首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We have generated transgenic mice carrying wild-type promoters of the human apolipoprotein A-I (apoA-I)-apoCIII gene cluster or promoters mutated in their hormone response elements. The wild-type cluster directed high levels of apoA-I gene expression in liver and intestine, moderate expression in kidney, and low to minimal expression in other tissues. It also directed high levels of chloramphenicol acetyltransferase (CAT) expression (used as a reporter for the apoCIII gene) in liver, low levels in intestine and kidney, and no expression in other tissues. Mutations in the apoCIII promoter and enhancer abolished the intestinal and renal expression of the apoA-I gene, reduced hepatic apoA-I expression by 80%, and abolished CAT expression in all tissues. A similar pattern of expression was obtained by mutations in the apoCIII enhancer alone. Mutations in the proximal apoA-I promoter reduced by 85% hepatic and intestinal apoA-I expression and did not affect CAT expression. The findings suggest that a hormone response element within the apoCIII enhancer is essential for intestinal and renal expression of apoA-I and apoCIII genes and also enhances hepatic expression. The hormone response elements of the proximal apoA-I promoter or the apoCIII enhancer can promote independently low levels of hepatic and intestinal expression of the apoA-I gene in vivo.  相似文献   

2.
We have generated and studied the pattern of expression of transgenic mouse lines carrying the human apoA-I and apoCIII gene cluster mutated at different sites. In two lines, we have either mutated the hormone-response element (HRE) of element G of the apoCIII enhancer or the C/EBP binding site of the proximal apoA-I promoter. In a third line, we have mutated the two HREs of the apoA-I promoter and the HRE of the apoCIII enhancer. Mutations in the HRE of element G reduced the hepatic and intestinal expressions of the reporter chloramphenicol acetyltransferase (CAT) gene (which substituted the apoCIII gene) to 4 and 13% of the wild-type (WT) control, whereas the hepatic and intestinal expressions of the apoA-I gene were reduced to 92 and 25% of the WT control, respectively. A mutation in the C/EBP site increased the hepatic and intestinal expressions of the apoA-I gene approximately 1.25- and 1.6-fold, respectively, and did not affect the expression of the CAT gene. The mutation in the three HNF-4 binding sites of the apoA-I promoter/apoCIII enhancer nearly abolished the expression of apoA-I and the reporter CAT gene in all tissues. These findings establish the importance of the HREs for the hepatic and intestinal expressions of the apoA-I and apoCIII genes and suggest that C/EBP does not play a central role in the expression of the apoA-I gene.  相似文献   

3.
The effects of bezafibrate (PPAR alpha activator) and troglitazone (PPAR gamma activator) on the expression of plasminogen activator inhibitor type-1 (PAI-1) in HepG2 cells were investigated. Exposure of the cells for 24 hours to either oleic acid or insulin showed no obvious effects on PAI-1 synthesis, whereas the combination of the two agents induced a 2.3-fold increase in PAI-1 synthesis, which was accompanied by a 3-fold increase in both the 2.2 kb and 3.2 kb forms of PAI-1 mRNA. This up-regulation of PAI-1 synthesis was attenuated by bezafibrate in a dose-dependent manner (1-100 microM) with 30% reversal at 100 microM. In contrast, troglitazone further stimulated PAI-1 synthesis to 140% of the level obtained in the presence of both oleic acid and insulin. This attenuation by bezafibrate and enhancement by troglitazone required the presence of both oleic acid and insulin. It is interesting that PAI-1 expression was affected so differently by these two PPAR activators.  相似文献   

4.
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein (HDL). We investigated the involvement of apoA-I in diet-induced accumulation of triglycerides in hepatocytes and its potential role in the treatment of nonalcoholic fatty liver disease (NAFLD). ApoA-I-deficient (apoA-I(-/-)) mice showed increased diet-induced hepatic triglyceride deposition and disturbed hepatic histology while they exhibited reduced glucose tolerance and insulin sensitivity. Quantification of FASN (fatty acid synthase 1), DGAT-1 (diacylglycerol O-acyltransferase 1), and PPARγ (peroxisome proliferator-activated receptor γ) mRNA expression suggested that the increased hepatic triglyceride content of the apoA-I(-/-) mice was not due to de novo synthesis of triglycerides. Similarly, metabolic profiling did not reveal differences in the energy expenditure between the two mouse groups. However, apoA-I(-/-) mice exhibited enhanced intestinal absorption of dietary triglycerides (3.6 ± 0.5 mg/dL/min for apoA-I(-/-) versus 2.0 ± 0.7 mg/dL/min for C57BL/6 mice, P < 0.05), accelerated clearance of postprandial triglycerides and a reduced rate of hepatic very low density lipoprotein (VLDL) triglyceride secretion (9.8 ± 1.1 mg/dL/min for apoA-I(-/-) versus 12.5 ± 1.3 mg/dL/min for C57BL/6 mice, P < 0.05). In agreement with these findings, adenovirus-mediated gene transfer of apoA-I(Milano) in apoA-I(-/-) mice fed a Western-type diet for 12 wks resulted in a significant reduction in hepatic triglyceride content and an improvement of hepatic histology and architecture. Our data extend the current knowledge on the functions of apoA-I, indicating that in addition to its well-established properties in atheroprotection, it is also an important modulator of processes associated with diet-induced hepatic lipid deposition and NAFLD development in mice. Our findings raise the interesting possibility that expression of therapeutic forms of apoA-I by gene therapy approaches may have a beneficial effect on NAFLD.  相似文献   

5.
Troglitazone, a thiazolidinedione, is known to act as an insulin sensitizer. The various effects of the drug include stimulation of glucose utilization and inhibition of gluconeogenesis and fatty acid oxidation. We studied the effect of troglitazone treatment on rat liver acetyl-CoA carboxylase (ACC), the key enzyme that catalyzes the formation of malonyl-CoA, the rate-limiting step in the synthesis of long chain fatty acids. Treatment of rats with troglitazone for 18 days resulted in more than 200% increase in the activity of hepatic acetyl-CoA carboxylase (1.01+/-0.14 and 2.33+/-0.28 mU/mg supernatant protein for control and troglitazone-treated rats, respectively) (p<0.001). The expression of acetyl-CoA carboxylase mRNA, as studied by RNAse protection assay, was not significantly different between the two groups of animals. The ACC from control and troglitazone-treated groups was purified by avidin-affinity chromatography. The purified enzyme migrated as a major protein band (Mr 262,000) on SDS-polyacrylamide gels. Troglitazone treatment was associated with increased citrate sensitivity of ACC. The specific activity of the purified preparation in troglitazone-treated rats was increased by 67% (2.5 vs. 1.5 U/mg). Quantitation of alkali-labile phosphate content of the purified preparation revealed 5.66+/-0.17 and 6.29+/-0.13 mol Pi/mol subunit of 262 Kda for control and troglitazone-treated rats, respectively (P<0.01). The subtle increase in phosphate content does not explain the observed activation of the enzyme. It is possible that additional mechanisms such as troglitazone related rearrangement of the occupancy of select phosphate binding sites or altered binding of the biotin cofactor may also contribute to the observed activation of ACC.  相似文献   

6.
We have generated transgenic mice carrying wild-type and mutant forms of the apolipoprotein (apo)A-I/apoCIII gene cluster. Mutations were introduced either in one or in three SP1 binding sites of the apoCIII enhancer. In mice carrying the wild-type transgene, major sites of apoA-I mRNA synthesis were liver and intestine and minor sites were kidney and, to a lesser extent, other tissues. The major site of chloramphenicol acetyl transferase (CAT) activity (used as a reporter for the apoCIII gene) was liver and minor sites intestine and kidney. A mutation in one SP1 binding site reduced the expression of the apoA-I gene to ~23 and 19% in the liver and intestine, respectively, as compared to the control wild-type. The hepatic expression of the CAT gene was not affected whereas the intestinal expression was nearly abolished. Mutations in three SP1 binding sites reduced the hepatic and intestinal expression of the apoA-I and CAT genes to 14 and 4%, respectively, as compared to the wild-type control, and abolished CAT expression in all tissues. The findings suggest that the SP1 sites of the apoCIII enhancer are required for the expression of the apoCIII gene and also contribute significantly to the hepatic and intestinal expression of the apoA-I gene in vivo.  相似文献   

7.
8.
9.
10.
To study the regulation of insulin gene expression by physiological regulators, primary cultures of rat islet cells were transfected with portions of the rat insulin I gene 5'-flanking sequence linked to the reporter gene chloramphenicol acetyltransferase (CAT). Incubation of the cells in increasing glucose concentrations led to a parallel increase in both CAT activity and CAT mRNA levels. Pretreatment of the cells with the beta-cell-specific toxin streptozotocin reduced CAT activity 97%. Beta-Cell-specific expression of CAT was also demonstrated by co-staining the transfected cells with antisera to both CAT and insulin. Experiments showing a reduction in the response to glucose in the presence of the calcium channel blocker verapamil suggest that calcium plays a role in the glucose response, possibly via regulation of factors interacting with this limited portion of the insulin gene.  相似文献   

11.
Peroxisome proliferator-activated receptor (PPAR)-α mediates an adaptive response to fasting by up-regulation of genes involved in fatty acid oxidation and ketone body synthesis. Ketone bodies are transferred in and out of cells by monocarboxylate transporter (MCT)-1. In this study we observed for the first time that activation of PPARα in rats by clofibrate treatment or fasting increased hepatic mRNA concentration of MCT1. In Fao rat hepatoma cells, incubation with the PPARα agonist WY 14,643 increased mRNA concentration of MCT1 whereas the PPARγ agonist troglitazone did not. To elucidate whether up-regulation of MCT1 is indeed mediated by PPARα we treated wild-type and PPARα-null mice with WY 14,643. In wild-type mice, treatment with WY 14,643 increased mRNA concentrations of MCT1 in liver, kidney and small intestine whereas no up-regulation was observed in PPARα-null mice.  相似文献   

12.
13.
Troglitazone is an oral insulin-sensitizing drug used to treat patients with type 2 diabetes. A major feature of this hyperglycemic state is the presence of increased rates of hepatic gluconeogenesis, which troglitazone is able to ameliorate. In this study, we examined the molecular basis for this property of troglitazone by exploring the effects of this compound on the expression of the two genes encoding the major regulatory enzymes of gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary cultures of rat hepatocytes. Insulin is able to inhibit expression of both of these genes, which was verified in our model system. Troglitazone significantly reduced mRNA levels of PEPCK and G6Pase in rat hepatocytes isolated from normal and Zucker-diabetic rats, but to a lesser extent than that observed with insulin. Interestingly, troglitazone was unable to reduce cAMP-induced levels of PEPCK mRNA, suggesting that the molecular mechanism whereby troglitazone exerted its effects on gene expression differed from that of insulin. This was further supported by the observation that troglitazone was able to reduce PEPCK mRNA levels in the presence of the insulin signaling pathway inhibitors wortmannin, rapamycin, and PD98059. These results indicate that troglitazone can regulate the expression of specific genes in an insulin-independent manner, and that genes encoding gluconeogenic enzymes are targets for the inhibitory effects of this drug.  相似文献   

14.
15.
16.
17.
18.
Cholesterol synthesis in animal cells is regulated by sterol regulatory element-binding protein (SREBP)-2. The objective of this study was to investigate whether activation of peroxisome proliferator-activatedreceptor (PPAR)-gamma influences the SREBP-2 dependent cholesterol synthesis in liver and intestinal cells. Therefore, HepG2 and Caco-2 cells were incubated with and without 10 or 30 microM of troglitazone, a synthetic PPAR gamma agonist, for 4 hrs. Incubation with 10 or 30 microM of troglitazone caused a significant, dose-dependent reduction of cholesterol synthesis in both HepG2 and Caco-2 cells (P < 0.05). HepG2 and Caco-2 cells incubated with 10 or 30 microM of troglitazone had also lower mRNA concentrations and lower nuclear protein concentrations of SREBP-2 than untreated control cells (P < 0.05). mRNA concentrations of the SREBP-2 target genes HMG-CoA reductase and LDL receptor were also reduced in HepG2 and Caco-2 cells treated with 30 microM of troglitazone compared to control cells (P < 0.05). In conclusion, this study shows that PPAR gamma activation by troglitazone lowers the cholesterol synthesis in HepG2 and Caco-2 cells by reducing the concentration of nuclear SREBP-2 and successive downregulation of its target genes involved in cholesterol synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号