 53 days. Anode and cathode electrodes and the micro-fiber cloth separator were configured by sandwiching the separator between two electrodes. In addition, the air-facing side of the cathode was covered with a spunbonded olefin sheet instead of polytetrafluoroethylene (PTFE) coating to control oxygen diffusion and water loss. The configuration resulted in a low resistance of about 4Ω and a maximum power density of 750 mW/m2. However, as a result of a gradual decrease in the cathode potential, maximum power density decreased to 280 mW/m2. The declining power output was attributed to loss of platinum catalyst (8.26%) and biomass growth (38.44%) on the cathode. Coulombic efficiencies over 55% and no water leakage showed that the spunbonded olefin sheet covering the air-facing side of the cathode can be a cost-effective alternative to PTFE coating. 相似文献
8.
Here we report a new microfluidic microbial fuel cell (MFC) platform built by soft-lithography techniques. The MFC design includes a unique sub-5 μL polydimethylsiloxane soft chamber featuring carbon cloth electrodes and microfluidic delivery of electrolytes. Bioelectricity was generated using Shewanella oneidensis MR-1 cultivated on either complex organic substrates or lactate-based minimal medium. These micro-MFCs exhibited fast start-ups, reproducible current generation, and enhanced power densities up to 62.5 W m−3 that represents the best result for sub-100 μL MFCs. Systematic comparisons of custom-made MFC reactors having different chamber sizes indicate volumetric power density is inversely correlated with chamber size in our systems: i.e., the smaller the chamber, the higher the power density is achieved. 相似文献
9.
10.
Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes 总被引:2,自引:0,他引:2
Pisciotta JM Zaybak Z Call DF Nam JY Logan BE 《Applied and environmental microbiology》2012,78(15):5212-5219
Electron-accepting (electrotrophic) biocathodes were produced by first enriching graphite fiber brush electrodes as the anodes in sediment-type microbial fuel cells (sMFCs) using two different marine sediments and then electrically inverting the anodes to function as cathodes in two-chamber bioelectrochemical systems (BESs). Electron consumption occurred at set potentials of -439 mV and -539 mV (versus the potential of a standard hydrogen electrode) but not at -339 mV in minimal media lacking organic sources of energy. Results at these different potentials were consistent with separate linear sweep voltammetry (LSV) scans that indicated enhanced activity (current consumption) below only ca. -400 mV. MFC bioanodes not originally acclimated at a set potential produced electron-accepting (electrotrophic) biocathodes, but bioanodes operated at a set potential (+11 mV) did not. CO(2) was removed from cathode headspace, indicating that the electrotrophic biocathodes were autotrophic. Hydrogen gas generation, followed by loss of hydrogen gas and methane production in one sample, suggested hydrogenotrophic methanogenesis. There was abundant microbial growth in the biocathode chamber, as evidenced by an increase in turbidity and the presence of microorganisms on the cathode surface. Clone library analysis of 16S rRNA genes indicated prominent sequences most similar to those of Eubacterium limosum (Butyribacterium methylotrophicum), Desulfovibrio sp. A2, Rhodococcus opacus, and Gemmata obscuriglobus. Transfer of the suspension to sterile cathodes made of graphite plates, carbon rods, or carbon brushes in new BESs resulted in enhanced current after 4 days, demonstrating growth by these microbial communities on a variety of cathode substrates. This report provides a simple and effective method for enriching autotrophic electrotrophs by the use of sMFCs without the need for set potentials, followed by the use of potentials more negative than -400 mV. 相似文献
11.
Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell 总被引:1,自引:0,他引:1
Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m3 H2/m3/d (based on the MEC volume), and a yield of 33.2 mmol H2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H2/g cellulose, with a total hydrogen production rate of 0.24 m3 H2/m3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input. 相似文献
12.
Development of a solar-powered microbial fuel cell 总被引:1,自引:0,他引:1
Cho YK Donohue TJ Tejedor I Anderson MA McMahon KD Noguera DR 《Journal of applied microbiology》2008,104(3):640-650
Aims: To understand factors that impact solar‐powered electricity generation by Rhodobacter sphaeroides in a single‐chamber microbial fuel cell (MFC). Methods and Results: The MFC used submerged platinum‐coated carbon paper anodes and cathodes of the same material, in contact with atmospheric oxygen. Power was measured by monitoring voltage drop across an external resistance. Biohydrogen production and in situ hydrogen oxidation were identified as the main mechanisms for electron transfer to the MFC circuit. The nitrogen source affected MFC performance, with glutamate and nitrate‐enhancing power production over ammonium. Conclusions: Power generation depended on the nature of the nitrogen source and on the availability of light. With light, the maximum point power density was 790 mW m?2 (2·9 W m?3). In the dark, power output was less than 0·5 mW m?2 (0·008 W m?3). Also, sustainable electrochemical activity was possible in cultures that did not receive a nitrogen source. Significance and Impact of the Study: We show conditions at which solar energy can serve as an alternative energy source for MFC operation. Power densities obtained with these one‐chamber solar‐driven MFC were comparable with densities reported in nonphotosynthetic MFC and sustainable for longer times than with previous work on two‐chamber systems using photosynthetic bacteria. 相似文献
13.
Strus M Brzychczy-Włoch M Gosiewski T Kochan P Heczko PB 《FEMS immunology and medical microbiology》2006,48(1):56-63
This study presents a series of experiments carried out in order to elucidate the role of H2O2 in antimicrobial activity of lactobacilli. Vaginal swabs were collected from 60 premenopausal women and checked for pH and Nugent score, and Lactobacillus species were cultured, phenotyped and genotyped. The main outcome measures involved: (1) species of vaginal lactobacilli most effective in liberating H2O2, (2) minimal microbicidal concentrations of added H2O2, (3) kinetics of H2O2 liberation in relation to oxygen tension, (4) antimicrobial activity of pure H2O2 versus one produced by selected vaginal lactobacilli and the total activity of their culture supernatants. Results showed that H2O2 was liberated especially by: Lactobacillus delbrueckii, Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus johnsonii and L. gasseri. Hydrogen peroxide reached concentrations from 0.05 to 1.0 mM, which under intensive aeration increased even up to 1.8 mM. Microorganisms related to vaginal pathologies show varied resistance to the action of pure H2O2. Most potent inhibitory activity against bacteria and yeasts was presented by Lactobacillus culture supernate producing H2O2, followed by the nonproducing strain and pure H2O2. To conclude - the antimicrobial activity of lactobacilli is a summation of various inhibitory mechanisms in which H2O2 plays some but not a crucial role, in addition to other substances. 相似文献
14.
Modelling of a microbial fuel cell process 总被引:1,自引:0,他引:1
Summary An electrochemical model for a microbial fuel cell process is proposed here. The model was set up on the basis of the experimental results and analysis of biochemical and electrochemical processes. Simulation of the process shows that the model describes the process reasonably well. The analysis of model simulation illustrates how the current output depends on the substrate concentration, mediator concentration and other main variables. The relationship between the current output and over-voltage is revealed from the modelling study. 相似文献
15.
Jong BC Liew PW Lebai Juri M Kim BH Mohd Dzomir AZ Leo KW Awang MR 《Letters in applied microbiology》2011,53(6):660-667
Aim: To evaluate the bioenergy generation and the microbial community structure from palm oil mill effluent using microbial fuel cell. Methods and Results: Microbial fuel cells enriched with palm oil mill effluent (POME) were employed to harvest bioenergy from both artificial wastewater containing acetate and complex POME. The microbial fuel cell (MFC) showed maximum power density of 3004 mW m?2 after continuous feeding with artificial wastewater containing acetate substrate. Subsequent replacement of the acetate substrate with complex substrate of POME recorded maximum power density of 622 mW m?2. Based on 16S rDNA analyses, relatively higher abundance of Deltaproteobacteria (88·5%) was detected in the MFCs fed with acetate artificial wastewater as compared to POME. Meanwhile, members of Gammaproteobacteria, Epsilonproteobacteria and Betaproteobacteria codominated the microbial consortium of the MFC fed with POME with 21, 20 and 18·5% abundances, respectively. Conclusions: Enriched electrochemically active bacteria originated from POME demonstrated potential to generate bioenergy from both acetate and complex POME substrates. Further improvements including the development of MFC systems that are able to utilize both fermentative and nonfermentative substrates in POME are needed to maximize the bioenergy generation. Significance and Impact of the Study: A better understanding of microbial structure is critical for bioenergy generation from POME using MFC. Data obtained in this study improve our understanding of microbial community structure in conversion of POME to electricity. 相似文献
16.
Challenges in microbial fuel cell development and operation 总被引:3,自引:0,他引:3
A microbial fuel cell (MFC) is a device that converts chemical energy into electricity through the catalytic activities of
microorganisms. Although there is great potential of MFCs as an alternative energy source, novel wastewater treatment process,
and biosensor for oxygen and pollutants, extensive optimization is required to exploit the maximum microbial potential. In
this article, the main limiting factors of MFC operation are identified and suggestions are made to improve performance. 相似文献
17.
18.
Aeration without air: oxygen supply by hydrogen peroxide. 总被引:2,自引:0,他引:2
H G Schlegel 《Biotechnology and bioengineering》1977,19(3):413-424
Oxygen has been supplied to suspensions of microorganisms kept under nitrogen by the addition of hydrogen peroxide. If catalase was present in the suspension and the flow was adjusted to the rate of oxygen consumption, the cells grew at rates identical to the controls incubated under air. The applicability of oxygen supply by hydrogen peroxide and its limits are discussed. 相似文献
19.
Microbial fuel cells (MFCs) have been used for several years as biosensors for measuring environmental parameters such as biochemical oxygen demand and water toxicity. The present study is focused on the detection of toxic matter using a novel silicon-based MFC. Like other existing toxicity sensors based on MFCs, this device is capable of detecting the variation on the current produced by the cell when toxic compounds are present in the medium. The MFC approach presented in this work aims to obtain a simple, compact and planar device for its further application as a biosensor in the design and fabrication of equipment for toxicity monitoring. It consists on a proton exchange membrane placed between two microfabricated silicon plates that act as current collectors. An array of square 80 μm × 80 μm vertical channels, 300 μm deep, have been defined trough the plates over an area of 6 mm × 6 mm. The final testing assembly incorporates two perspex pieces positioned onto the plates as reservoirs with a working volume of 144 μL per compartment. The operation of the microdevice as a direct electron transfer MFC has been validated by comparing its performance against a larger scale MFC, run under the same conditions. The device has been tested as a toxicity sensor by setting it at a fixed current while monitoring changes in the output power. A drop in the power production is observed when a toxic compound is added to the anode compartment. The compact design of the device makes it suitable for its incorporation into measurement equipment either as an individual device or as an array of sensors for high throughput processing. 相似文献
20.
The supply of oxygen can be improved by the direct addition of hydrogen peroxide to cultures of aerobic microbes expressing sufficient amounts of catalase. This is of special interest if normal aeration has to be kept low, for instance, in order to minimize evaporation of volatile compounds (either substrates or products) or to minimize foaming. Also, if the mechanical power input to the bioreactor is or has to be limited, addition of hydrogen peroxide may be useful. The appropriate dosage of hydrogen peroxide can be simply determined by a controller of the oxygen partial pressure or of the oxygen content in the exhaust gas using various control algorithms. The added hydrogen peroxide can be either a stabilized concentrate, e.g. 30%, or any dilute form of this. In high density cultures, Pseudomonas cells tolerated even harsh controller disturbances. This approach proved to be very robust and reliable. 相似文献