首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
3-Deaza-(+/-)aristeromycin, previously known mainly as a potent inhibitor of adenosylhomocysteine hydrolase, can also inhibit the activity of adenosylmethionine decarboxylase. The release of [14C]CO2 from HeLa cells labeled with [carboxyl-14C]methionine was inhibited by more than 70% after 4 hours in the presence of 4 microM 3-deaza-(+/-)aristeromycin. Concomitant with this inhibition, there was a significant increase in the amount of putrescine in the HeLa cells. Adenosylmethionine decarboxylase isolated from HeLa cells could also be inhibited by 3-deaza-(+/-)aristeromycin and 3-deazaadenosine, 3-deazaadenosylhomocysteine, and 3-deaza-(+/-)aristeromycinylhomocysteine.  相似文献   

2.
3.
Abstract

Various carbocyclic analogues of adenosine, including aristeromycin (carbocyclic adenosine), carbocyclic 3-deazaadenosine, neplanocin A, 3-deazaneplanocin A, the 5′-nor derivatives of aristeromycin, carbocylic 3-deazaadenosine, neplanocin A and 3-deazaneplanocin A, and the 2-halo (i.e., 2-fluoro) and 6′-R-alkyl (i.e., 6′-R-methyl) derivatives of neplanocin A have been recognized as potent inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase. This enzyme plays a key role in methylation reactions depending on S-adenosylmethionine (AdoMet) as methyl donor. AdoHcy hydrolase inhibitors have been shown to exert broad-spectrum antiviral activity against pox-, paramyxo-, rhabdo-, filo-, bunya-, arena-, and reoviruses. They also interfere with the replication of human immunodeficiency virus through inhibition of the Tat transactivation process.  相似文献   

4.
5.
S-adenosylhomocysteine hydrolase (SAHH) is a key regulator of S-adenosylmethionine-dependent methylation reactions and an interesting pharmacologic target. We cloned the SAHH gene from Plasmodium falciparum (PfSAHH), with an amino acid sequence agreeing with that of the PlasmoDB genomic database. Even though the expressed recombinant enzyme, PfSAHH, could use 3-deaza-adenosine (DZA) as an alternative substrate in contrast to the human SAHH, it has a unique inability to substitute 3-deaza-(+/-)aristeromycin (DZAri) for adenosine. Among the analogs of DZA, including neplanocin A, DZAri was the most potent inhibitor of the PfSAHH enzyme activity, with a K(i) of about 150 nM, whether Ado or DZA was used as a substrate. When the same DZA analogs were tested for their antimalarial activity, they also inhibited the in vitro growth of P. falciparum parasites potently. Homology-modeling analysis revealed that a single substitution (Thr60-Cys59) between the human and malarial PfSAHH, in an otherwise similar SAH-binding pocket, might account for the differential interactions with the nucleoside analogs. This subtle difference in the active site may be exploited in the development of novel drugs that selectively inhibit PfSAHH. We performed a comprehensive phylogenetic analysis of the SAHH superfamily and inferred that SAHH evolved in the common ancestor of Archaea and Eukaryota, and was subsequently horizontally transferred to Bacteria. Additionally, an analysis of the unusual and uncharacterized AHCYL1 family of the SAHH paralogs extant only in animals reveals striking divergence of its SAH-binding pocket and the loss of key conserved residues, thus suggesting an evolution of novel function(s).  相似文献   

6.
It has been shown earlier that 3-deazaadenosine but not 3-deazaaristeromycin inhibits chemotaxis of RAW264 cells (Aksamit, R.R., Falk, W., and Cantoni, G.L. (1982) J. Biol. Chem. 257, 621-625). We show here in RAW264 cells that (a) the incorporation of the methyl group of methionine into phosphatidylcholine is inhibited approximately 90% by both 3-deazaadenosine and 3-deazaaristeromycin, (b) 3-deazaadenosine but not 3-deazaaristeromycin inhibits the synthesis of specific proteins, and (c) 3'-deoxyadenosine and erythro-9-(2-hydroxy-3-nonyl)-adenine in the presence of adenosine and homocysteine inhibit chemotaxis and the synthesis of specific proteins. Inhibition of the synthesis of specific proteins can be observed only after the solubilized cellular proteins are separated by two-dimensional polyacrylamide gel electrophoresis, since the adenosine analogs do not significantly affect total protein synthesis. When total protein synthesis is inhibited by incubation of the cells with cycloheximide, puromycin, or actinomycin D, chemotaxis is correspondingly inhibited. The results suggest that the continuous synthesis of one or more cellular proteins is required for chemotaxis by RAW264 cells.  相似文献   

7.
Cyanide catalyzed the oxidation of α-hydroxycarbonyls and of related compounds. In the cases of glyceraldehyde 3-phosphate and of dihydroxyacetone phosphate the tautomeric enediol was the obligatory intermediate which reacted with cyanide yielding the active reductant. Cytochrome c, nitroblue tetrazolium, and dioxygen were all reduced by this reductant. In the case of dioxygen the product was the superoxide radical which could then secondarily reduce cytochrome c or nitroblue tetrazolium. In air-equilibrated reaction mixtures, at 25 °C, approximately 35% of cytochrome c reduction and 95% of nitroblue tetrazolium reduction was mediated by superoxide, as judged from susceptibilities to inhibition by superoxide dismutase. Since the oxidations observed were univalent, carbon-centered radicals appear to be necessary intermediates, and their secondary reactions generated a multiplicity of products, seen as smears on thin-layer chromatograms. Free cyanide must be regenerated during these secondary reactions, since cyanide functioned catalytically in the overall process. A partial mechanism has been proposed in explanation of these observations.  相似文献   

8.
3-Deazaadenosine analogs can function as inhibitors and also as alternative substrates of S-adenosylhomocysteine (AdoHcy) hydrolase. In cells treated with the analogs, AdoHcy invariably accumulates, leading to inhibition of cellular methylation. F9 teratocarcinoma cells, stably transfected with two collagen (IV) promoter-enhancer-CAT constructs and treated with 10 microM 3-deazaadenosine, 3-deaza-(+-)-aristeromycin or 3-deazaneplanocin, showed a strong induction of CAT activities without affecting differentiation. In comparison, the same 3-deaza analogs did not affect the CAT activity in F9 cells transfected with the beta-actin promoter-CAT construct. Furthermore, Northern blot analysis of endogenous mRNA from wild-type F9 cells treated with the 3-deaza nucleosides all showed an induction of the collagen alpha 1(IV) chain mRNA. Thus, the 3-deaza analogs most likely affect DNA methylation because their results are consistent with the previous observation that the integrated collagen alpha 1(IV) promoter-enhancer constructs were activated with 5-azacytidine.  相似文献   

9.
Phospholipid methylation in isolated hepatocytes was inhibited in the presence of 3-deazaadenosine (ID50 = 1.7 μM) 9-β-d-arabinofuranosyladenine (ID50 = 6.0 μM), S-tubercidinylhomocysteine (ID50 = 30 μM), and 5′-deoxy-5′-isobutylthioadenosine (ID50 = 177 μM). A transient inhibitory effect was observed with adenosine, whereas S-adenosyl-l-homocysteine and Sinefungin were essentially without effect. The inhibition of phospholipid methylation by S-tubercidinylhomocysteine and 9-β-d-arabinofuranosyladenine showed a lag-phase, whereas the effect of the other inhibitors was apparent within a few minutes. Cells exposed to 9-β-d-arabinofuranosyladenine or 3-deazaadenosine accumulated large amounts of AdoHcy, and adenosine induced a transient increase in the AdoHcy level. In addition, 3-deazaadenosine served as a precursor for the formation of S-3-deazaadenosylhomocysteine, which accumulated rapidly in cells exposed to this agent. The inhibitory effects of 3-deazaadenosine, 9-β-d-arabinofuranosyladenine and adenosine could be explained by the increase in total nucleosidylhomocysteine induced by these agents. In contrast, only a slight (less than 2-fold) increase in S-adenosyl-l-homocysteine content was observed in hepatocytes treated with 5′-deoxy-5′-isobutylthioadenosine, and this metabolic effect could not explain the inhibition of phospholipid methylation induced by this agent. None of the compounds tested reduced the amount nor the specific radioactivity of S-adenosylmethionine. Biological processes determining the inhibitory effects of adenosine, S-adenosyl-l-homocysteine and their analogues on phospholipid methylation in intact cells are discussed.  相似文献   

10.
The effects of 3-deazaaristeromycin and 3-deazaadenosine on RNA methylation and synthesis were examined in the mouse macrophage cell line, RAW264. S-Adenosylhomocysteine accumulated in cells incubated with 3-deazaaristeromycin while S-3-deazaadenosylhomocysteine was the major product in cells incubated with 3-deazaadenosine and homocysteine thiolactone. RNA methylation was inhibited to a similar extent by the accumulation of either S-adenosylhomocysteine or S-3-deazaadenosylhomocysteine, with S-adenosylhomocysteine being a slightly better inhibitor. In mRNA, the synthesis of N6-methyladenosine and N6-methyl-2'-O-methyladenosine were inhibited to the greatest extent, while the synthesis of 7-methylguanosine and 2'-O-methyl nucleosides were inhibited to a lesser extent. Incubation of cells with 100 microM 3-deazaaristeromycin or with 10 microM 3-deazaadenosine and 50 microM homocysteine thiolactone produced little inhibition of mRNA synthesis, even though mRNA methylation was inhibited. In contrast, mRNA synthesis was greatly inhibited by treatment of cells with 100 microM 3-deazaadenosine and the inhibition of synthesis was not correlated with an inhibition of methylation.  相似文献   

11.
At inflammatory sites neutrophils are stimulated to produce a variety of toxic agents, yet rarely harm the endothelium across which they migrate. We have recently found that endothelium releases adenosine which, acting via receptors on the surface of human neutrophils, inhibits generation of toxic metabolites by stimulated neutrophils but, paradoxically, promotes chemotaxis. Agents which diminish plasma membrane viscosity affect neutrophil function similarly, possibly by modulating chemoattractant receptor number or affinity. We therefore determined whether adenosine receptor agonists modulate neutrophil function by decreasing membrane viscosity and/or changing the affinity of chemoattractant (N-fMet-Leu-Phe, FMLP) receptors. Surprisingly, 5'-(N-ethylcarboxamido)adenosine (NECA, 10 microM), the most potent agonist at neutrophil adenosine receptors, increased plasma membrane viscosity, as measured by fluorescence anisotropy of the plasma membrane specific probe 1-(4-trimethylaminophenyl)-6-diphenyl-1,3,5-hexatriene (TMA-DPH), in unstimulated neutrophils from a mean microviscosity of 1.67 +/- 0.02 (S.E.) to 1.80 +/- 0.02 (p less than 0.001) while inosine (10 microM), a poor adenosine receptor agonist, had no effect (1.73 +/- 0.04, p = n.s. vs. control, p less than 0.01 vs. NECA). Adenosine receptor agonists increased plasma membrane viscosity in neutrophils with the same order of potency previously seen for inhibition of superoxide anion generation and enhancement of chemotaxis (NECA greater than adenosine = N6-phenylisopropyladenosine). The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline reversed the effect of NECA on plasma membrane viscosity. Unlike other agents which modulate plasma membrane viscosity, NECA (10 microM) did not significantly change the number or affinity of [3H]FMLP binding sites on neutrophils. In contrast to the hypothesis of Yuli et al. these results indicate that occupancy of adenosine receptors on neutrophils increases plasma membrane viscosity without affecting chemoattractant receptor display.  相似文献   

12.
Viability, morphology and function of healthy human cells migrated into the chamber through the "skin window" were studied. After 18 to 20 hours there were 42.0 +/- 5.3 (x 10(6))/cm2 viable cells characterized by a high content of mature neutrophils (98.6 +/- 0.6%). Normal reactivity of migrated neutrophils was observed using the nitroblue tetrazolium reduction test. The chamber variant of the "skin window" method is recommended as a simple physiological technique for preparing pure populations of human neutrophils.  相似文献   

13.
Rice leaf slices stimulated with blast fungus hyphal component reduced nitroblue tetrazolium in a damped oscillatory profile with relaxing half wavelength in a medium containing glucose, when the respective rate of reduction was plotted against the function of time after the application of blast fungus hyphal component. In the presence of 110μm FAD and glucose, the wave number of the reduction profile increased 4- to 5-fold when compared to that in the absence of exogenous FAD. Exogenous FAD in the increasing concentration of 70 to 110 μm, which was added in the presence of glucose, gave a positive heterotropic-like response upon the reduction of nitroblue tetrazolium with rice leaf slices which were press-injured and stimulated. Exogenous pyrroloquinoline quinone in the increasing concentration of 10?3 to 10?1 μm, which was added in the presence of glucose, gave an inhibition upon the reduction. From sediment of the homogenate of stimulated rice leaf slices, the nitroblue tetrazolium reducing redox-enzyme system was solubilized by Triton X-100 and was electrophoretically isolated in a sharp blue band on a polyacrylamide slab gel containing Triton X-100, when the electrophoresed gel was stained by nitroblue tetrazolium or Coomassie brilliant blue. In the solubilized solution, the presence of b-type cytochrome was observed by the oxidation-reduction difference spectrum.  相似文献   

14.
At inflammatory sites neutrophils are stimulated to produce a variety of toxic agents, yet rarely harm the endothelium across which they migrate. We have recently found that endothelium releases adenosine which, acting via receptors on the surface of human neutrophils, inhibits generation of toxic metabolites by stimulated neutrophils but, paradoxically, promotes chemotaxis. Agents which diminish plasma membrane viscosity affect neutrophil function similarly, possibly by modulating chemoattractant receptor number or affinity. We therefore determined whether adenosine receptor agonists modulate neutrophil function by decreasing membrane viscosity and/or chaning the affinity of chemoattractant (N-fMet-Leu-Phe, FMLP) receptors. Surprisingly, 5′-(N-ethylcar☐amido)adenosine (NECA, 10 μM), the most potent agonist at neutrophil adenosine receptors, increased plasma membrane viscosity, as measured by fluorescence anisotropy of the plasma membrane specific probe 1-(4-trimethylaminophenyl)-6-diphenyl-1,3,5-hexatriene (TMA-DPH), in unstimulated neutrophils from a mean microviscosity of 1.67 ± 0.02 (S.E.) to 1.80 ± 0.02 (p < 0.001) while inosine (10 μM), a poor adenosine receptor agonist, had no effect (1.73 ± 0.04, p =n.s. vs. control, p < 0.01 vs. NECA). Adenosine receptor agonists increased plasma membrane viscosity in neutrophils with the same order of potency previously seen for inhibition of superoxide anion generation and enhancement of chemotaxis (NECA > adenosine = N6-phenylisopropyladenosine). The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline reversed the effect of NECA on plasma membrane viscosity. Unlike other agents which modulate plasma membrane viscosity, NECA (10 μM) did not significantly change the number or affinity of [3H]FMLP binding sites on neutrophils. In contrast to the hypothesis of Yuli et al. these results indicate that occupancy of adenosine receptors on neutrophils increases plasma membrane viscosity without affecting chemoattractant receptor display.  相似文献   

15.
Rabbit neutrophils were stimulated with the chemotactic peptide fMet-Leu-Phe in the presence of the methyltransferase inhibitors homocysteine (HCYS) and 3-deazaadenosine (3-DZA). HCYS and 3-DZA inhibited chemotaxis, phospholipid methylation, and protein carboxymethylation in a dose-dependent manner. The chemotactic peptide-stimulated release of [14C]arachidonic acid previously incorporated into phospholipid was also partially blocked by the methyltransferase inhibitors. Stimulation by fMet-Leu-Phe or the calcium ionophore A23187 caused release of arachidonic acid but not of previously incorporated [14C]-labeled linoleic, oleic, or stearic acids. Unlike the arachidonic acid release caused by fMet-Leu-Phe, release stimulated by the ionophore could not be inhibited by HCYS and 3-DZA, suggesting that the release was caused by a different mechanism or by stimulating a step after methylation in the pathway from receptor activation to arachidonic acid release. Extracellular calcium was required for arachidonic acid release, and methyltransferase inhibitors were found to partially inhibit chemotactic peptide-stimulated calcium influx. These results suggest that methylation pathways may be associated with the chemotactic peptide receptor stimulation of calcium influx and activation of a phospholipase A2 specific for cleaving arachidonic acid from phospholipids.  相似文献   

16.
Human leukocyte interferon enhanced nitroblue tetrazolium dye (NBT) reduction by human neutrophils (PMNs). Increase in NBT reduction paralleled increase in interferon dose. When human leukocyte interferon was heated to 60 C or 80 C for 30 min, both the antiviral activity and the effect on NBT reduction decreased. Human leukocyte interferon neutralized with anti-human leukocyte interferon serum showed no effect on NBT reduction. A human fibroblast interferon preparation also enhanced NBT reduction. The species dependency of interferon was shown in NBT reduction as well as in antiviral activity.  相似文献   

17.
Hog thyroid plasma membrane preparations containing a Ca2+-regulated NADPH-dependent H2O2-generating system were studied. The Ca2+-dependent reductase activities of ferricytochrome c, 2,6-dichloroindophenol, nitroblue tetrazolium, and potassium ferricyanide were tested and the effect of these scavengers on H2O2 formation, NADPH oxidation and O2 consumption were measured, with the following results. 1. Thyroid plasma membrane Ca2+-independent cytochrome c reduction was not catalyzed by the NADPH-dependent H2O2-generating system. This activity was superoxide-dismutase-insensitive. 2.Of the three other electron scavengers tested, only K3Fe(CN)6 was clearly, but partially reduced in a Ca2+-dependent manner. 3. Though the NADPH-dependent reduction of nitroblue tetrazolium was very low and superoxide-dismutase-insensitive, nitroblue tetrazolium inhibited O2 consumption, H2O2 formation and NADPH oxidation, indicating that nitroblue tetrazolium inhibits the H2O2-generating system. We conclude that the thyroid plasma membrane H2O2-generating system does not or liberate O2- and that Ca2+ controls the first step (NADPH oxidation) of the H2O2-generating system.  相似文献   

18.
To find out potent inhibitors of S-adenosylhomocysteine hydrolase (SAHase), several deazaadenosine analogues synthesized in this laboratory and some naturally occurring nucleoside analogues were examined with SAHases from yellow lupin seeds and rabbit liver. Neplanocin A, an antibiotic, inhibited both enzymes more potently than aristeromycin which was also an antibiotic and known as one of the most potent inhibitors of SAHase. The 3-deazaadenine derivatives (2'-deoxy, arabinosyl, xylosyl) inactivated lupin SAHase as potent as 3-deazaadenosine. Whereas, inhibitory activities of 1-deazaadenosine, its derivatives, and 7-deazaadenosine (tubercidin) were very weak.  相似文献   

19.
The production of free radicals, superoxide anions (O2-), and hydrogen peroxide (H2O2) was histochemically investigated in human neutrophils that were stimulated by either phagocytosis or the calcium ionophore A23187. To demonstrate O2-, peripheral neutrophils from healthy donors were incubated at 37 degrees C in a medium containing nitroblue tetrazolium and glucose in the presence of either opsonized zymosan A and/or A23187. To demonstrate H2O2, neutrophils pretreated with a stimulant for 10 min were washed and incubated in a cerium medium containing CeCl3 and glucose in a Tris-maleate buffer. In cells engaged in phagocytosis, diformazan (for O2-) and cerium perhydroxide deposits (for H2O2) were restricted to the neutrophil-particle interface and on the inner surface of phagosomes. The remaining free surface of the plasma membrane was devoid of reaction products. In the case of neutrophils stimulated with A23187, the production of O2- and H2O2 was visualized over the whole surface of the plasma membrane. These histochemical reactions were inhibited by p-benzoquinone, superoxide dismutase, ferricytochrome c or catalase, and p-diazobenzenesulfonate (a membrane-impermeable protein denaturant). The results showed that human neutrophils produce free radicals exocellularly and that the site of production varies with different stimuli.  相似文献   

20.
Several synthetic adeonosine analogs: 8-fluoro-, 8-azido-, 8-iodo-, 8-methylthioadenosine; 8-bromo-2′-deoxyadenosine, 8-bromoxylofuranosyladenine, 5′-benzoly-8-bromoadenosine; 8,2′-S-, 8,2′-O-, 8,2′-NH-, 8,2′-N-CH3-, 8,3′,-S-, 8,3′-O-, 8,5′-S- and 8,5′O-cycloadenosine; 1-deaza- and 3-deazaadenosine, as well as tubercidine (7-deazaadenosine), were tested as substrates of calf intestine adenosine deaminase.It was found that the adenine base of adenosine should be in the range φrmCN = 0–120° (anti to syn-anti) and 8-fluoroadenosine was hydroylzed very slowly. The purine base should have N1, N3 or N7 atoms for the hydrolysis and only 1-deazaadenosine revealed an inhibitory effect toward the hydrolysis of adenosine.5′-OH group should be in the position of S-configuration and must not be substituted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号