首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol is a multifaceted molecule, which serves as essential membrane component, as cofactor for signaling molecules and as precursor for steroid hormones. Consequently, defects in cholesterol metabolism cause devastating diseases. So far, the role of cholesterol in the nervous system is less well understood. Recent studies showed that cultured neurons from the mammalian central nervous system (CNS) require glia-derived cholesterol to form numerous and efficient synapses. This suggests that the availability of cholesterol in neurons limits the extent of synaptogenesis. Here, I will summarize the experimental evidence for this hypothesis, describe what is known about the structural and functional role of cholesterol at synapses, and discuss how cholesterol may influence synapse development and stability.  相似文献   

2.
Synaptic function is crucially dependent on the spatial organization of the presynaptic and postsynaptic apparatuses and the juxtaposition of both membrane compartments. This precise arrangement is achieved by a protein network at the submembrane region of each cell that is built around scaffold proteins. The membrane-associated guanylate kinase (MAGUK) family of proteins is a widely expressed and well-conserved group of proteins that plays an essential role in the formation and regulation of this scaffolding. Here, we review general features of this protein family, focusing on the discs large and calcium/calmodulin-dependent serine protein kinase subfamilies of MAGUKs in the formation, function, and plasticity of synapses.  相似文献   

3.
4.
5.
6.
7.
8.
The NMJ (neuromuscular junction) serves as the ultimate output of the motor neurons. The NMJ is composed of a presynaptic nerve terminal, a postsynaptic muscle and perisynaptic glial cells. Emerging evidence has also demonstrated an existence of perisynaptic fibroblast-like cells at the NMJ. In this review, we discuss the importance of Schwann cells, the glial component of the NMJ, in the formation and function of the NMJ. During development, Schwann cells are closely associated with presynaptic nerve terminals and are required for the maintenance of the developing NMJ. After the establishment of the NMJ, Schwann cells actively modulate synaptic activity. Schwann cells also play critical roles in regeneration of the NMJ after nerve injury. Thus, Schwann cells are indispensable for formation and function of the NMJ. Further examination of the interplay among Schwann cells, the nerve and the muscle will provide insights into a better understanding of mechanisms underlying neuromuscular synapse formation and function.  相似文献   

9.
Park M  Shen K 《The EMBO journal》2012,31(12):2697-2704
Wnt proteins play important roles in wiring neural circuits. Wnts regulate many aspects of neural circuit generation through their receptors and distinct signalling pathways. In this review, we discuss recent findings on the functions of Wnts in various aspects of neural circuit formation, including neuronal polarity, axon guidance, synapse formation, and synaptic plasticity in vertebrate and invertebrate nervous systems.  相似文献   

10.
Recent studies suggest that glial cells regulate certain aspects of synapse development. Neurons can form synapses without glia, but may require glia-derived cholesterol to form numerous and efficient synapses. During synapse maturation, soluble and contact-dependent factors from glia may influence the composition of the postsynaptic density. Finally, synaptic connections appear to require glia to support their structural stability. Given the new evidence, it may be time now to acknowledge glia as a source for synaptogenesis-promoting signals. Scrutinizing the molecular mechanisms underlying this new function of glia and testing its relevance in vivo may help to understand how synapses develop and why they degenerate under pathological conditions.  相似文献   

11.
Cholesterol is an essential component of eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The modulatory role of cholesterol in the function of a number of membrane proteins is well established. This effect has been proposed to occur either due to a specific molecular interaction between cholesterol and membrane proteins or due to alterations in the membrane physical properties induced by the presence of cholesterol. The contemporary view regarding heterogeneity in cholesterol distribution in membrane domains that sequester certain types of membrane proteins while excluding others has further contributed to its significance in membrane protein function. The seven transmembrane domain G-protein coupled receptors (GPCRs) are among the largest protein families in mammals and represent approximately 2% of the total proteins coded by the human genome. Signal transduction events mediated by this class of proteins are the primary means by which cells communicate with and respond to their external environment. GPCRs therefore represent major targets for the development of novel drug candidates in all clinical areas. In view of their importance in cellular signaling, the interaction of cholesterol with such receptors represents an important determinant in functional studies of such receptors. This review focuses on the effect of cholesterol on the membrane organization and function of GPCRs from a variety of sources, with an emphasis on the more contemporary role of cholesterol in maintaining a domain-like organization of such receptors on the cell surface. Importantly, the recently reported role of cholesterol in the function and organization of the neuronal serotonin(1A) receptor, a representative of the GPCR family which is present endogenously in the hippocampal region of the brain, will be highlighted.  相似文献   

12.
Digitonin was used as a tool to investigate the organization and function of cholesterol in gastric microsomes. Microsomal vesicles were treated with digitonin for different time at 0-4 degrees C under isotonic conditions. The effects of digitonin treatment of the vesicles on removal of cholesterol, ultrastructural changes, (H+ + K+)-ATPase activity, and gastric ATPase-dependent H+ uptake ability were investigated. Microsomal cholesterol was extracted in an exponential manner with a t1/2 of 32 min. There was no release of microsomal phospholipids by digitonin treatment during the same period. Digitonin treatment (30 min) produced visible "holes" in the vesicles; at the same time (H+ + K+)-ATPase-dependent H+ uptake was abolished. Under the same conditions the K+-stimulated ATPase activity, however, was moderately (about 35%) reduced, although the response of K+ stimulation to valinomycin was obliterated. Longer digitonin treatment resulted in gradual diffusion and eventual disappearance of the "holes" with the generation of distorted cup-shaped microsomes. The data strongly suggest that membrane lipids are freely mobile and that there is a certain degree of specialization in the organization of gastric microsomal cholesterol for the proper maintenance of the membrane structure and function.  相似文献   

13.
14.
15.
Implication of geranylgeranyltransferase I in synapse formation   总被引:4,自引:0,他引:4  
Luo ZG  Je HS  Wang Q  Yang F  Dobbins GC  Yang ZH  Xiong WC  Lu B  Mei L 《Neuron》2003,40(4):703-717
Agrin activates the transmembrane tyrosine kinase MuSK to mediate acetylcholine receptor (AChR) clustering at the neuromuscular junction (NMJ). However, the intracellular signaling mechanism downstream of MuSK is poorly characterized. This study provides evidence that geranylgeranyltransferase I (GGT) is an important signaling component in the Agrin/MuSK pathway. Agrin causes a rapid increase in tyrosine phosphorylation of the alpha(G/F) subunit of GGT and in GGT activity. Inhibition of GGT activity or expression prevents muscle cells from forming AChR clusters in response to Agrin and attenuates the formation of neuromuscular synapses in spinal neuron-muscle cocultures. Importantly, transgenic mice expressing an alpha(G/F) mutant demonstrate NMJ defects with wider endplate bands and smaller AChR plaques. These results support the notion that prenylation is necessary for AChR clustering and the NMJ formation and/or maintenance, revealing an active role of GGT in Agrin/MuSK signaling.  相似文献   

16.
17.
Yi JJ  Ehlers MD 《Neuron》2005,47(5):629-632
Enduring modification of synapses is central to long-lasting neural circuit plasticity. Such adaptations include rapid posttranslational modification of existing synaptic proteins over periods of minutes and persisting changes in the abundance of synaptic proteins over hours to days. Recently, ubiquitination and protein degradation have emerged as additional mechanisms for modifying the function and molecular composition of synapses. These recent findings raise intriguing questions as to how enduring changes at synapses are accomplished in the face of robust, ongoing molecular turnover.  相似文献   

18.
19.
Since the discovery of the first microRNA (miRNA) almost 20 years ago, insight into their functional role has gradually been accumulating. This class of non-coding RNAs has recently been implicated as key molecular regulators in the biology of most eukaryotic cells, contributing to the physiology of various systems including immune, cardiovascular, nervous systems and also to the pathophysiology of cancers. Interestingly, Semaphorins, a class of evolutionarily conserved signalling molecules, are acknowledged to play major roles in these systems also. This, combined with the fact that Semaphorin signalling requires tight spatiotemporal regulation, a hallmark of miRNA expression, suggests that miRNAs could be crucial regulators of Semaphorin function. Here, we review evidence suggesting that Semaphorin signalling is regulated by miRNAs in various systems in health and disease. In particular, we focus on neural circuit formation, including axon guidance, where Semaphorin function was first discovered.  相似文献   

20.
Recent experiments have begun to decipher the molecular dialog that mediates differentiation at sites of synaptic between neurons and their targets. It had been hypothesized that the protein agrin is released by axon terminals at embryonic neuromuscular junctions and binds to a receptor on the myofiber surface to trigger postsynaptic differentiation. Now a genetic ‘Knockout’ experiment has confirmed the essential role of agrin in signaling between developing nerve and muscle(1). A second ‘knockout’ has shown that the muscle-specific receptor tyrosine kinase MuSK is a critical element in the agrin-induced signaling cascade(2). Additional results suggest that MuSK may comprise a portion of the agrin receptor(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号