首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elucidation of the cDNA sequence for sturgeon proorphanin provides a unique window for interpreting the evolutionary history of the opioid/orphanin gene family. The molecular "fossil" status of this precursor can be seen in several ancestral sequence characteristics that point to its origin as a duplication of either a prodynorphin- or proenkephalin-like gene. The sturgeon proorphanin cDNA encodes a precursor protein of 194 residues, and the orphanin heptadecapeptide itself binds not only the opioid receptor-like 1 (ORL1) receptor but also the classical (mu, kappa, and delta) opioid receptors with near equal affinity. Allowing for this broad receptor specificity are several amino acid substitutions at key positions in the heptadecapeptide sequence, relative to its mammalian orthologs, that have been linked by amino acid scans and site-directed mutagenic studies to the exclusion of mammalian orphanin FQ/nociceptin from classic opioid ligands (i.e. F1Y and L14W). The unique receptor binding profile of sturgeon orphanin not only provides insight into the evolutionary history of the opioid and opioid-related peptides but also provides an ideal context in which to investigate the underlying mechanisms by which novel and often divergent physiological functions arise in receptor-ligand systems.  相似文献   

2.
Tissue distribution of the opioid receptor-like (ORL1) receptor   总被引:8,自引:0,他引:8  
Mollereau C  Mouledous L 《Peptides》2000,21(7):907-917
The ORL1 receptor is a G protein-coupled receptor structurally related to the opioid receptors, whose endogenous ligand is the heptadecapeptide nociceptin/orphanin FQ. In this review, data which have contributed to the mapping of the anatomic distribution of the ORL1 receptor have been collated with an emphasis on their relation to physiological functions. The ORL1 receptor is widely expressed in the central nervous system, in particular in the forebrain (cortical areas, olfactory regions, limbic structures, thalamus), throughout the brainstem (central periaqueductal gray, substantia nigra, several sensory and motor nuclei), and in both the dorsal and ventral horns of the spinal cord. Regions almost devoid of ORL1 receptors are the caudate-putamen and the cerebellum. ORL1 mRNA and binding sites exhibit approximately the same distribution pattern, indicating that the ORL1 receptor is located on local neuronal circuits. The ORL1 receptor is also expressed at the periphery in smooth muscles, peripheral ganglia, and the immune system. The anatomic distribution of ORL1 receptor suggests a broad spectrum of action for the nociceptin/orphanin FQ system (sensory perception, memory process, emotional behavior, etc.).  相似文献   

3.
Corboz MR  Fernandez X  Egan RW  Hey JA 《Life sciences》2001,69(10):1203-1211
In vivo studies were conducted in the guinea-pig to investigate the activity of the selective ORL1 receptor agonist nociceptin/orphanin FQ against capsaicin-induced bronchoconstriction, a response mediated by the release of tachykinins from pulmonary sensory nerves. Anesthetized guinea-pigs were ventilated with a rodent ventilator and placed in a whole-body plethysmograph, and pulmonary resistance (R(L)) and dynamic lung compliance (C(Dyn)) were monitored. Intravenous administration of nociceptin/orphanin FQ (0.3 mg/kg) inhibited the capsaicin-induced bronchoconstriction. The new nonpeptide ORL1 receptor antagonist 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J-113397) administered intravenously (1 mg/kg) produced a significant blockade of the inhibitory effect of nociceptin/orphanin FQ (0.3 mg/kg) on capsaicin-induced bronchoconstriction, whereas the nonselective opioid receptor antagonist naloxone (1 mg/kg) had no effect. Nociceptin/orphanin FQ (0.3 mg/kg) did not affect the bronchoconstriction induced exogenously by the tachykinin NK2 receptor agonist [beta-ala8]-neurokinin A (4-10). We conclude that nociceptin inhibits in vivo capsaicin-evoked tachykinin release from sensory nerve terminals in the guinea-pig by a prejunctional mechanism. This inhibitory action does not involve activation of opioid receptors.  相似文献   

4.
Abstract: The endogenous opioid receptor-like1 (ORL1) ligand, nociceptin/orphanin FQ (FGGFTGARKSARKLANQ), a heptadecapeptide structurally resembling dynorphin A, has recently been identified. The wide distribution of ORL1 mRNA and nociceptin/orphanin FQ precursor in the CNS, particularly in the limbic system regions and in several areas known to be involved in pain perception, suggests that nociceptin/orphanin FQ is potentially endowed with various central functions. In general, activation and/or inactivation of regulatory peptides occur through the action of cell surface peptidases. The physiological mechanisms under which nociceptin/orphanin FQ is metabolized should lead to a better understanding of its physiological functions. Mouse brain cortical slices were incubated in medium containing the heptadecapeptide in the presence or in the absence of peptidase inhibitors. The critical sites of enzymatic cleavage are Phe1-Gly2, Ala7-Arg8, Ala11-Arg12, and Arg12-Lys13 bonds. The major role played by metallopeptidases was confirmed by the complete protection of metabolism in the presence of EDTA. Aminopeptidase N and endopeptidase 24.15 are the two main enzymes involved in nociceptin/orphanin FQ metabolism, whereas endopeptidase 24.11 (involved in enkephalin [YGGFM(L)] catabolism) does not appear critically involved in nociceptin/orphanin FQ metabolism. The physiological relevance of aminopeptidase N and endopeptidase 24.15 in the heptadecapeptide metabolism remains to be determined.  相似文献   

5.
A series of 8-acenaphthen-1-yl-1-phenyl-1,3,8-triaza-spiro[4.5]decan+ ++-4-one derivatives 1 was studied with respect to the binding affinity for the orphanin FQ (OFQ) and opioid (mu, kappa, delta) receptors. The influence of stereochemistry as well as the substitution pattern of the phenyl-ring in position 1 on the affinity for the orphanin FQ receptor and selectivity to opioid (mu, kappa, delta) receptors is discussed. The most interesting compound 1c was tested for its anxiolytic-like properties in vivo.  相似文献   

6.
The occurrence of endogenous opioids and their receptors in rat achilles tendon was analyzed by immunohistochemistry (IHC), radioimmunoassay (RIA), and in vitro binding assays. The investigation focused on four enkephalins, dynorphin B, and nociceptin/orphanin FQ. Nerve fibers immunoreactive to all enkephalins (Met-enkephalin, Leu-enkephalin, Met-enkephalin-Arg-Gly-Lys, Met-enkephalin-Arg-Phe) were consistently found in the loose connective tissue and the paratenon, whereas dynorphin B and nociceptin/orphanin FQ could not be detected. The majority of enkephalin-positive nerve fibers exhibited varicosities predominantly seen in blood vessel walls. Measurable levels of Met-enkephalin-Arg-Phe and nociceptin/orphanin FQ were found in tendon tissue using RIA, whereas dynorphin B could not be detected. In addition to the endogenous opioids identified, delta-opioid receptors on nerve fibers were also detected by IHC. Binding assays to characterize the opioid binding sites showed that they were specific and saturable for [3H]-naloxone (Kd 7.01 +/- 0.98 nM; Bmax 23.52 +/- 2.23 fmol/mg protein). Our study demonstrates the occurrence of an opioid system in rat achilles tendon, which may be assumed to be present also in other connective tissues of the locomotor apparatus. This system may prove to be a useful target for pharmacological therapy in painful and inflammatory conditions by new drugs acting selectively in the periphery.  相似文献   

7.
Like other neuropeptides, orphanin FQ/nociceptin (OFQ/N) is encoded by a larger precursor protein. The cDNA for the OFQ/N precursor has been cloned from human, rat, mouse and bovine tissue demonstrating that this peptidergic system serves important functions that have been conserved during evolution. The structural organization of the precursor protein is similar to opioid peptide precursors, supporting the view of a common origin for the opioid systems and the OFQ/N system. In addition to OFQ/N, the precursor may encode two other biologically active peptides. Anatomic studies have revealed high levels of expression of the OFQ/N messenger RNA in brain structures involved in sensory, emotional and cognitive processing. In particular, high levels of OFQ/N mRNA were detected in the limbic system, underlining the stress attenuating activities that have been described as an important function of OFQ/N. Recently, mutant mice have been generated that lack the precursor protein of OFQ/N to further define the physiological functions of the OFQ/N system. The OFQ/N-deficient mice are characterized by an increased sensitivity to stressful stimuli and a lack of habituation to chronic and repeated stress. This review will summarize recent findings on the molecular biology of the OFQ/N precursor and relate it to possible physiological functions of this newly discovered neuropeptide system.  相似文献   

8.
The nociceptin receptor (NOP) and its endogenous agonist, nociceptin/orphanin FQ (N/OFQ), members of the opioid receptor and peptide families respectively, modulate the pharmacological effects of classical opioids, particularly opioid-induced reward and nociception. We hypothesized that compounds containing both NOP and opioid receptor activity in a single molecule may have useful pharmacological profiles as non-addicting analgesics or as drug abuse medications. We report here our forays into the structure–activity relationships for discovering ‘bifunctional’ NOP–mu opioid receptor (MOP) ligands, starting from our NOP-selective scaffolds. This initial SAR suggests pharmacophoric elements that may be modified to modulate/increase opioid affinity, while maintaining high affinity for the NOP receptor, to result in potent bifunctional small-molecule NOP/MOP ligands.  相似文献   

9.
A novel class of 4-substituted-8-(2-phenyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-ones have been discovered and developed as potent and selective GlyT1 inhibitors. The molecules are devoid of activity at the GlyT2 isoform and display excellent selectivities against the mu opioid receptor as well as the nociceptin/orphanin FQ peptide (NOP) receptor. A novel, straightforward and efficient synthetic strategy for the assembly of the target molecules is also presented.  相似文献   

10.
During SAR exploration of N-(2-aryl-cyclohexyl) substituted spiropiperidine as GlyT1 inhibitors, it was found that introduction of an hydroxy group in position 2 of the cyclohexyl residue considerably improves the pharmacological profile. In particular, reduction of the binding affinity at the nociceptin/orphanin FQ peptide and the mu opioid receptors was achieved.  相似文献   

11.
Effects of supraspinal orphanin FQ/nociceptin   总被引:3,自引:0,他引:3  
Grisel JE  Mogil JS 《Peptides》2000,21(7):1037-1045
The first reported behavioral action of the endogenous ligand for the "orphan" opioid receptor was a seemingly paradoxical increased sensitivity to nociception (i.e. hyperalgesia) after supraspinal injection into the cerebral ventricles of mice. In the continuing absence of an appropriate in vivo receptor antagonist, studies attempting to define the role of orphanin FQ/nociceptin (OFQ/N) in pain modulation and other behaviors have also featured central injection of peptide. This article reviews the findings of such studies. There appears to be concordance around the observation of anti-opioid actions of supraspinally injected OFQ/N, whereas the observations of hyperalgesia and/or analgesia are much less clear. A portion of the discrepant data may be explained in terms of methodological issues, stress-induced analgesia accompanying experimental protocols, and genotypic variation among subjects. Clarification of OFQ/N's role in nociception, as with other putative biologic functions, will probably depend upon the availability of a selective receptor antagonist.  相似文献   

12.
Opiate modulating properties of nociceptin/orphanin FQ   总被引:10,自引:0,他引:10  
Harrison LM  Grandy DK 《Peptides》2000,21(1):151-172
The recently discovered peptide nociceptin/orphanin FQ (N/OFQ) and its receptor NOR share many structural similarities with the opioid peptides and their receptors. The anatomical distributions of N/OFQ and NOR are similar to those of opioid peptides and receptors. In addition, NOR and opiate receptors couple via the same G-proteins to similar effectors, such as Ca(2+) channels, K(+) channels, adenylyl cyclase, and several protein kinases. Thus, the behavioral effects of N/OFQ have been investigated in the context of known opiate effects, and a possible connection has been sought between the effects of these two homologous signaling systems. Originally characterized as a nociception-producing peptide, N/OFQ has now been shown to have diverse effects on nociception, as well as effects on many other behaviors. With regard to nociception, the peptide has been reported to produce hyperalgesia, reversal of opioid-mediated analgesia, analgesia, and allodynia. N/OFQ also has effects on other behaviors, such as locomotion, feeding, anxiety, spatial attention, reproductive behaviors, and opiate tolerance. The relationship between opiates and N/OFQ is strengthened by the fact that opiates also affect these behaviors. However, the exact nature of the relationship of N/OFQ with opiates-opiate-like versus antiopiate-remains controversial. This review will detail the diverse effects of N/OFQ and suggest that this peptide, like other putative antiopiate peptides, can be described as 'opiate modulating. '  相似文献   

13.
Nociceptin receptor (NOP) belongs to the family of opioid receptors but was discovered and characterized much later than the so called classical opioid receptors, μ, δ and κ (or MOP, DOP and KOP, resp.). Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of this receptor and it controls numerous important functions in the central nervous system and in the periphery, so its analogs may be developed as innovative drugs for the treatment of a variety of conditions and pathological states. Availability of potent and selective ligands with high affinity to NOP receptor is essential to fully understand the role of NOP-N/OFQ system in the body, which in turn may lead to designing novel therapeutics. Here, we have focused on reviewing the structure of potent peptide-based agonists, antagonists, biased analogs and bivalent ligands that target NOP receptor.  相似文献   

14.
The nociceptin/orphanin FQ (N/OFQ) receptor (e.g. the human ortholog ORL1) has been shown to be pharmacologically distinct from classic opioid receptors. Recently, we have identified buprenorphine as a full ORL1 agonist using a reporter gene assay. For further functional analysis, buprenorphine's effects on ORL1 receptors were investigated using a K(+) channel (GIRK1) assay in Xenopus oocytes and GTPgammaS assay in CHO-K1 membrane preparations. In both assays, buprenorphine behaved as a partial agonist compared to nociceptin itself. The N/OFQ agonism of buprenorphine might contribute to actions of buprenorphine in pain models in vivo beside its mu- or kappa-opioid receptor mediated effects.  相似文献   

15.
Opioids were originally discovered because of their ability to induce analgesia, but further investigation has shown that the opioids regulate the function of cells involved in the immune response. We suggest that the regulation of cytokine, chemokine, and cytokine receptor expression is a critical component of the immunomodulatory activity of the opioids. In this paper we review the literature dealing with the regulation of cytokine and cytokine receptor expression by agonists for the three major opioid receptor types (mu, kappa, and delta), and nociceptin, the natural agonist for the orphanin FQ/nociceptin receptor. Although the opioid receptors share a high degree of sequence homology, opposing roles between the kappa opioid receptor (KOR) and the mu opioid receptor (MOR) have become apparent. We suggest that activation of the KOR induces an anti-inflammatory response through the down-regulation of cytokine, chemokine and chemokine receptor expression, while activation of the MOR favors a pro-inflammatory response. Investigation into the opioid receptor-like (ORL1)/nociceptin system also suggests a role for this receptor as a down-regulator of immune function. These effects suggest a broad role for opioids in the modulation of the function of the immune system, and suggest possible targets for the development of new therapeutics for inflammatory and infectious diseases.  相似文献   

16.
The influence of orphanin FQ/nociceptin (OFQ/N) on the morphine-withdrawal symptom was investigated. Withdrawal syndrome was induced in the morphine-dependent rats by an intraperitoneal (i.p.) injection of 2 mg/kg naloxone hydrochloride--an opioid receptors antagonist. Wet-dog shakes were used as a measure of the abstinence syndrome. Intraventricular injections of OFQ/N (5-20 microg/animal) caused significant inhibition of the withdrawal signs at doses between 15-20 microg, in the morphine-dependent rats. OFQ/N alone did not change behavior of the morphine-dependent animals. The obtained results indicate that OFQ/N can inhibit the morphine withdrawal symptoms induced by naloxone.  相似文献   

17.
Orphanin FQ has been reported to suppress extracellular dopamine levels in the nucleus accumbens after intracerebroventricular administration. This study sought to provide evidence for an intra-ventral tegmental site of action for this effect using a dual-probe microdialysis experimental design. Orphanin FQ was applied to the ventral tegmental area of anesthetized rats by reverse dialysis while extracellular dopamine was sampled with a second dialysis probe in the nucleus accumbens. Orphanin FQ at a probe concentration of 1 mM (but not at 0.1 mM) significantly reduced nucleus accumbens dialysate dopamine levels. The receptor-inactive analogue, des-Phe1-orphanin FQ (1 mM), produced a small but significant increase in nucleus accumbens dialysate dopamine levels. Simultaneous measurement of ventral tegmental area dialysate amino acid content revealed significant increases in both GABA and glutamate during infusion of orphanin FQ (1 mM). To determine if increased GABA overflow mediates the action of orphanin FQ on mesolimbic neurons, orphanin FQ (10 nmol) was microinjected directly into the ventral tegmental area in the presence or absence of the GABA(A) receptor antagonist, bicuculline (1 nmol). Bicuculline transiently blocked the suppressive action of orphanin FQ on accumbens dialysate dopamine levels. These data indicate that orphanin FQ decreases dopamine transmission in the nucleus accumbens by inhibiting dopamine neuronal activity in the ventral tegmental area through a mechanism that may involve an increased overflow of GABA.  相似文献   

18.
孤啡肽对海马IL—1β表达的调节作用   总被引:1,自引:0,他引:1  
Zhao H  Du LN  Jiang JW  Wu GC  Cao XD 《生理学报》2001,53(3):209-214
采用原位杂交,免疫荧光双标技术及大鼠创伤应激模型,观察孤啡肽对海马白介素-1β(IL-1β)表达水平的影响,结果显示,侧脑室注射抗大鼠IL-1β抗体能明显改善创伤介导的免疫反应,即有效下调巨噬细胞分泌IL-1和TNF-α的能力,侧脑室注射孤啡肽后2h海马IL-1β的表达明显下降,且此作用能反啡肽受体拮抗剂阻断,免疫荧光双标结合激光共聚焦显微镜观察发现,孤喱肽的受体在神经经元,星形胶质细胞及小胶质细胞均有表达,实验结果提示,海马的IL-1β参与创伤应激介导的免疫反应,孤喱肽的神经免疫调节作用可能是通过作用于海马的中枢神经细胞,抑制L-1β的合成及释放而完成的。  相似文献   

19.
The nociceptin opioid receptor (NOP) and its endogenous peptide ligand nociceptin/orphanin FQ have been shown to modulate the pharmacological effects of the classical opioid receptor system. Suppression of opioid-induced reward associated with mu-opioid receptor (MOP)-mediated analgesia, without decreasing anti-nociceptive efficacy, can potentially be achieved with NOP agonists having bifunctional agonist activity at MOP, to afford ‘non-addicting’ analgesics. In Part II of this series, we describe a continuing structure–activity relationship (SAR) study of the NOP-selective piperidin-4-yl-1,3-dihydroindol-2-one scaffold, to obtain bifunctional activity at MOP, and a suitable ratio of NOP/MOP agonist activity that produces a non-addicting analgesic profile. The SAR reported here is focused on the influence of various piperidine nitrogen aromatic substituents on the ratio of binding affinity and intrinsic activity at both the NOP and MOP receptors.  相似文献   

20.
Wang JL  Zhu CB  Cao XD  Wu GC 《Regulatory peptides》1999,79(2-3):159-163
Nociceptin/orphanin FQ (nociceptin/OFQ), a newly discovered heptadecapeptide has been regarded as an endogenous ligand for orphan opioid receptor. The present study was designed to investigate the effect of nociceptin/OFQ on pain response and opioid analgesia in the rat formalin test. The results showed that intracerebroventricular injection of 1 microg nociceptin/OFQ enhanced the pain response, and 0.1 or 0.5 microg nociceptin/OFQ had no effect on formalin-induced pain. When 0.1 or 1 microg nociceptin/OFQ were used together with mu-, delta-, or kappa-opioid receptor agonists, endomorphin-1, DSLET or U50488H, respectively, it attenuated mu- and kappa- but not delta-receptor mediated analgesia. On the other hand, intrathecal injection of nociceptin/OFQ (0.1, 1 and 5 microg) reduced the pain response in the formalin test. In conclusion, nociceptin/OFQ potentiated formalin-induced pain response and antagonized opioid analgesia in the rat brain but inhibited pain response in the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号