首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Z Lu  P D Aiello  R G Matthews 《Biochemistry》1984,23(26):6870-6876
Thymidylate synthase has been purified 1700-fold from fetal pig livers by using chromatography on Affigel-Blue, DEAE-52, and hydroxylapatite. Steady-state kinetic measurements indicate that catalysis proceeds via an ordered sequential mechanism. When 5,10-methylenetetrahydro-pteroylmonoglutamate (CH2-H4PteGlu1) is used as the substrate, dUMP is bound prior to CH2-H4PTeGlu1, and 7,8-dihydropteroylmonoglutamate (H2PteGlu1) is released prior to dTMP. Pteroylpolyglutamates (PteGlun) are inhibitors of thymidylate synthase activity and are competitive with respect to CH2-H4PteGlu1 and uncompetitive with respect to dUMP. Inhibition constants (Ki values), which correspond to dissociation constants for the dissociation of PteGlun from the enzyme-dUMP-PteGlun ternary complex, have been determined for PteGlun derivatives with one to seven glutamyl residues: PteGlu1, 10 microM; PteGlu2, 0.3 microM; PteGlu3, 0.2 microM; PteGlu4, 0.06 microM; PteGlu5, 0.10 microM; PteGlu6, 0.12 microM; PteGlu7, 0.15 microM. Thus, thymidylate synthase from fetal pig liver preferentially binds pteroylpolyglutamates with four glutamyl residues, but derivatives with two to seven glutamyl residues all bind at least 30-fold more tightly than the monoglutamate. When CH2-H4PteGlu4 is used as the one carbon donor for thymidylate biosynthesis, the order of substrate binding and product release is reversed, with binding of CH2-H4PteGlu4 preceding that of dUMP and release of dTMP preceding release of H2PteGlu4. Vmax and Km values for dUMP and CH2-H4PteGlun show relatively little change as the polyglutamate chain length of the substrate is varied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Thymidylate synthase has been purified greater than 4000-fold from a human colon adenocarcinoma maintained as a xenograft in immune-deprived mice. In this disease, the enzyme is an important target for the cytotoxic action of 5-fluorouracil, which is influenced by the reduced folate substrate CH2-H4PteGlu. Due to the importance of this interaction, and the existence in cells of folate species as polyglutamyl forms, the interaction of folylpolyglutamates with thymidylate synthase was examined. Polyglutamates of PteGlu were used as inhibitors, and the interaction of CH2-H4PteGlu polyglutamates as substrates or in an inhibitory ternary complex were also examined. Using PteGlu1-7, Ki values were determined. A maximal 125-fold decrease in Ki was observed between PteGlu1 and PteGlu4; further addition of up to three glutamyl residues did not result in an additional decrease in Ki. Despite the increased binding affinity of folypolyglutamates for this enzyme, no change in the Km values for either dUMP (3.6 microM) or CH2-H4PteGlu (4.3 microM) were detected when polyglutamates of [6R]CH2-H4PteGlu were used as substrates. Product inhibition studies demonstrated competitive inhibition between dTMP and dUMP in the presence of CH2-H4PteGlu5. In addition, CH2-H4PteGlu4 stabilized an inhibitory ternary complex formed between FdUMP, thymidylate synthase, and CH2-H4PteGlu4. Thus the data do not support a change in the order of substrate binding and product release upon polyglutamylation of CH2-H4PteGlu reported for non-human mammalian enzyme. This is the first study to characterize kinetically thymidylate synthase from a human colon adenocarcinoma.  相似文献   

3.
In this study, we investigated methionine synthase from Candida albicans (CaMET 6p) and Saccharomyces cerevisiae (ScMET 6p). We describe the cloning of CaMet 6 and ScMet 6, and the expression of both the enzymes in S. cerevisiae. CaMET 6p is able to complement the disruption of met 6 in S. cerevisiae. Following the purification of ScMET 6p and CaMET 6p, kinetic assays were performed to determine substrate specificity. The Michaelis constants for ScMET 6p with CH(3)-H(4)PteGlu(2), CH(3)-H(4)PteGlu(3), CH(3)-H(4)PteGlu(4), and l-homocysteine are 108, 84, 95, and 13 microM, respectively. The Michaelis constants for CaMET 6p with CH(3)-H(4)PteGlu(2), CH(3)-H(4)PteGlu(3), CH(3)-H(4)PteGlu(4), and l-homocysteine are 113, 129, 120, and 14 microM, respectively. Neither enzyme showed activity with CH(3)-H(4)PteGlu(1) as a substrate. We conclude that ScMET 6p and CaMET 6p require a minimum of two glutamates on the methyltetrahydrofolate substrate, similar to the bacterial metE homologs. The cloning, purification, and characterization of these enzymes lay the groundwork for inhibitor-design studies on the cobalamin-independent fungal methionine synthases.  相似文献   

4.
Taurog RE  Matthews RG 《Biochemistry》2006,45(16):5092-5102
Cobalamin-independent methionine synthase (MetE) catalyzes the final step of de novo methionine synthesis using the triglutamate derivative of methyltetrahydrofolate (CH(3)-H(4)PteGlu(3)) as methyl donor and homocysteine (Hcy) as methyl acceptor. This reaction is challenging because at physiological pH the Hcy thiol is not a strong nucleophile and CH(3)-H(4)PteGlu(3) provides a very poor leaving group. Our laboratory has previously established that Hcy is ligated to a tightly bound zinc ion in the MetE active site. This interaction activates Hcy by lowering its pK(a), such that the thiolate is stabilized at neutral pH. The remaining chemical challenge is the activation of CH(3)-H(4)PteGlu(3). Protonation of N5 of CH(3)-H(4)PteGlu(3) would produce a better leaving group, but occurs with a pK(a) of 5 in solution. We have taken advantage of the sensitivity of the CH(3)-H(4)PteGlu(3) absorption spectrum to probe its protonation state when bound to MetE. Comparison of free and MetE-bound CH(3)-H(4)PteGlu(3) absorbance spectra indicated that the N5 is not protonated in the binary complex. Rapid reaction studies have revealed changes in CH(3)-H(4)PteGlu(3) absorbance that are consistent with protonation at N5. These absorbance changes show saturable dependence on both Hcy and CH(3)-H(4)PteGlu(3), indicating that protonation of CH(3)-H(4)PteGlu(3) occurs upon formation of the ternary complex and prior to methyl transfer. Furthermore, the tetrahydrofolate (H(4)PteGlu(3)) product appears to remain bound to MetE, and in the presence of excess Hcy a MetE.H(4)PteGlu(3).Hcy mixed ternary complex forms, in which H(4)PteGlu(3) is protonated.  相似文献   

5.
The composition of folate coenzymes in romaine lettuce was studied. Lettuce extract was purified on QAE-Sephadex A-25 and folate compounds were separated into a monoglutamate fraction and a polyglutamate fraction by chromatography on Sephadex G-15. Both the mono- and poly-glutamate fractions were resolved on DEAE-cellulose. Positive identification of DEAE peaks was made by further cochromatography with high specific activity radioactive marker folate compounds and with differential microbiological assay. The distribution of folate compounds in lettuce is as follows: 32% 5-CH3-H4PteGlu; 1% 5-CHO-H4PteGlu; 3% 5-CHO-H4PteGlu4; 9% 5-CH3-H4PteGlu4; 13% 5-CHO-H4PteGlu5; and 31% 5-CH3-H4PteGlu5.  相似文献   

6.
Most mammalian cells receive exogenous folate from the bloodstream in the form of 5-methyltetrahydropteroylmonoglutamate (CH3-H4PteGlu1). Because this folate derivative is a very poor substrate for folylpolyglutamate synthetase, the enzyme that adds glutamyl residues to intracellular folates, CH3-H4PteGlu1 must first be converted to tetrahydropteroylmonoglutamate (H4PteGlu1), 10-formyltetrahydropteroylmonoglutamate (CHO-H4PteGlu1), or dihydrofolate (H2folate), which are excellent substrates for folylpolyglutamate synthetase. Polyglutamylation is required both for retention of intracellular folates and for efficacy of folates as substrates for most folate-dependent enzymes. Two enzymes are known that will react with CH3-H4PteGlu1 in vitro, methylenetetrahydrofolate reductase and methyltetrahydrofolate-homocysteine methyltransferase (cobalamin-dependent methionine synthase). These studies were performed to assess the possibility that methylenetetrahydrofolate reductase might catalyze the conversion of CH3-H4PteGlu1 to CH2-H4PteGlu1. CH2-H4PteGlu1 is readily converted to CHO-H4PteGlu1 by the action of methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase, and these enzyme activities show very little preference for folypolyglutamate substrates as compared with folylmonoglutamates. We conclude from in vitro studies of the enzyme that methylenetetrahydrofolate reductase cannot convert CH3-H4PteGlu1 to CH2-H4PteGlu1 under physiological conditions and that uptake and retention of folate will be dependent on methionine synthase activity.  相似文献   

7.
Tetrahydropteroylpolyglutamates containing up to seven Glu residues were tested as substrates for Lactobacillus casei thymidylate synthase. The Km values decreased from 24 microM for the monoglutamate to 1.8 microM for the triglutamate. Addition of residues 4, 5, 6, and 7 did not decrease the Km further. When monoglutamate and polyglutamate substrates were simultaneously incubated with the enzyme, the rate observed was characteristic of the polyglutamate even when the monoglutamate concentration was 44 times that of the polyglutamate. Iodoacetamide treatment inhibited the enzyme to the same extent with monoglutamate and polyglutamate substrates. Addition of 0.3 M NaCl doubled the rate obtained with the polyglutamate substrate whereas the rate with the monoglutamate was inhibited 25%. MgCl2 stimulated the reaction only 10% with the polyglutamate substrate compared with 80% stimulation obtained with the monoglutamate. Inhibition by fluorodeoxyuridylate was similar with both mono- and polyglutamate substrates; however, with the phosphonate derivative of fluorodeoxyuridine, the polyglutamate substrate enhanced inhibition 5- to 8-fold.  相似文献   

8.
Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates   总被引:15,自引:0,他引:15  
We have studied the effects of methotrexate (MTX-Glu1) and the polyglutamate derivatives of methotrexate (MTXPGs) with 2, 3, 4, and 5 glutamyl residues on the catalytic activity of thymidylate synthase purified from MCF-7 human breast cancer cells and on the kinetics of the ternary complex formation by 5-fluoro-2'-deoxyuridine 5'-monophosphate, folate cofactor, and thymidylate synthase. MTX-Glu1 exhibited uncompetitive inhibition of thymidylate synthase when reaction kinetics were analyzed by either double reciprocal plots or a computerized mathematical model based on nonlinear least-squares curve fitting. The Ki for MTX-Glu1 inhibition was 13 microM and the I50 was 22 microM, irrespective of the degree of polyglutamation of the folate. In contrast, the polyglutamated derivatives of MTX all acted as noncompetitive inhibitors. The MTXPGs had 75-300-fold greater potency than MTX-Glu1 as inhibitors of thymidylate synthase catalytic activity, with Ki values from 0.17 to 0.047 microM for MTX-Glu2 to MTX-Glu5, respectively. Neither MTX-Glu1 nor MTXPGs promoted the formation of a charcoal-stable ternary complex with thymidylate synthase and 5-fluoro-2'-deoxyuridine 5'-monophosphate. CH2-H4PteGlu5 (where PteGlu represents pteroylglutamic acid) was found to be 40-fold more potent than CH2-H4PteGlu1 in participating in the formation of a ternary complex, and 10 microM MTX-Glu5 significantly inhibited the formation of a ternary complex containing this folate as cofactor. The inhibition was determined to be due to a reduction in the kon. The potency of this inhibition was markedly greater in the presence of CH2-H4PteGlu1 as compared to CH2-H4PteGlu5. This finding suggests that the degree of interference with complex formation in intact cells would depend on the state of polyglutamation of available folate cofactor. Ternary complex formation with H2PteGlu5 as the folate cofactor was also investigated, and a 50% reduction in complex formation was found in the presence of a 2 microM concentration of MTX-Glu5. These findings have significant implications regarding the mechanism of action of MTX-Glu1 and contribute to an understanding of the complex interactions of MTX-Glu1 and 5-fluorouracil.  相似文献   

9.
A human mitochondrial isozyme of C1-tetrahydrofolate (THF) synthase was previously identified by its similarity to the human cytoplasmic C1-THF synthase. All C1-THF synthases characterized to date, from yeast to human, are trifunctional, containing the activities of 5,10-methylene-THF dehydrogenase, 5,10-methenyl-THF cyclohydrolase, and 10-formyl-THF synthetase. Here we report on the enzymatic characterization of the recombinant human mitochondrial isozyme. Enzyme assays of purified human mitochondrial C1-THF synthase protein revealed only the presence of 10-formyl-THF synthetase activity. Gel filtration and crosslinking studies indicated that human mitochondrial C1-THF synthase exists as a homodimer in solution. Steady-state kinetic characterization of the 10-formyl-THF synthetase activity was performed using (6R,S)-H4-PteGlu1, (6R,S)-H4-PteGlu3, and (6R,S)-H4-PteGlu5 substrates. The (6R,S)-H4-PteGlun Km dropped from greater than 500 microM for the monoglutamate to 15 microM and 3.6 microM for the tri- and pentaglutamates, respectively. The Km values for formate and ATP also are lowered when THF polyglutamates are used. The formate Km dropped 79-fold and the ATP Km dropped more than 5-fold when (6R,S)-H4-PteGlu5 was used as the substrate in place of (6R,S)-H4-PteGlu1.  相似文献   

10.
T-protein is a component of the glycine cleavage system and catalyzes the tetrahydrofolate-dependent reaction. To determine the folate-binding site on the enzyme, 14C-labeled methylenetetrahydropteroyltetraglutamate (5,10-CH2-H4PteGlu4) was enzymatically synthesized from methylenetetrahydrofolate (5, 10-CH2-H4folate) and [U-14C]glutamic acid and subjected to cross-linking with the recombinant Escherichia coli T-protein using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, a zero-length cross-linker between amino and carboxyl groups. The cross-linked product was digested with lysylendopeptidase, and the resulting peptides were separated by reversed-phase high performance liquid chromatography. Amino acid sequencing of the labeled peptides revealed that three lysine residues at positions 78, 81, and 352 were involved in the cross-linking with polyglutamate moiety of 5, 10-CH2-H4PteGlu4. The comparable experiment with 5,10-CH2-H4folate revealed that Lys-81 and Lys-352 were also involved in cross-linking with the monoglutamate form. Mutants with single or multiple replacement(s) of these lysine residues to glutamic acid were constructed by site-directed mutagenesis and subjected to kinetic analysis. The single mutation of Lys-352 caused similar increase (2-fold) in Km values for both folate substrates, but that of Lys-81 affected greatly the Km value for 5,10-CH2-H4PteGlu4 rather than for 5,10-CH2-H4folate. It is postulated that Lys-352 may serve as the primary binding site to alpha-carboxyl group of the first glutamate residue nearest the p-aminobenzoic acid ring of 5,10-CH2-H4folate and 5,10-CH2-H4PteGlu4, whereas Lys-81 may play a key role to hold the second glutamate residue through binding to alpha-carboxyl group of the second glutamate residue.  相似文献   

11.
Glycine N-methyltransferase (EC 2.1.1.20) was recently identified as a major folate binding protein of rat liver cytosol (Wagner, C., and Cook, R. J. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3631-3634). Activity of the enzyme is inhibited when the natural folate ligand, 5-methyltetrahydropteroylpentaglutamate (5-CH3-H4PteGlu5), is bound. It has been suggested that glycine N-methyltransferase plays a role in regulating the availability of methyl groups in the liver. Purified transferase was phosphorylated in vitro by the catalytic subunit of cAMP-dependent protein kinase. If 5-CH3-H4PteGlu5 was first bound to the transferase, phosphorylation was inhibited. Phosphorylation of glycine N-methyltransferase in vitro increased its activity approximately 2-fold. 5-CH3-H4PteGlu5 inhibited the activity of newly phosphorylated enzyme as well as native enzyme. Freshly isolated rat hepatocytes incorporated 32P-labeled inorganic phosphate into this folate binding protein. Chemical analysis of purified enzyme showed about 0.55 mol of phosphate present per mol of glycine N-methyltransferase subunit. These results indicate that phosphorylation of glycine N-methyltransferase may provide a mechanism for modulating the activity of this enzyme and support its role in regulating the availability of methyl groups.  相似文献   

12.
The dependence of the high-affinity transport systems for 5-methyltetrahydrofolic acid (5-CH3-H4PteGlu) and methotrexate on sodium ions and on pH was examined in freshly isolated rat hepatocytes. Previous studies indicated that transport of these folate derivatives was sodium-dependent. Experiments to determine the Km for sodium of 5-CH3-H4PteGlu transport showed no dependence on extracellular sodium. However, uptake was sodium-dependent when hepatocytes were preincubated for 30 min in sodium-free medium, a treatment which resulted in an increase in the transmembrane pH gradient (delta pH = pH out-pH in) and a decrease in the uptake of 5-CH3-H4PteGlu. Uptake of methotrexate displayed a linear dependence on extracellular sodium ions. Uptake of 5-CH3-H4PteGlu increased linearly as the transmembrane pH gradient decreased; i.e., as the medium became more acid with respect to the cytosol. Lineweaver-Burk and Scatchard plots of 5-CH3-H4PteGlu uptake indicated an apparent Km for H+ of about 24 nM, equivalent to a pH of 7.6. Hill-plots suggested a stoichiometry of 1:1 for the interaction of protons with the 5-CH3-H4PteGlu transport system. Both the Km and Vmax for 5-CH3-H4PteGlu transport were increased at pH 5.5 compared to pH 7.4, suggesting that extracellular protons increased the number of and/or the activity of the membrane carrier. In contrast, methotrexate transport was maximal at pH 7 where the transmembrane pH gradient was zero. These results suggest the possibility that 5-CH3-H4PteGlu may be cotransported along with H+ ions in hepatocytes, although they do not rule out a 'catalytic coupling' whereby protons interact with the carrier to stimulate substrate flux without concomitant H+ transport.  相似文献   

13.
The endogenous levels of the various folate monoglutamate compounds in cultured human fibroblasts were determined using high-performance liquid chromatography for the separation of folate monoglutamate. Endogenous folates were converted to monoglutamate forms using conjugase enzyme present in rat serum and incubation was carried out at pH 6.5. This minimized folate coenzyme interconversion during processing. Using methanol for precipitation of protein instead of heat minimized degradation of labile folates. Recovery of all folates except 10-formyltetrahydrofolic acid (10-CHO H4PteGlu) using this procedure was more than 90%. Disruption of cells by boiling appeared to cause less postextraction changes of cell folates than did freezing and thawing or sonication. When heat to release endogenous folate, conjugase treatment with rat serum at pH 6.5, and precipitation of protein with methanol were used, more than half of the intracellular folate of normal fibroblasts in confluent growth was 5-methyltetrahydrofolic acid (5-CH3 H4PteGlu), and 10-CHO H4PteGlu and tetrahydrofolic acid (H4PteGlu) comprised 29 and 6%, respectively.  相似文献   

14.
Transport and metabolism of folates by bacteria.   总被引:3,自引:0,他引:3  
Transport of labeled folic acid (PteGlu), pteroylpolyglutamates (PteGlu3-5), 5-methyl-tetrahydrofolate (5-methyl-H4PteGlu), and methotrexate in late-log phase cells of Lactobacillus casei was active, and subject to inhibition by unlabeled pteroylmonoglutamates, pteroylpolyglutamates, and iodoacetate, but not glutamate or glutamate dipeptides. Pteroylpolyglutamates were transported without prior hydrolysis and shared a common uptake system with pteroylmonoglutamates. The affinity and maximum velocity of PteGlun uptake decreased with increasing glutamate chin length (Km:PteGlu1, 0.03 mum; PteGlu3, 0.32 mum; PteGlu4, 1.9 mum; PteGlu5, 3.7 mum) and comparisons with growth response curves suggested that polyglutamates were more effectively utilized by L. casei, once transported, than monoglutamate. No concentration of 5-methyl-H4PteGlu3-8 inside the cells was observed. The major folate metabolites found in L. casei preloaded with high levels of [3H]PteGlu (0.5 mum) were 10-formyl-H4PteGlu2 and 10-formyl-PteGlu. Both compounds were released, the monoglutamate more rapidly. Pteroyltriglutamate formation appeared to be a rate-limiting step in intracellular metabolism. No 10-formyl-Pte-Glu was found in iodoacetate-treated cells and efflux was inhibited. Cells preloaded with low levels of [3H]PteGlu (7 nm) metabolized the vitamin to polyglutamate forms, the major derivatives being H4PteGlun. First order exit rates of labeled folate from preloaded L. casei indicated an inhibition of PteGlu uptake with time. Exit rates dropped from 0.05 min-1 to greater than 0.002 min-1 as intracellular folate was metabolized from monoglutamate to polyglutamate derivatives (n larger than or equal to 3). In the latter case, materials lost by efflux were breakdown products and no folate of glutamate chain length greater than two was released. Pediococcus cerevisiae actively transported 5-methyl-H4PteGlu but did not take up to 5-methyl-H4PTeGlu3-8. No active accumulation of 5-methyl-H4PteGlu was observed in Streptococcus faecalis.  相似文献   

15.
Seravalli J  Zhao S  Ragsdale SW 《Biochemistry》1999,38(18):5728-5735
The methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr) from Clostridium thermoaceticum catalyzes transfer of the N5-methyl group from (6S)-methyltetrahydrofolate (CH3-H4folate) to the cobalt center of a corrinoid/iron-sulfur protein (CFeSP), forming methylcob(III)amide and H4folate. This reaction initiates the unusual biological organometallic reaction sequence that constitutes the Wood-Ljungdahl or reductive acetyl-CoA pathway. The present paper describes the use of steady-state, product inhibition, single-turnover, and kinetic simulation experiments to elucidate the mechanism of the MeTr-catalyzed reaction. These experiments complement those presented in the companion paper in which binding and protonation of CH3-H4folate are studied by spectroscopic methods [Seravalli, J., Shoemaker, R. K., Sudbeck, M. J., and Ragsdale, S. W. (1999) Biochemistry 38, 5736-5745]. Our results indicate that a pH-dependent conformational change is required for methyl transfer in the forward and reverse directions; however, this step is not rate-limiting. CH3-H4folate and the CFeSP [in the cob(I)amide state] bind randomly and independently to form a ternary complex. Kinetic simulation studies indicate that CH3-H4folate binds to MeTr in the unprotonated form and then undergoes rapid protonation. This protonation enhances the electrophilicity of the methyl group, in agreement with a 10-fold increase in the pKa at N5 of CH3-H4folate. Next, the Co(I)-CFeSP attacks the methyl group in a rate-limiting SN2 reaction to form methylcob(III)amide. Finally, the products randomly dissociate. The following steady-state constants were obtained: kcat = 14.7 +/- 1.7 s-1, Km of the CFeSP = 12 +/- 4 microM, and Km of (6S)-CH3-H4folate = 2.0 +/- 0.3 microM. We assigned the rate constants for the elementary reaction steps by performing steady-state and pre-steady-state kinetic studies at different pH values and by kinetic simulations.  相似文献   

16.
Methenyltetrahydrofolate synthetase (5-formyltetrahydrofolate cyclodehydrase (cyclo-ligase) (ADP-forming) EC 6.3.3.2) catalyzes the ATP- and Mg2+-dependent transformation of 5-formyltetrahydrofolate (leucovorin) to 5,10-methenyltetrahydrofolate. The enzyme has been purified 49,000-fold from human liver by a two-column procedure with Blue Sepharose followed by folinate-Sepharose chromatography. It appears as a single band both on SDS-polyacrylamide gel electrophoresis (Mr 27,000) and on isoelectric focusing (pI = 7.0) and is monomeric, with a molecular weight of 27,000 on gel filtration. Initial-velocity studies suggest that the enzyme catalyzes a sequential mechanism and at 30 degrees C and pH 6.0 the turnover number is 1000 min-1. The enzyme has a higher affinity for its pentaglutamate substrate (Km = 0.6 microM) than for the monoglutamate (Km = 2 microM). The antifolate methotrexate has no inhibitory effect at concentrations up to 350 microM, while methotrexate pentaglutamate is a competitive inhibitor with a Ki = 15 microM. Similarly, dihydrofolate monoglutamate is a weak inhibitor with a Ki = 50 microM, while the pentaglutamate is a potent competitive inhibitor with a Ki of 3.8 microM. Thus, dihydrofolate and methotrexate pentaglutamates could regulate enzyme activity and help explain why leucovorin fails to rescue cells from high concentrations of methotrexate.  相似文献   

17.
Glycine N-methyltransferase (EC 2.1.1.20) catalyzes the methylation of glycine by S-adenosylmethionine to form sarcosine and S-adenosylhomocysteine. The enzyme was previously shown to be abundant in both the liver and pancreas of the rat, to consist of four identical monomers, and to contain tightly bound folate polyglutamates in vivo. We now report that the inhibition of glycine N-methyltransferase by (6S)-5-CH(3)-H(4)PteGlu(5) is noncompetitive with regard to both S-adenosylmethionine and glycine. The enzyme exhibits strong positive cooperativity with respect to S-adenosylmethionine. Cooperativity increases with increasing concentrations of 5-CH(3)-H(4)PteGlu(5) and is greater at physiological pH than at pH 9.0, the pH optimum. Under the same conditions, cooperativity is much greater for the pancreatic form of the enzyme. The V(max) for the liver form of the enzyme is approximately twice that of the pancreatic enzyme, while K(m) values for each substrate are similar in the liver and pancreatic enzymes. For the liver enzyme, at pH 7.0 half-maximal inhibition is seen at a concentration of about 0.2 microM (6S)-5-CH(3)-H(4)PteGlu(5), while at pH 9.0 this value is increased to about 1 microM. For the liver form of the enzyme, 50% inhibition with respect to S-adenosylmethionine at pH 7.4 occurs at about 0.27 microM. The dissociation constant, K(s), obtained from binding data at pH 7.4 is 0.095. About 1 mol of (6S)-5-CH(3)-H(4)PteGlu(5) was bound per tetramer at pH 7.0, and 1.6 mol were bound at pH 9.0. The degree of binding and inhibition were closely parallel at each pH. At equal concentrations of (6R,6S)- and (6S)-5-CH(3)-H(4)PteGlu(5), the natural (6S) form was about twice as inhibitory. These studies indicate that glycine N-methyltransferase is a highly allosteric enzyme, which is consistent with its role as a regulator of methyl group metabolism in both the liver and the pancreas.  相似文献   

18.
Dimethylglycine dehydrogenase (EC 1.5.99.2) and sarcosine dehydrogenase (EC 1.5.99.1) are flavoproteins which catalyze the oxidative demethylation of dimethylglycine to sarcosine and sarcosine to glycine, respectively. During these reactions tightly bound tetrahydropteroylpentaglutamate (H4PteGlu5) is converted to 5,10-methylene tetrahydropteroylpentaglutamate (5,10-CH2-H4PteGlu5), although in the absence of H4PteGlu5, formaldehyde is produced. Single turnover studies using substrate levels of the enzyme (2.3 microM) showed pseudo-first-order kinetics, with apparent first-order rate constants of 0.084 and 0.14 s-1 at 23 and 48.3 microM dimethylglycine, respectively, for dimethylglycine dehydrogenase and 0.065 s-1 at 47.3 microM sarcosine for sarcosine dehydrogenase. The rates were identical in the absence or presence of bound tetrahydropteroylglutamate (H4PteGlu). Titration of the enzymes with substrate under anaerobic conditions did not disclose the presence of an intermediate semiquinone. The effect of dimethylglycine concentration upon the rate of the dimethylglycine dehydrogenase reaction under aerobic conditions showed nonsaturable kinetics suggesting a second low-affinity site for the substrate which increases the enzymatic rate. The Km for the high-affinity active site was 0.05 mM while direct binding for the low-affinity site could not be measured. Sarcosine and dimethylthetin are poor substrates for dimethylglycine dehydrogenase and methoxyacetic acid is a competitive inhibitor at low substrate concentrations. At high dimethylglycine concentrations, increasing the concentration of methoxyacetic acid produces an initial activation and then inhibition of dimethylglycine dehydrogenase activity. When these compounds were added in varying concentrations to the enzyme in the presence of dimethylglycine, their effects upon the rate of the reaction were consistent with the presence of a second low-affinity binding site on the enzyme which enhances the reaction rate. When sarcosine is used as the substrate for sarcosine dehydrogenase the kinetics are Michaelis-Menten with a Km of 0.5 mM for sarcosine. Also, methoxyacetic acid is a competitive inhibitor of sarcosine dehydrogenase with a Ki of 0.26 mM. In the absence of folate, substrate and product determinations indicated that 1 mol of formaldehyde and of sarcosine or glycine were produced for each mole of dimethylglycine or sarcosine consumed with the concomitant reduction of 1 mol of bound FAD.  相似文献   

19.
We investigated the P450 dependent flavonoid hydroxylase from the ornamental plant Catharanthus roseus. cDNAs were obtained by heterologous screening with the CYP75 Hf1 cDNA from Petunia hybrida. The C. roseus protein shared 68-78% identity with other CYP75s, and genomic blots suggested one or two genes. The protein was expressed in Escherichia coli as translational fusion with the P450 reductase from C. roseus. Enzyme assays showed that it was a flavonoid 3', 5'-hydroxylase, but 3'-hydroxylated products were also detected. The substrate specificity was investigated with the C. roseus enzyme and a fusion protein of the Petunia hybrida CYP75 with the C. roseus P450 reductase. Both enzymes accepted flavanones as well as flavones, dihydroflavonols and flavonols, and both performed 3'- as well as 3'5'-hydroxylation. Kinetics with C. roseus cultures on the level of enzyme activity, protein and RNA showed that the F3'5'H was present in dark-grown cells and was induced by irradiation. The same results were obtained for cinnamic acid 4-hydroxylase and flavanone 3beta-hydroxylase. In contrast, CHS expression was strictly dependent on light, although CHS is necessary in the synthesis of the F3'5'H substrates. Immunohistochemical localization of F3'5'H had not been performed before. A comparison of CHS and F3'5'H in cotyledons and flower buds from C. roseus identified CHS expression preferentially in the epidermis, while F3'5'H was only detected in the phloem. The cell-type specific expression suggests that intercellular transport may play an important role in the compartmentation of the pathways to the different flavonoids.  相似文献   

20.
Chalcone synthase was purified to homogeneity by polyacrylamide gel electrophoresis from cell suspension cultures of carrot in which anthocyanin synthesis was induced by transferring the cells from a medium containing 2,4-dichlorophenoxy-acetic acid (2,4-D) to one lacking it. A molecular weight of 80,000-85,000 for the enzyme was determined by gel filtration and disc-gel polyacrylamide electrophoresis, and one of about 40,600 for the subunit by SDS slab-gel electrophoresis. The primary reaction product was chalcone and the pH optimum of the reaction was 8.0. The Km values for 4-coumaroyl-CoA and malonyl-CoA were 5.7 microM and 18 microM, respectively. These properties of carrot chalcone synthase were discussed in comparison to those of that from cell cultures of parsley reported previously. Antiserum against chalcone synthase from carrot was obtained from mice bred under specific pathogen free conditions. Crossreactivity was examined by Western-blotting, and the high specificity of the antiserum against chalcone synthase was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号