首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Nuclear protein kinases   总被引:8,自引:0,他引:8  
  相似文献   

2.
The DNA methyltransferases, Dnmts, are the enzymes responsible for methylating DNA in mammals, which leads to gene silencing. Repression by DNA methylation is mediated partly by recruitment of the methyl-CpG-binding protein MeCP2. Recently, MeCP2 was shown to associate and facilitate histone methylation at Lys9 of H3, which is a key epigenetic modification involved in gene silencing. Here, we show that endogenous Dnmt3a associates primarily with histone H3-K9 methyltransferase activity as well as, to a lesser extent, with H3-K4 enzymatic activity. The association with enzymatic activity is mediated by the conserved PHD-like motif of Dnmt3a. The H3-K9 histone methyltransferase that binds Dnmt3a is likely the H3-K9 specific SUV39H1 enzyme since we find that it interacts both in vitro and in vivo with Dnmt3a, using its PHD-like motif. We find that SUV39H1 also binds to Dnmt1 and, consistent with these interactions, SUV39H1 can purify DNA methyltransferase activity from nuclear extracts. In addition, we show that HP1β, a SUV39H1-interacting partner, binds directly to Dnmt1 and Dnmt3a and that native HP1β associates with DNA methyltransferase activity. Our data show a direct connection between the enzymes responsible for DNA methylation and histone methylation. These results further substantiate the notion of a self-reinforcing repressive chromatin state through the interplay between these two global epigenetic modifications.  相似文献   

3.
A nucleoplasmic histone kinase activity was isolated from livers of adult rats and purified 39-fold compared with whole nuclei by ultracentrifugation of the nuclear extract and Sephadex G-200 gel filtration in the presence of cyclic AMP. Analysis by polyacrylamide-gel electrophoresis as well as by gel filtration indicates a mol.wt. of approx. 60,000 for the catalytic subunit and 130000-150000 for the cyclic AMP-binding activity. The purified enzyme displays a 20-fold greater preference for histone fractions 1 and 2b than for any non-histone substrate, including alpha-casein. Endogenous protein in the preparation is not appreciably phosphorylated. The unfractioned enzyme is stimulated significantly by cyclic GMP, cyclic IMP and dibutyryl cyclic AMP as well as by cyclic AMP. The catalytic reaction requires Mg2+ (Km 1.9mM) and ATP (Km 15.4 micron). Half-maximal activity of the enzyme is observed with histone 2b at 12micron and histone 1 at a higher substrate concentration. The pH optima are 6.1 and 6.5 with histones 2b and 1 respectively. This nuclear protein kinase appears to be distinct from other nuclear enzymes that have been reported, on the basis of histone specificity, univalent-salt-sensitivity, pH optima and nuclear location. However, the enzyme possesses many properties similar to those of the cytoplasmic kinases, including cyclic AMP-dependence, Mg2+ and ATP affinities and pH optima. It differs from cytoplasmic protein kinase type I, the major form in the liver, with respect to bivalent-cation effects and response to the heat-stable protein kinase inhibitor protein isolated from ox heart.  相似文献   

4.
Electrophoresis and subsequent assay of the enzyme directly onto the gel has allowed a rapid and quantitative characterization of the cyclic AMP-dependent and -independent histone kinases, protamine, phosvitin and casein kinases in HT 29 and HRT 18 cells. The technique has been applied to soluble extracts from cytoplasmic and nuclear fraction prepared in the presence and absence of neutral detergent. A more precise identification of these enzymes has been possible by analysing enzyme fractions obtained after ion-exchange chromatography of the above extracts. The protein kinase equipment of both cell lines was found to be identical (11 major components) but with different relative proportions of several enzymes. In cytoplasmic extracts: VIP activates only the type I, cytosolic, (band 4) and the type II, membrane-bound, (bands 6 and 8) cyclic AMP-dependent histone kinases. These enzymes account, respectively, for 34 and 55% of the total histone kinases in HT 29 and HRT 18 cells. The cyclic AMP-independent histone kinases (band 1,2,5 and 7) also phosphorylate protamine; band 5 was found 3o be much higher (4-fold) in HT 29 cells. In addition, two casein/phosvitin kinases have been identified in both cell lines with phosphorylating activity similar to the total histone kinases. In the nuclear extract two cyclic AMP-independent histone kinases have been found with electrophoretic mobility differing from the cytoplasmic enzymes. Also, two phosvitin/casein kinases specifically nuclear, due to their chromatographical and electrophoretical behaviour, have been characterized.  相似文献   

5.
The Saccharomyces cerevisiae protein Hsl7 is a regulator of the Swe1 protein kinase in cell cycle checkpoint control. Hsl7 has been previously described as a type III protein arginine methyltransferase, catalyzing the formation of ω-monomethylarginine residues on non-physiological substrates. However, we show here that Hsl7 can also display type II activity, generating symmetric dimethylarginine residues on calf thymus histone H2A. Symmetric dimethylation is only observed when enzyme and the methyl-accepting substrate were incubated for extended times. We confirmed the Hsl7-dependent formation of symmetric dimethylarginine by amino acid analysis and thin layer chromatography with wild-type and mutant recombinant enzymes expressed from both bacteria and yeast. This result is significant because no type II activity has been previously demonstrated in S. cerevisiae. We also show that Hsl7 has little or no activity on GST-GAR, a commonly used substrate for protein arginine methyltransferases, and only minimal activity on myelin basic protein. This enzyme thus may only recognize only a small subset of potential substrate proteins in yeast, in contrast to the situation with Rmt1, the major type I methyltransferase.  相似文献   

6.
7.
Summary Ectoderm explants from early gastrula stages of Xenopus laevis were induced with a neutralizing factor. The factor was isolated from Xenopus gastrulae and partially purified by chromatography on DEAE cellulose. The ectoderm was cultured for different periods of time and then homogenized. Protein kinase activity was determined in the homogenates from induced and control explants with histone H 1 or C-terminal peptide derived from histone H 1 as substrates. The C-terminal peptide is a more specific substrate for protein kinase C, whereas histoneH 1 is a substrate for cAMP/cGMP-dependent protein kinases as well protein kinase C. With both substrates the enzyme activity increases after induction. With the C-terminal peptide as the substrate the protein kinase activity is lower, but its relative increase after induction higher. This suggests that besides cAMP/cGMP dependent protein kinases protein kinase C or related enzymes are involved in the neural induction and differentiation processes. This corresponds to previous experiments which have shown that treatment of ectoderm with phorbol myristate acetate, an activator of protein kinase C and protein kinase C related enzymes, initiates neural differentiation. Endogeneous substrates, which are more intensively phosphorylated after induction are proteins with apparent molecular weights 21 kDa and 31 kDa. Addition of protein kinase C to the induced and control homogenates abolishes the difference in the phosphorylation rate of these proteins.  相似文献   

8.
Subcellular fractionation of oviduct tissue from estrogen-treated chicks indicated that the bulk of the protein kinase activity of this tissue is located in the cytoplasmic and nuclear fractions, DEAE-cellulose chromatography of cytosol revealed a major peak of cAMP stimulatable activity eluting at 0.2 M KCl. This peak was further characterized and found to exhibit properties consistent with cytoplasmic cAMP dependent protein kinases isolated from other tissues; it had a Km for ATP of 2 X 10(-5) M, preferred basic proteins such as histones, as substrate, and had a M of 165 000. Addition of 10(-6) M cAMP caused the holoenzyme to dissociate into cAMP binding regulatory subunit and a protein kinase catalytic subunit. Extraction of purified oviduct nuclei with 0.3 M KCl released greater than 80% of the kinase activity in this fraction. Upon elution from phospho-cellulose, the nuclear extract was resolved into two equal peaks of kinase activity (designated I and II). Peak I had a sedimentation coefficient of 3S and a Km for ATP of 13 muM. while peak II had a sedimentation coefficient of 6S and a Km for ATP of 9 muM. Both enzymes preferred alpha-casein as a substrate over phosvitin or whole histone, although they exhibited different salt-activity profiles. The cytoplasmic and nuclear enzymes were well separated on phospho-cellulose and this resin was used to quantitate the amount of cAMP dependent histone kinase activity in the nucleus and the amount of casein kinase activity in the cytosol. Protein kinase activity in nuclei from estrogen-stimulated chicks was found to be 40% greater than hormone-withdrawn animals. This increase in activity was not due to translocation of the cytoplasmic protein kinase in response to hormone, but to an increase in nuclear (casein) kinase activity. During the course of this work, we observed small but significant amounts of cAMP binding activity very tightly bound to the nuclear fraction. Solubilization of the binding activity by sonication in high salt allowed comparison studies to be performed which indicated that the nuclear binding protein is identical with the cytoplasmic cAMP binding regulatory subunit. The possible role of the nuclear binding activity is discussed.  相似文献   

9.
Two cAMP-independent protein kinases were purified from rat brain neuron chromatin by using extraction with ammonium sulfate with subsequent chromatography on DEAE-Sephadex A-25 and Sephadex G-150. These enzymes were identified as casein kinases NI and NII, respectively. The molecular masses of the proteins as determined by gel filtration are 4500 and 130 Da. Casein kinase NII utilizes ATP (Km = 7.5 mM) and GTP (Km = 8.5 mM) as substrates, while casein kinase NI utilizes only ATP (Km = 6 mM). The activities of the both enzymes are inhibited by Mn2+ and Ca2+, while heparin (1 microgram/ml) inhibits only casein kinase NII. The memory stimulator ethymizol (ethylnorantipheine) increases the activity of casein kinase NII only when brain proteins extracted by 0.35 M NaCl or rat liver HMG-proteins are used as reaction substrates. This substance has no effect on the phosphorylation of casein and histone HI. The role of casein kinase NII of neuronal chromatin in the realization of stimulatory effects of physiologically active substances on RNA synthesis is discussed.  相似文献   

10.
11.
The histone lysine methyltransferases catalyze the transfer of methyl groups from S-adenosylmethionine to specific epsilon-N-lysine residues in the N-terminal regions of histones H3 and H4. These enzymes are located exclusively within the nucleus and are firmly bound to chromatin. The chromosomal bound enzymes do not methylate free or nonspecifically associated histones, while histones H3 and H4 within newly synthesized chromatin are methylated. These enzymes can be solubilized by limited digestion (10-16%) of chromosomal DNA from rapidly proliferating rat brain chromatin with micrococcal nuclease. Histone H3 lysine methyltransferase remained associated with a short DNA fragment throughout purification. Dissociation of the enzyme from the DNA fragment with DNAase digestion resulted in complete loss of enzyme activity; however, when this enzyme remained associated with DNA it was quite stable. Activity of the dissociated enzyme could not be restored upon the addition of sheared calf thymus or Escherichia coli DNA. Histone H3 lysine methyltransferase was found to methylate lysine residues in chromosomal bound or soluble histone H3, while H3 associated with mature nucleosomes was not methylated. The histone H4 lysine methyltransferase which was detectable in the crude nuclease digest was extremely labile, losing all activity upon further purification. We isolated a methyltransferase by DEAE-cellulose chromatography, which would transfer methyl groups to arginine residues in soluble histone H4. However, this enzyme would not methylate nucleosomal or chromosomal bound histone H4, nor were methylated arginine nucleosomal or chromosomal bound histone H4, nor were methylated arginine residues detectable upon incubating intact nuclei or chromatin with S-adenosylmethionine.  相似文献   

12.
13.
14.
The 10000 X g supernatant fraction of brown fat from newborn rats catalyzed the cyclic AMP-dependent phosphorylation of both histone and a preparation of proteins from the same subcellular fraction (endogenous proteins). The apparent affinity for ATP was lower for the phosphorylation of the endogenous proteins than for the phosphorylation of histone. In order to discover whether the phosphorylation of histone and the endogenous proteins were catalyzed by different enzymes, the 100000 X g supernatant was fractionated by ion-exchange and adsorption chromatography. Three different cyclic AMP-dependent protein kinases and one cyclic AMP-independent protein kinase were separated and partially purified. Each of these enzymes catalyzed the phosphorylation of both substrates, and the difference in apparent Km for ATP remained. Neither affinity chromatography on histone-Sepharose, nor electrophoresis on polyacrylamide gels resulted in the separation of the phosphorylation of histone from that of the endogenous proteins of any of the partially purified kinases. Moreover, experiments in which the phosphorylated substrates were separated by differential precipitation with trichloroacetic acid showed that the endogenous proteins competitively inhibited the phosphorylation of lysine-rich histone. It is concluded that each of the partially purified kinase preparations contains protein kinase, which catalyzes the phosphorylation of both substrates. The difference in apparent Km for ATP was found to be due to the presence in the endogenous protein preparation of a low molecular weight compound which competes with ATP. This was not ATP nor the modulator protein. The ratio of the phosphorylation of endogenous proteins to that of histone was much higher for the cyclic AMP-independent kinase preparation than for the other enzymes. Electrophoresis of the endogenous substrates in the presence of sodium dodecyl sulphate showed that the enzyme phosphorylated a greater number of proteins than did the cyclic AMP-dependent kinases. The phosphorylation of endogenous proteins relative to that of histone was significantly lower for one of the cyclic AMP-dependent kinases than for the other two. This difference was not reflected in a different pattern of phosphorylation of the individual proteins of the endogenous mixture.  相似文献   

15.
Two protein phosphatases were isolated from rat liver nuclei. The enzymes, solubilized from crude chromatin by 1 M NaCl, were resolved by column chromatography on Sephadex G-150, DEAE-Sepharose and heparin-Sepharose. The phosphorylase phosphatase activity of one of the enzymes (inhibitor-sensitive phosphatase) was inhibited by heat-stable phosphatase inhibitor proteins and also by histone H1. This phosphatase had a molecular weight of approx. 35 000 both before and after 4 M urea treatment. Its activity was specific for the β-subunit of phosphorylase kinase. Pretreatment with 0.1 mM ATP inhibited the enzyme only about 10%, and it did not require divalent cations for activity. On the basis of these properties, this nuclear enzyme was identified as the catalytic subunit of phosphatase 1. The other phosphatase (polycation-stimulated phosphatase) was insensitive to inhibition by inhibitor 1, and it was stimulated 10-fold by low concentrations of histone H1 (A0.5 = 0.6 μM). This enzyme had a molecular weight of approx. 70 000 which was reduced to approx. 35 000 after treatment with 4 M urea. It dephosphorylated both the α- and β-subunits of phosphorylase kinase. The enzyme was inhibited more than 90% by preincubation with 0.1 mM ATP and did not require divalent cations for activity. On the basis of these properties, this nuclear enzyme was identified as phosphatase 2A.  相似文献   

16.
X rays (4.8 Gy) inhibit both DNA synthesis and phosphorylation of histone H1 in the regenerating liver of the rat. To determine the cause of the inhibition of histone H1 phosphorylation, changes in the nuclear protein kinase activities during the prereplicative phase of regeneration were measured. The cAMP-dependent protein kinase activity was low during regeneration, and the changes in the activity were not statistically significant. The cAMP-independent protein kinase activity increased at 15 h, decreased at 18 h, and increased again at 24 h after partial hepatectomy. X irradiation prior to partial hepatectomy did not inhibit the increase at 15 h, but it did inhibit the increase at 24 h. The activity was not inhibited by isoquinolinesulfonamide inhibitors such as H-7, and it was activated by a commercial preparation of an inhibitor protein of the cAMP-dependent kinase. It was also inhibited by quercetin. The possibility that the radiation-sensitive nuclear protein kinase is a nuclear cAMP-independent protein kinase specific for histone H1 is considered.  相似文献   

17.
沉默信息调节因子2相关酶(silent mating type information regulator 2-related enzymes,Sirtuin)是烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)依赖性的去乙酰化酶。Sirt7是定位于核仁的Sirtuin蛋白家族成员,除了具有去乙酰化酶活性外,还具有腺苷二磷酸(adenosine diphosphate,ADP)-核糖基转移酶、去琥珀酰化酶和去戊二酰化酶活性。Sirt7的作用底物包括组蛋白、DNA损伤修复相关因子、核仁小核糖核蛋白成分(核仁纤维蛋白、U3)、转录因子(GA结合蛋白β1(GA binding protein β1,GABPβ1)、叉头框蛋白O4、GATA4)、细胞周期蛋白依赖激酶9、组蛋白乙酰转移酶1、聚合酶相关因子53(polymerase associated factor 53,PAF53)、Ras相关核蛋白(Ras-related nuclear protein,Ran)、活化T细胞的核因子c1和p53等。另外,Sirt7还可以与损伤特异性DNA结合蛋白1(damage-specific DNA binding protein 1,DDB1)/cullin 4/DDB1-cullin 4相关因子1、Suv39h1/Sirt1、Myc、核呼吸因子1和Elk4等作用,进而调节其功能,但作用机制尚不清楚。Sirt7的多种活性使其在维持基因组稳定、调节RNA转录、抵御应激反应、调控代谢及炎症等病理生理活动中发挥重要作用。本文将介绍Sirt7在调节以上病理/生理活动中的作用机制,以及腺苷酸活化蛋白激酶(adenosine 5′-monophosphate activated protein kinase,AMPK)、蛋白质精氨酸甲基转移酶6、泛素特异性肽酶7等对Sirt7蛋白合成及活性的调节作用,并对目前Sirt7研究中存在的问题进行讨论。  相似文献   

18.
19.
Arylsulfatases A, B, and C, beta-galactosidase, and acid phosphatase were assayed in neuronal, astroglial, and oligodendroglial fractions isolated from adult rabbit and beef brains. The specific activities of all acid hydrolases were lower in beef cells compared to rabbit cells. The lysosomal enzymes of the rabbit neuronal fraction showed 10--25 time higher activities than the oligodendroglial fraction and 5-fold higher activities than the astroglial fraction. In beef brain, the specific activities of these enzymes were similar in oligodendroglia and astrocytes but 4--10 times lower than in neurons. The low activity of arylsulfatase A and beta-galactosidase in oligodendroglial cells may suggest that the low turnover of cerebroside and sulfatide in myelin may be regulated in part by the enzymes that catalyze their degradation.  相似文献   

20.
Exosomes are small membranous vesicles of endocytic origin that are released by almost every cell type. They exert versatile functions in intercellular communication important for many physiological and pathological processes. Recently, exosomes attracted interest with regard to their role in cell–cell communication in the nervous system. We have shown that exosomes released from oligodendrocytes upon stimulation with the neurotransmitter glutamate are internalized by neurons and enhance the neuronal stress tolerance. Here, we demonstrate that oligodendroglial exosomes also promote neuronal survival during oxygen–glucose deprivation, a model of cerebral ischaemia. We show the transfer from oligodendrocytes to neurons of superoxide dismutase and catalase, enzymes which are known to help cells to resist oxidative stress. Additionally, we identify various effects of oligodendroglial exosomes on neuronal physiology. Electrophysiological analysis using in vitro multi-electrode arrays revealed an increased firing rate of neurons exposed to oligodendroglial exosomes. Moreover, gene expression analysis and phosphorylation arrays uncovered differentially expressed genes and altered signal transduction pathways in neurons after exosome treatment. Our study thus provides new insight into the broad spectrum of action of oligodendroglial exosomes and their effects on neuronal physiology. The exchange of extracellular vesicles between neural cells may exhibit remarkable potential to impact brain performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号