首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. A method based on hierarchical clustering and Bayesian probabilities is used to identify phytoplankton assemblages and analyse their pattern of occurrence and temporal coherence in three deep, peri‐alpine lakes. The hierarchical properties of the method allowed ranking by order of importance of the effects of changes related to climate and to human activity on the phytoplankton structure. 2. The three deep, peri‐alpine lakes (the Lower Zurich, Upper Zurich and Walen lakes) investigated in this study have been monitored since 1972. During that period they have undergone oligotrophication as a result of management programmes and they have been subject to similar meteorological effects that have led to higher water temperatures since 1988. 3. The phytoplankton assemblages of the most eutrophic lake (Lower Zurich) differ strongly from those observed in the two meso‐oligotrophic lakes. Local environmental conditions appear to be the main factor responsible for species composition and change in climate characterised by the warmer water temperatures observed since 1988 have had a major impact on the winter composition of the lower basin of Lake Zurich by promoting Planktothrix rubescens. 4. Some phytoplankton assemblages are found in all the lakes. Their patterns of occurrence display strong synchrony at the annual and/or inter‐annual scales. However, temporal coherence between the lakes sometimes also involves different assemblages. 5. The reduction in phosphorus had a great influence on long‐term changes in composition. In all three lakes, decreases in phosphorus are associated with a community characterised by some mixotrophic species or species adapted to low nutrient concentrations or sensitive to transparency. In the Lower Lake Zurich the decrease in phosphorus has also led to the development of species adapted to low light intensities. 6. Seasonal meteorological forcing has also induced synchronous changes, but the same assemblages are not necessarily involved, because the pool of the well‐placed candidate taxa that may develop is determined by the local environmental conditions, and mainly by phosphorus concentrations. In the most eutrophic lake, the seasonal pattern is characterised by a succession of more stages. However, the seasonal assembly dynamics involve the succession of species sharing common selective advantages that make them relatively stronger under these nutrient and light conditions.  相似文献   

2.
The aim of this study was to compare vertical and seasonal variationsof inorganic carbon allocation into macromolecules by the phytoplanktonpopulation in a eutrophic lake (Lake Aydat) and an oligo-mesotrophiclake (Lake Pavin). Biochemical fractionation was conducted byconsecu tive differential extractions in order to separate proteins,polysaccharides, lipids, and low molecular weight compounds(LMW). The ratio of light absorption at480 and 665 nm by acetoneextracts of phytoplankton pigments was used as an indicatorof the nutritional statusof natural phytoplankton populations.Our results show that in Lake Aydat, the main photosyntheticend productswere poly saccharides, whereas in Lake Pavin, radioactivitywas predominantly incorporated into the protein fraction. Moreover,the seasonal cycles of mixing and stratification in these twolakes affected the pattern of 14C incorporation into LMW andmacromolecules. An increase in the relative synthesis of proteinsoccurred during stratification periods. It was linked to anincrease in temperature and nutrient limitation further complicatedby the shift in species composition of the populations. Differences recorded both between the two lakes of different trophicstatus and between seasons confirm that the proportion of carbonincorporated into proteins might be a useful indicator of thephysio logical status of phvtoplankton communities.  相似文献   

3.
1. In an attempt to discern long‐term regional patterns in phytoplankton community composition we analysed data from five deep peri‐alpine lake basins that have been included in long‐term monitoring programmes since the beginning of the 1970s. Local management measures have led to synchronous declines in phosphorus concentrations by more than 50% in all four lakes. Their trophic state now ranges from mesotrophic to oligotrophic. 2. No coherence in phytoplankton biomass was observed among lakes, or any significant decrease in response to phosphorus (P)‐reduction (oligotrophication), except in Lakes Constance and Walen. 3. Multivariate analyses identified long‐term changes in phytoplankton composition, which occurred coherently in all lakes despite the differing absolute phosphorus concentrations. 4. In all lakes, the phytoplankton species benefiting from oligotrophication included mixotrophic species and/or species indicative of oligo‐mesotrophic conditions. 5. A major change in community composition occurred in all lakes at the end of the 1980s. During this period there was also a major shift in climatic conditions during winter and early spring, suggesting an impact of climatic factors. 6. Our results provide evidence that synchronous long‐term changes in geographically separated phytoplankton communities may occur even when overall biomass changes are not synchronous.  相似文献   

4.
Flow cytometry (FCM) was used to assess microbial community abundances and patterns in three natural, large and deep peri-alpine hydrosystems, i.e., lakes Annecy (oligotrophic), Bourget, and Geneva (mesotrophic). Picocyanobacteria, small eukaryotic autotrophs, heterotrophic prokaryotes, and viruses were studied in the 0–50 m surface layers to highlight the impact of both physical and chemical parameters as well as possible biotic interactions on the functioning of microbial communities. Some specificities were recorded according to the trophic status of each ecosystem such as the higher number of viruses and heterotrophic bacteria in mesotrophic environments (i.e., Lakes Geneva and Bourget) or the higher abundance of picocyanobacteria in the oligotrophic Lake Annecy. However, both seasonal (temperature) and spatial (depth) variations were comparatively more important than the trophic status in driving the microbial communities’ abundances in these three lakes, as revealed by principal component analysis (PCA). A strong viral termination of the heterotrophic bacterial blooms could be observed in autumn for each lake, in parallel to the mixing of the upper lit layers. As virus to bacteria ratio (VBR) was indeed very high at this period with values varying between 87 and 114, such important relationships between viruses and bacteria were likely. The magnitudes of seasonal variations in VBR, with the highest values ever reported so far, were largely greater than the magnitude of theoretical variations due to the trophic status, suggesting also a strong seasonality in virioplankton production associated to prokaryotic dynamics. FCM analyses allowed discriminating several viral groups. Virus-Like Particles group 1 (VLP1) and group 2 (VLP2) were always observed and significantly correlated to bacteria for the former and chlorophyll a and picocyanobacteria for the latter, suggesting that most of VLP1 and VLP2 could be bacteriophages and cyanophages, respectively. On the basis of these results, new ways of investigation emerge concerning the study of relationships between specific picoplanktonic groups; and overall these results provide new evidence of the necessity to consider further viruses for a better understanding of lake plankton ecology. Handling editor: Luigi Naselli-Flores  相似文献   

5.
Major nutrients (N and P) and phytoplankton from 19 large lakes from southern (61°) to northern (69°) Finland were analyzed to detect long-term trends and regional differences. The data sets from June, July and August cover the period from the early 1980s to the present. Altogether >700 phytoplankton and >4000 N, P and Chl a results were used for the study. In 40% of the lakes, the total phosphorus (TP) concentration decreased significantly and in >25% of the lakes a significant reduction was found in the total nitrogen (TN) concentration. At the same time, the phytoplankton biomass declined only in 15% of the lakes and the long-term trends in chlorophyll a more often increased than decreased. A clear gradient from southern to northern Finland and western to eastern Finland was found in the phytoplankton biomass. During the study period, the biomasses of cyanobacteria and centrales (diatoms) decreased whilst there was an increase in the biomass of pennales (diatoms) in one-third of the lakes. The proportion of chlorophytes in the total biomass also increased in >20% of the study lakes. In southern and western Finland, the total biomass and the contribution of cyanobacteria were higher. Centrales made a higher contribution to the total biomass in the north. Pennales and chlorophytes were less abundant and chrysophytes more abundant in the east. Differences in the community composition reflected the gradients in the total nutrients, and particularly in TP. The observations support the assumed role of phosphorus as the key limiting nutrient in large Finnish lakes irrespective of lake′s location. The N:P ratio proved to be a poor predictor of cyanobacteria occurrence in the study lakes.  相似文献   

6.
Seasonal phytoplankton variations in the shallow Pahlavi Mordab,Iran   总被引:1,自引:1,他引:0  
Pelagic phytoplankton variations in the shallow, western basin of the Pahlavi Mordab, Iran were monitored by the chlorophyll a, gross oxygen productivity and cell enumeration techniques. Annual maxima were 29.4 mg/m3, 0.98 mg O2/l/hr and 32, 639, 467 cells/liter respectively and were recorded from late summer until early autumn. During the spring and summer, dense growths of Ceratophyllum, Hydrilla and Myriophyllum flourished. Competition between the phytoplankton and submerged aquatic macrophytes was minimal following late summer, when water depths increased following heavy seasonal precipitation and the die-back of submerged aquatic macrophytes occurred.  相似文献   

7.
The factors influencing the abundance of phytoplankton in the Yellowknife River, in the Canadian subarctic, were determined from collections made for 42 consecutive months from June 1975 to November 1978. The spring bloom of plankton occured during April of each year in response to changing light conditions. WhileChlamydomonas lapponica was dominant during this period, it was replaced during the early part of the summer by a rapid succession ofDinobryon species in whichD. cylindricum was followed byD. sociale and in turn byD. bavaricum andD. divergens. Although low nutrient levels permitted the development ofDinobryon during the summer, the abundance of diatoms was greatly limited by the concentrations of SiO2 (< 0.1 g/m3). Algal densities began to decline in August and reached low overwintering levels by November. The absence of a fall bloom in densities was due to a combination of low temperatures and nutrient levels.P.O. Box 2310, Yellowknife, Northwest Territories, X1A 2P7, Canada  相似文献   

8.
9.
Variations in the shapes of the action and absorption spectra,and the physiological parameters of phytoplankton [B, the biomass(B)-specific initial slope of the photosynthesis-irradiancecurve; the plateau of the curve; m), themaximum quantum yield of photosynthesis], were studied. Datawere collected in the North Atlantic in five biogeochemicalprovinces for two seasons: in fall of 1992 and spring of 1993.Further, some nine independent variables were tested for theirability to predict the physiological parameters, using linearregression analyses. It was found that the parameters were morevariable between seasons than between provinces, although thedifferences in the spectral shapes between provinces were significant.It was also shown that several independent variables (aloneor in combination) were able to predict a significant fractionof the total variance in the parameters. However, the correlationbetween variables and parameters differed unsystematically bothbetween provinces and seasons. The results suggest that predictinga parameter from an independent variable would have to be carriedout at a province level: the relationship changed or disappearedwhen data from two or more provinces were pooled.  相似文献   

10.
Seasonal sampling across two small lakes shows that phytoplanktonpatchiness is greatly enhanced during winter ice-cover relativeto the open-water seasons of exposure to wind stress and rapidturbulent mixing.  相似文献   

11.
This study describes the metabolism and structure of phytoplanktoncommunities during seasonal periodicity and discusses strategiesof development adopted by species during succession. The studywas conducted in two trophically different lakes. Each lakedemonstrates a different degree of the ecological succession,which prescribes an increasingly complex taxocenose. In oligomesotrophicLake Pavin the autogenic succession lasts from spring overturnuntil mid-summer. In eutrophic Lake Aydat the autogenic successionis strictly limited to spring. The seasonal changes of the communityproductivity, turnover rate (P/B) and adenylate energy chargeconfirm the hypothesis of a change of the ‘metabolic orientation’of phytoplankton cells during seasonal succession. The autogenicsuccession represents the progression from a growth-orientedstrategy to an equilibrium-oriented one.  相似文献   

12.
Seasonal distribution of large phytoplankton in the Keban Dam Reservoir   总被引:2,自引:0,他引:2  
The Keban Dam Reservoir (KDR), in eastern Anatolia, is one of the largest man-made reservoirs of the world with a storage capacity of <30 billion m3. In the KDR, long-term water quality surveys have been carried out in order to determine the trophic status of this rather unique reservoir. In this paper, the focus is on the large phytoplankton species that were identified during the field studies conducted between 1991 and 1993. According to the results of the surveys, the overall phytoplankton density is low during the fall and winter months. However, species belonging to various groups started to become abundant in the spring when the water level began to rise. In terms of species diversity, the most dominant group was the Bacillariophyta. Other dominant species belonged to the Cyanophyta, Chlorophyta, Pyrrophyta, Chrysophyta and Euglenophyta. The effects of various physicochemical quality parameters on the seasonal distribution and succession of the above taxa, as well as the interrelation with eutrophication, are also discussed.   相似文献   

13.
Viruses infecting the harmful bloom-causing alga Phaeocystis globosa (Prymnesiophyceae) were readily isolated from Dutch coastal waters (southern North Sea) in 2000 and 2001. Our data show a large increase in the abundance of putative P. globosa viruses during blooms of P. globosa, suggesting that viruses are an important source of mortality for this alga. In order to examine genetic relatedness among viruses infecting P. globosa and other phytoplankton, DNA polymerase gene (pol) fragments were amplified and the inferred amino acid sequences were phylogenetically analyzed. The results demonstrated that viruses infecting P. globosa formed a closely related monophyletic group within the family Phycodnaviridae, with at least 96.9% similarity to each other. The sequences grouped most closely with others from viruses that infect the prymnesiophyte algae Chrysochromulina brevifilum and Chrysochromulina strobilus. Whether the P. globosa viruses belong to the genus Prymnesiovirus or form a separate group needs further study. Our data suggest that, like their phytoplankton hosts, the Chrysochromulina and Phaeocystis viruses share a common ancestor and that these prymnesioviruses and their algal host have coevolved.  相似文献   

14.
The seasonal succession of phytoplankton diversity, and the variations in the diel vertical distribution of phyto‐ and zooplankton were investigated in a small shallow pond (1.7 m water depth) in 2003. It was inferred that the water tended to stratify weakly in the daytime from February to June. In February and April, the green alga Golenkinia radiata Chodat dominated the phytoplankton assemblage. The cell density of G. radiata greatly decreased in April, when rotifers increased near the bottom. The vertical mixing was attenuated in June, large populations of the euglenoids (Lepocinclis salina Fritsch, Phacus acuminatus Stokes, Trachelomonas hispida (Perty) Stein et Deflandre) developed, and the cyanobacterium Aphanizomenon flos‐aquae var. klebahnii Elenk. appeared at low density. Euglenoids and A. flos‐aquae were mostly distributed in the bottom layer. In late September, when the water was mixed throughout the day, euglenoids and A. flos‐aquae were distributed evenly throughout the water column. The zooplankton (cyclopoid copepods and rotifers) densities in September were the lowest throughout the year. The vertical mixing increased in November, and the phytoplankton community was composed of A. flos‐aquae, P. acuminatus, T. hispida and the green alga Ankistrodesmus falcatus (Corda) Ralfs. In November, at the final stage of water bloom of A. flos‐aquae, its population density decreased with depth. The two euglenoids exhibited similar cell distributions at 0.8 m and 1.6 m during 1–3 November. A. falcatus was distributed evenly throughout the water column; however, when the vertical mixing lessened, the cells at the surface started to sink. Copepod nauplii and rotifers appeared at high densities in November. Seasonal variation in the phytoplankton community structure in the pond seemed to be related to the vertical mixing of the water. In addition, zooplankton, especially rotifers, might play an important role in initiating a spring clear‐water phase and in the bloom collapse of A. flos‐aquae.  相似文献   

15.
Seasonal variation in phytoplankton size classes was studied over the period of a year in a small, mesotrophic, brown-water lake. Throughout the sampling period, species from 2–16 μm (GALD) dominated the phytoplankten community. Small phytoplankters (2–8 μm) were predominant in winter and early spring populations while algae of 8–16 μm became important in summer (phytoplankton < 2 μm was not counted). Principal coordinate analysis resulted in a cyclic pattern of dates in the reduced space, winter and early spring samples being well separated from the other dates. In multiple linear regressions between environmental parameters and size classes, temperature was always the most important variable.  相似文献   

16.
Roswitha Holzmann 《Hydrobiologia》1993,249(1-3):101-109
A study of diversity and compositional stability of phytoplankton communities during one vegetation period was carried out in small lakes in upper Bavaria. Shannon-Weaver diversity index was calculated on the base of number of individuals and on the base of biomass. On average, the diversity (annual mean) was highest in mesotrophic lakes. A comparison of three morphologically different (esp. exposure to wind, surface area and mean depth) lakes (Pelhamer See, Thalersee and Kautsee) sought to find out how the phytoplankton community structure reacts to events of intermediate disturbance, in terms of diversity- or biomass changes. Principal Component Analysis was used to measure the persistence of the phytoplankton association. The examples given in this paper led to these conclusions: High diversity or increase in diversity occur in compositionally instable communities, in high wind-stress events, with small algae and with high grazing. Low diversity or decrease in diversity occur in compositionally stable periods, when conditions select few species, as large forms dominate and as grazing by zooplankton takes effect. Gradual seasonal changes are observed in structurally stable lakes. In lakes exposed to frequent disturbances, seasonal changes may be dominated by intermediate responses.  相似文献   

17.
Davies  J. M.  Nowlin  W. H.  & Mazumder  A. 《Journal of phycology》2003,39(S1):11-11
The algal class Chlorarachniophyceae is comprised of a small group of unicellular eukaryotic algae that are often characterized by an unusual amoeboid morphology. This morphology is hypothesized to be the result of a secondary endosymbiosis in which a green alga was engulfed as prey by a nonphotosynthetic amoeba or amoebaflagellate. Whereas much is known about the phylogenetic relationships of individual chlorarachniophytes to one another, and to possible ancestral host organisms in the genera Cercomonas and Heteromita , little is known about their physiology, particularly that of their lipids. In an initial effort to characterize the lipids of this algal class, seven organisms were examined for their fatty acid and sterol composition. These included Bigelowiella natans, Chlorarachnion globusum, Chlorarachnion reptans, Gymnochlora stellata, Lotharella amoeboformis, Lotharella globosa , and Lotharella sp . Fatty acids associated with chloroplast-associated glycolipids, cytoplasmic membrane-associated phospholipids, and storage triglycerides were characterized. Glycolipid fatty acids were found to be of limited composition, containing principally eicosapentaenoic acid [20:5(n-3)] and hexadecanoic acid (16:0), which ranged in relative percentage from 67–90% and 10–29%, respectively, in these seven organisms. Triglyceride-associated fatty acids were found to be similar. Phospholipid fatty acid composition was more variable. The principal phospholipid fatty acids, 16:0 (25–32%) and a compound tentatively identified as docosapentaenoic acid [22:5(n-3)] (26–35%), were found along with a number of C18 and C20 fatty acids. All organisms contained two sterols as free sterols. These were tentatively identified as 24-ethylcholesta-5,22E-dien-3b-ol (stigmasterol; 70–95%) and 24-methylcholesta-5,22E-dien-3b-ol (brassicasterol; 5–30%).  相似文献   

18.
19.
Irina Trifonova 《Hydrobiologia》1993,249(1-3):93-100
Seasonal succession of phytoplankton biomass, its diversity and its photosynthetic activity in two highly eutrophic lakes have been compared. In order to test the intermediate disturbance hypothesis, the lakes have been chosen with almost the same level of trophy but different conditions of stratification, through two ice-free periods of open water with different weather conditions.High phytoplankton diversity throughout the period of investigation was characteristic for the shallower Lake Lobardzu. The number of species here was usually more than 30 and the Shannon diversity changed from 1.2 to 4.2. Owing to the frequent external disturbances, periods characterized by autogenic succession with establishing dominance and declining diversity alternated with periods of biomass reduction and rises of diversity and photosynthetic activity. In the warmer summer of 1983, with more intense warming of bottom layers and predominance of blue-greens, phytoplankton biomass was higher and diversity lower than in the cold summer of 1982.In stratified Lake Rudusku, phytoplankton diversity and number of species were usually much lower. During the long summer stratification up to three-four dominant species of blue-greens and dinoflagellates become established and competitive exclusion leading to low diversity advanced. Some changes in biomass and diversity, were caused by zooplankton activity.  相似文献   

20.
V. Ilmavirta 《Hydrobiologia》1982,86(1-2):11-20
The studies on lake phytoplankton in Finland are reviewed and the major aspects of the phytoplankton dynamics are discussed. Special attention has been paid to the factors limiting productivity and species succession in different communities. After the early mainly taxonomical and floristic publications on phytoplankton at the end of last century, phytoplankton studies in lakes have proceeded along two different lines: 1) the species composition of communities and taxonomy, and 2) their production ecology or dynamics. Recently, both approaches have been combined, resulting in some profound ecological studies. In many lakes, phosphorus has been shown to be a limiting factor for phytoplankton productivity. However, it has also been shown that the irradiance and water temperature may effectively regulate the seasonal trend of phytoplankton productivity. This is the case especially in polyhumic forest lakes, where allochthonous material seems to play a major role also in primary production ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号