首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytometric evolution of different subcellular components in the epiblast and the mesoderm of chick embryo during neurulation has been studied with stereological methods. The coefficient of cellular form (CFc) has specific values for each type, the epiblast having a mean CFc of 0.474, while the mesoderm, which has ellipsoidal cells, has a mean CFc of 0.643. The nucleus does not show any change of its coefficient of form although its surface density increases significantly. The proportion of mitochondria, present in the cells of each embryonic layer, remains constant during the 4 stages, being higher in the mesoderm cells (epiblast 3.6%; mesoderm 4.3%). The epiblast cells show a stable vitelline reserve, though the relative proportions of lipid bodies and yolk droplets vary: the volume density of yolk droplets increases from stage 5 (3.1%) to stage 8 (7.7%), while the lipid bodies diminish from 7 to 3.6% during this period. The mesoderm cells undergo a remarkable loss of vitelline volume during the same period. The rough endoplasmic reticulum of each cellular type has a remarkable length density increase, the significance of which is discussed in relation to production of extracellular matrix.  相似文献   

2.
The spatio-temporal cellular expression and biosynthesis of ganglioside Glac2 was investigated in early chick embryogenesis. For demonstration of embryonic Glac2-biosynthesis, chick embryos of stage 0 and of stages 4-5 were incubated in vitro in the presence of radioactive sugar precursors. It was found that chick embryos synthesize Glac2 as early as at the blastula stage as well as at the gastrula stage, both within the area pellucida and the area opaca. In contrast to the biosynthetical findings immunohistochemical staining of the chick embryos at various stages by aid of the mouse monoclonal antibody (mAb) R 24, specific for the immunoepitope NeuAc alpha, 8NeuAc alpha, 3Gal beta less than, as present on the ganglioside Glac2, revealed a spatio-temporal cellular pattern of expression of this ganglioside in early chick embryos. Immunohistochemical staining of the chick embryo at stage 0 shows that all cells of the embryo, the extraembryonic epiblast and the yolk endoderm included, are mAb R 24-positive. At the intermediate streak stage (stage 3), the cranial part of the deep layer, the so-called endophyll, is strongly mAb R 24-positive, whereas at the end of gastrulation (stage 5), mAb R 24-recognized epitopes appear to be restricted to a narrow band of deep-layer cells in the endophyllic crescent and to the yolk endoderm of the area opaca. At this stage, no labelling by the antibody is observed in cell layers of the future embryo. The beginning of neurulation (stage 7) is characterized by the expression of the mAb R 24-recognized epitope in the notochord, whilst the deep layer in the cranial part of the neural fold still expresses this epitope. No ecto- or mesodermal structures are stained by the antibody at this developmental stage. During further development (stage 12 and 13), mAb R 24-reactivity is restricted to the cranial part of the embryo with a preferential staining of cells of endodermal origin. At these stages, the notochord expresses mAb R 24 binding sites only in its cranial region. The spatial and temporal correlation between the presence of mAb R 24-recognized epitopes and the morphogenetic positioning of tissues may be indicative for a possible role of the ganglioside Glac2 in corresponding cellular interactions.  相似文献   

3.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of midstreak to neural plate stages of the mouse embryo was studied by microinjecting horseradish peroxidase (HRP) into single axial endoderm cells in situ, and tracing the labeled descendants to early somite stages in vitro. Axial endoderm cells along the anterior fifth of the late streak/neural plate stage embryo contributed descendants either to the yolk sac endoderm or to the anterior intestinal portal. Cells of the exposed head process contributed to the trunk endoderm and notochord; neighboring endoderm cells contributed to the dorsal foregut. Contributions to the ventral foregut came from endoderm at, and anterior to, the distal tip of the younger, midstreak embryo (in which the head process was not yet exposed). Endoderm over the primitive streak contributed to the postsomite endoderm. We argue from these results and those in the literature that during gastrulation the axial embryonic endoderm is of mixed lineage: (1) an anterior population of cells is derived from primitive endoderm and contributes to the yolk sac endoderm; (2) a population at, and anterior to, the distal tip of the midstreak embryo, extending more anteriorly at late streak/neural plate stages, is presumed to emerge from primitive ectoderm at the beginning of gastrulation and contributes to the foregut and anterior intestinal portal; (3) the axial portion of the head process that begins to incorporate into the ventral surface at the late streak stage contributes to notochord and trunk endoderm. Cells or their descendants that were destined to die within 24 hr were evident at the midstreak stage. There was a linear trend in the incidence of cell death among labeled cells at the late streak/neural plate stages, ranging from 27% caudal to the node to 57% in the anterior fifth of the embryo. The surviving axial endoderm cells divided sufficiently fast to double the population in 24 hr.  相似文献   

4.
The gastrulating chick embryo expresses two galactoside-binding lectins of 14 kDa and 16 kDa. These lectins are present in the area pellucida and area opaca, and in the latter are concentrated in the endoderm. Since the area opaca is the progenitor of the yolk sac, we studied the galactose-binding lectins during the development of this extraembryonic organ. In the yolk sac, lectin expression surges between 2 and 4 days, and thereafter remains constant throughout development. Using monoclonal antibodies (mAbs) specific to the 16 kDa yolk sac lectin, and a panel of polyclonal antibodies to the 14 kDa and 16 kDa lectins we studied lectin expression. The mAbs inhibit the hermagglutinating activity of extracts from chick yolk sac, embryonic pectoral muscle, and adult liver, but have no effect on the hemagglutinating activity of extracts from the adult intestine. Immunolocalization studies with the mAbs and polyclonal antibodies indicate that in the less differentiated endodermal cells of the area vitellina the 16 kDa lectin is present in discrete lectin-rich inclusions. In contrast, within the maturing endodermal epithelium of area vasculosa the 16 kDa lectin is present around the intracellular yolk platelets, and is associated with the cytoplasmic matrix. The 16 kDa lectin is also found at the apical cell surface of the yolk sac epithelium, in some regions closely associated with the plasma membrane. The 14 kDa lectin is distributed intracellularly surrounding the yolk platelets of the maturing yolk sac endoderm. The surge in expression of the 16 kDa lectin at the time of expansion of the area opaca suggests that it may be involved in the spreading of this area. Our findings also indicate that as the yolk sac endoderm differentiates into an epithelium intracellular lectin expression changes from predominantly organelle associated to cytoplasm associated. The association of both lectins with yolk suggest that the lectins may also be involved in the processing of intracellular and extracellular yolk proteins. These results, in con junction with previous findings indicating the presence of these lectins in the extracellular matrix (Didier et al., Histochemistry 100:485, 1993; Zalik et al., Intl J Dev Biol 38:55–68, 1994) indicate that these lectins play multiple roles in embryonic development.  相似文献   

5.
The iodotyrosine dehalogenase1 (DEHAL1) enzyme is a transmembrane protein that belongs to the nitroreductase family and shows a highly conserved N-terminal domain. DEHAL1 is present in the liver, kidney and thyroid of mammals. DEHAL1 is known to act on diiodotyrosine (DIT) and monoiodotyrosine (MIT), and is involved in iodine recycling in relation to thyroglobulin. Here, we show the distribution of DEHAL1 during gastrulation to neurulation in developing chick. Immunocytochemistry using an anti-serum directed against the N-terminal domain (met(27)-trp(180) fragment) of human DEHAL1 revealed labelled cells in the embryonic ectoderm, embryonic endoderm, neural plate and in the yolk platelets of the chick embryo at gastrulation stage. Distinct DEHAL1 positive cells were located in the presumptive head ectoderm, presumptive neural crest, head mesenchymal cells and in the dorsal, lateral and ventral parts of neural tube during neurulation. Some cells located at the margin of the developing notochord and somites were also DEHAL1-positive. While the functional significance of this observation is not known, it is likely that DEHAL1 might serve as an agent that regulates cell specific deiodination of MIT and DIT before the onset of thyroidal secretion. The presence of DEHAL1 in different components of the chick embryo suggests its involvement in iodine turnover prior to the formation of functional thyroid.  相似文献   

6.
The chick yolk sac endoderm transports maternal immunoglobulin G (IgG) from the yolk into the embryo during development, providing the newly hatched chick with passive immunity until it becomes immunocompetent. To study this transport process, chick yolk sac endodermal cells isolated from embryos of 6 to 18 days of incubation were grown in vitro on a collagen substrate. The cultured cells possessed a remarkable structural similarity to the in vivo tissue and reformed a polarized confluent epithelium with tight junctions and desmosomes joining the cells at their apical margins. In addition, the cells exhibited apical microvilli, numerous phagolysosomes in the cytoplasm and retained the expression of the yolk sac endoderm-specific enzyme marker, cysteine lyase. Importantly, the cultured cells retained the ability to specifically bind IgG as demonstrated by indirect immunofluorescence. Chicken IgG bound to the cultured cells at 4 degrees C in a diffuse pattern that clustered into a punctate pattern when a second antibody was used. Cultures from yolk sacs of day 6 through day 18 of development all demonstrated this immunofluorescent labeling for at least 14 days in culture. These results demonstrate that cultured yolk sac endoderm maintains its differentiated morphology and ability to bind IgG.  相似文献   

7.
Investigation of the developmental fates of cells in the endodermal layer of the early bud stage mouse embryo revealed a regionalized pattern of distribution of the progenitor cells of the yolk sac endoderm and the embryonic gut. By tracing the site of origin of cells that are allocated to specific regions of the embryonic gut, it was found that by late gastrulation, the respective endodermal progenitors are already spatially organized in anticipation of the prospective mediolateral and anterior-posterior destinations. The fate-mapping data further showed that the endoderm in the embryonic compartment of the early bud stage gastrula still contains cells that will colonize the anterior and lateral parts of the extraembryonic yolk sac. In the Lhx1(Lim1)-null mutant embryo, the progenitors of the embryonic gut are confined to the posterior part of the endoderm. In particular, the prospective anterior endoderm was sequestered to a much smaller distal domain, suggesting that there may be fewer progenitor cells for the anterior gut that is poorly formed in the mutant embryo. The deficiency of gut endoderm is not caused by any restriction in endodermal potency of the mutant epiblast cells but more likely the inadequate allocation of the definitive endoderm. The inefficient movement of the anterior endoderm, and the abnormal differentiation highlighted by the lack of Sox17 and Foxa2 expression, may underpin the malformation of the head of Lhx1 mutant embryos.  相似文献   

8.
During the early stages of somitogenesis in the chick embryo the presomitic cells in the segmental plate undergo compaction. The aggregation of segmental plate cells is stimulated by fibronectin. The stimulation of segmental plate cells to aggregate and undergo compaction can be effected in isolated segmental plate cells, in isolated segmental plates, and in intact embryos removed from the yolk. The fact that the segmental plate cells react with greater vigor to cellular fibronectin than to plasma fibronectin suggests a specific molecular mechanism in the initiation of somitogenesis.  相似文献   

9.
The structure of the areas pellucida and vasculosa of the early chick embryo (stages 11-29) was examined by light, transmission and scanning electron microscopy. The most striking feature of the endodermal cells of these areas is the presence of large intracellular yolk drops which are characteristic of the regions in which they are found; lipid-like homogeneous drops in the area pellucida, heterogeneously composed pleomorphic drops in the mid-region of the area vasculosa and granular drops at the periphery of the area vasculosa in the region of the sinus terminalis. On morphological criteria it is postulated that granular drops may arise by direct engulfment of extracellular yolk, but this does not appear to be true for pleomorphic or homogeneous drops. Since the apical junctions between endodermal cells across the yolk sac are tight, they seal off the extraembryonic compartment from the vitelline circulation and presumably prevent intercellular passage of the yolk constituents. Thus the endodermal epithelium must mediate the transport of nutrients from the yolk mass to the developing embryo. Endodermal cells exhibit a variation across the yolk sac in the presence and number of structures associated with uptake of extracellular materials. The mid-region of the area vasculosa appears to be the most endocytotically active region with an abundance of microvilli, bristle-coated pits and vesicles and apical canaliculi and vacuoles. There is a close association between the endoderm and vitelline blood vessels and this association is maintained, as the yolk sac develops, by the formation of small vessels juxtaposed between the vascular surface of the endoderm and the walls of the large vitelline vessels.  相似文献   

10.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of prestreak and early primitive streak stages of the mouse embryo was studied in vitro by microinjecting horseradish peroxidase into single axial endoderm cells of 6.7-day-old embryos and tracing the labelled descendants either through gastrulation (1 day of culture) or to early somite stages (2 days of culture). Descendants of endoderm cells from the anterior half of the axis were found at the extreme cranial end of the embryo after 1 day and in the visceral yolk sac endoderm after 2 days, i.e. they were displaced anteriorly and anterolaterally. Descendants of cells originating over and near the anterior end of the early primitive streak, i.e. posterior to the distal tip of the egg cylinder, were found after 1 day over the entire embryonic axis and after 2 days in the embryonic endoderm at the anterior intestinal portal, in the foregut, along the trunk and postnodally, as well as anteriorly and posteriorly in the visceral yolk sac. Endoderm covering the posterior half of the early primitive streak contributed to postnodal endoderm after 1 day (at the late streak stage) and mainly to posterior visceral yolk sac endoderm after 2 days. Clonal descendants of axial endoderm were located after 2 days either over the embryo or in the yolk sac; the few exceptions spanned the caudal end of the embryo and the posterior yolk sac. The clonal analysis also showed that the endoderm layer along the posterior half of the axis of prestreak- and early-streak-stage embryos is heterogeneous in its germ layer fate. Whereas the germ layer location of descendants from anterior sites did not differ after 1 day from that expected from the initial controls (approx. 90% exclusively in endoderm), only 62% of the successfully injected posterior sites resulted in labelled cells exclusively in endoderm; the remainder contributed partially or entirely to ectoderm and mesoderm. This loss from the endoderm layer was compensated by posterior-derived cells that remained in endoderm having more surviving descendants (8.4 h population doubling time) than did anterior-derived cells (10.5 h population doubling time). There was no indication of cell death at the prestreak and early streak stages; at least 93% of the cells were proliferating and more than half of the total axial population were in, or had completed, a third cell cycle after 22 h culture.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Isolation of endo A cDNA from mouse 8-cell stage embryos   总被引:1,自引:0,他引:1  
To analyse the species of genes expressed in a cleavage stage mouse embryo, we have constructed a cDNA library containing 3.0 x 10(5) independent clones from about 2 x 10(3) embryos at the 8-cell stage of development. Endo A cDNA prepared from parietal yolk sac endoderm like PYS-2 cells was used to screen the library. Southern blot analyses using the endo A sequence as a probe and restriction mapping analyses revealed that four independent recombinants had been inserted endo A sequence. Sequencing data of these clones showed that endo A mRNA present in the 8-cell stage embryo is identical to that of parietal yolk sac endoderm cells.  相似文献   

12.
The major events associated with the morphogenesis of the amphibian alimentary tract are described and illustrated with a series of photomicrographs that present a continuous account of the differentiation process from its onset at stage 38 until the initiation of feeding at stage 46. Histological evidence is presented for the normal disappearance of the midgut region of the archenteron and the de novo formation of the intestine through the yolk mass. The mechanics of intestinal lumen formation are discussed in terms of the dynamic autonomous actions and interactions of the endoderm and the splanchnic mesoderm. The opening of the intestinal lumen as a consequence of cytolysis or cellular digestion is discounted. The relation of the present observations to the previously described polar endoderm cells is considered.  相似文献   

13.
Effects of insulin upon glucose metabolism were investigated in chick embryos explanted in vitro during the first 30 h of incubation. Insulin stimulated the glucose consumption of the chick gastrula (18 h) and neurula (24 h), but had no effect on the late blastula (0 h:laying) and on the stage of six to eight somites (30 h). The increase in glucose consumption concerned both the embryonic area pellucida (AP) and extraembryonic area opaca (AO). AP responded to a greater extent (50%) and at a lower range of concentrations (0.1-1.0 ng/ml) than AO (30%; 1-100 ng/ml). Insulin had no effect on the oxygen consumption of blastoderms, whereas it stimulated the aerobic lactate production (approximately 70% of the additional glucose consumption was converted to lactate). The nanomolar range of stimulating concentrations suggests that insulin has a specific effect in the chick embryo, and that it could modulate glucose metabolism in ovo as well. The transient sensitivity of the embryo to insulin is discussed in relation to behavior of mesodermal cells.  相似文献   

14.
Cell lineages of the primitive endoderm and the visceral endoderm of mouse embryos were examined by culturing whole embryos in vitro. The primitive endoderm and visceral endoderm cells could be labelled by incubation of embryos in a medium containing horse radish peroxidase (HRP). HRP localization was chased throughout the culture period. The results show that the visceral endoderm derives from the primitive endoderm, and the visceral endoderm forms only the extra-embryonic endoderm (yolk sac endoderm) of the conceptus. The definitive endoderm which is probably derived from the head process, newly appears on the ventral surface of the embryo.  相似文献   

15.
Cell movements during epiboly and gastrulation in zebrafish   总被引:12,自引:0,他引:12  
Beginning during the late blastula stage in zebrafish, cells located beneath a surface epithelial layer of the blastoderm undergo rearrangements that accompany major changes in shape of the embryo. We describe three distinctive kinds of cell rearrangements. (1) Radial cell intercalations during epiboly mix cells located deeply in the blastoderm among more superficial ones. These rearrangements thoroughly stir the positions of deep cells, as the blastoderm thins and spreads across the yolk cell. (2) Involution at or near the blastoderm margin occurs during gastrulation. This movement folds the blastoderm into two cellular layers, the epiblast and hypoblast, within a ring (the germ ring) around its entire circumference. Involuting cells move anteriorwards in the hypoblast relative to cells that remain in the epiblast; the movement shears the positions of cells that were neighbors before gastrulation. Involuting cells eventually form endoderm and mesoderm, in an anterior-posterior sequence according to the time of involution. The epiblast is equivalent to embryonic ectoderm. (3) Mediolateral cell intercalations in both the epiblast and hypoblast mediate convergence and extension movements towards the dorsal side of the gastrula. By this rearrangement, cells that were initially neighboring one another become dispersed along the anterior-posterior axis of the embryo. Epiboly, involution and convergent extension in zebrafish involve the same kinds of cellular rearrangements as in amphibians, and they occur during comparable stages of embryogenesis.  相似文献   

16.
Use of the culture techniques for postimplantation rodent embryos, modified by explanting Day 9 or Day 10 embryos with the trophoblast cells removed but the remainder of the parietal yolk sac left intact, resulted in significant expansion of Reichert's membrane, accompanied by a marked increase in the numbers of the adherent parietal endoderm cells which synthesize the membrane. The surface area of the parietal endoderm/Reichert's membrane complex roughly doubled during culture, and the combined protein content of the cells and their basement membrane was also raised after incubation. Parietal endoderm cell numbers, calculated from area and cell density measurements on flattened membranes, increased by 54-190%, depending on the age of the embryo.  相似文献   

17.
Regional specification of the endoderm in the early chick embryo   总被引:1,自引:1,他引:0  
In the avian embryo, the endoderm, which forms a simple flat-sheet structure after gastrulation, is regionally specified in a gradual manner along the antero-posterior and dorso-ventral axes, and eventually differentiates into specific organs with defined morphologies and gene expression profiles. In our study, we carried out transplantation experiments using early chick embryos to elucidate the timing of fate establishment in the endoderm. We showed that at stage 5, posteriorly grafted presumptive foregut endoderm expressed CdxA , a posterior endoderm marker, but not cSox2 , an anterior endoderm marker. Conversely, anteriorly grafted presumptive mid-hindgut endoderm expressed cSox2 but not CdxA . At stage 8, posteriorly grafted presumptive foregut endoderm also expressed CdxA and not cSox2 , but anteriorly grafted presumptive mid-hindgut endoderm showed no changes in its posterior-specific gene expression pattern. At stage 10, both posteriorly grafted foregut endoderm and anteriorly grafted mid-hindgut endoderm maintain their original gene expression patterns. These results suggest that the regional specification of the endoderm occurs between stages 8 and 10 in the foregut, and between stages 5 and 8 in the mid-hindgut.  相似文献   

18.
I Zusman  P Yaffe  A Ornoy 《Acta anatomica》1987,128(1):11-18
The ultrastructure of the visceral yolk sac endoderm of in vivo developing 9- to 13-day-old embryos from 2 diabetic rat models (streptozotocin diabetes and Cohen--genetically determined--diabetes) and from nondiabetic rats fed high sucrose diets have been studied. This was compared to yolk sacs from 9.5-day-old embryos cultured for 48 h in sera from diabetic and nondiabetic rats fed a high-sucrose diet. Light-microscopic, TEM and SEM studies showed that the pathological cellular changes in the visceral yolk sac endoderm from diabetic rats were first observed on day 9 and were most severe among 11-day-old embryos. In vitro culture of control rat embryos in serum from experimental animals induced a reduction in the number of microvilli, of vacuolar intracellular inclusions and an increase in the number of degenerated endodermal cells. SEM studies showed that in addition to disappearance of microvilli, the majority of cells were collapsed and had degenerated cell membranes. Culture of embryos from diabetic animals in control serum only slightly reversed the pathological changes in the visceral yolk sac endoderm. A good correlation exists between the rate of embryonic malformations in diabetic rats and an index of endodermal-cell damage in the visceral yolk sac.  相似文献   

19.
Summary This study aims to describe the regulation of vimentin and cytokeratin expression during differentiation of primary mesenchymal cells in the 7 day old rabbit embryo; unusual intermediate filament protein expression patterns have already been found in this species at later embryonic stages. Double-labelling indirect immunofluorescence assays with a panel of monoclonal intermediate filament antibodies are performed on frozen sections and compared with aldehyde-fixed plastic-embedded tissues. The histological part of the study, serving as a basis for the topographical orientation in the immunostained frozen sections, emphasises many similarities between the primitive streak embryos of the rabbit and the chick. The immunohistochemical analysis reveals cytokeratin expression to varying degrees in all germ layers. Vimentin expression, always in combination with cytokeratin expression, is found in a few cells of the ectoderm, endoderm and lateral mesoderm, but not in the primary mesenchymal cells of either the primitive node or the primitive streak. The results are discussed in relation to recent experimental findings on differentiation and morphogenetic processes in the primitive streak embryo. While these complex expression patterns make it seem unlikely that intermediate filament protein subtypes are expressed independently of cellular function during development, no indication can be found for a relation between vimentin expression and the morphogenetic changes thought to be important during mesoderm formation.Supported by the Deutsche Forschungsgemeinschaft (Wa 359-9) and by the Netherlands Cancer Foundation Offprint requests to: C. Viebahn  相似文献   

20.
Cells from the extraembryonic endoderm of the gastrulating chick embryo contain a β-d-galactoside-binding lectin inhibited by thiodigalactoside (TDG). TDG inhibits the aggregation of freshly prepared cells. In these fresh cell suspensions, adhesion is also inhibited when purified lectin is added to the aggregation assay. If these cells are incubated at 22° C their adhesion decreases. Associated with this is an increase in lectin activity in the cell supernatants. In these incubated cells aggregation is stimulated by TDG and desialyzed fetuin. These data suggest that the lectin may have a role to play in cellular adhesion. Under some experimental conditions extraembryonic endoderm cells from rosettes with trypsinized glutaraldehyde-fixed rabbit erythrocytes. This phenomenon is inhibited, to a certain extent, by TDG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号