首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Schmiedel  E. Schnepf 《Planta》1980,147(5):405-413
In the caulonema tip cells of Funaria hygrometrica, chloroplasts, mitochondria, and dictyosomes have differences in structure which are determined by cell polarity. In contrast to the slowly growing chloronema tip cells the apical cell of the caulonema contains a tip body. Colchicine stops tip growth; it causes the formation of subapical cell protrusions, redistribution of the plastids, and a loss of their polar differentiation. Cytochalasin B inhibits growth and affects the position of cell organelles. After treatment with ionophore A23 187, growth is slower and shorter and wider cells are formed. D2O causes a transient reversion of organelle distribution but premitotic nuclei are not dislocated. In some tip cells the reversion of polarity persists; they continue to grow with a new tip at their base. During centrifugation, colchicine has only a slight influence on the stability of organelle anchorage. The former polar organization of most cells is restored within a few hours after centrifugation, and the cells resume normal growth. In premitotic cells the nucleus and other organelles cannot be retransported, they often continue to grow with reversed polarity. Colchicine retards the redistribution of organelles generally and increases the number of cells that form a basal outgrowth. The interrelationship between the peripheral cytoplasm and the nucleus and the role of microtubules in maintaining and reestablishing cell polarity are discussed.Abbreviations DMSO dimethylsulfoxide - CB cytochalasin B Dedicated to Prof. Dr. A. Pirson on the occasion of his 70. birthday  相似文献   

2.
以甜菜无融合生殖单体附加系M14(Beta vulgaris, 2n=18+1)为实验材料, 利用电子显微镜技术对成熟胚囊及其超微结构进行研究。结果表明: M14成熟胚囊包括1个卵细胞、2个退化的助细胞、1个具有次生核的中央细胞和3-6个反足细胞。其卵细胞具有3种不同的形态: (1)极性正常的卵细胞, 细胞核位于合点端, 细胞质含有大量核糖体、线粒体、内质网等细胞器; (2)细胞核位于细胞中央; (3)细胞核位于珠孔端, 且后2种形态细胞器的种类与数量少。大多数胚囊中的2个助细胞在开花前已退化。中央细胞的次生核位于反足细胞附近; 未经受精自发分裂前的卵细胞与中央细胞的细胞核大、核仁明显, 细胞器的种类与数量多, 呈现旺盛代谢活动特征, 成为二倍体孢子无融合生殖过程中, 卵细胞与次生核自发分裂的细胞学标志。  相似文献   

3.
Four apical components were used as markers for the apical end of the cell in studies centering on cell polarity in the early blastula stage of sea urchin embryos and in aggregates of cleavage stage cells. Cells were observed to maintain their polarity for several hours if dissociated and cultured in suspension. Orientation of cells in aggregates initially is random; however, within 3 hr the cells have reoriented so that their apical-basal axis corresponds to the correct inside-outside position in the aggregate. This reorientation occurs before formation of a basal lamina or a new hyalin layer in the aggregate, and appears to take place by a rotation or other movement of individual cells. The polarity within each cell is maintained during reorientation. An apical surface antigen is colocalized with concentrations of filamentous actin. Treatment of isolated cells with cytochalasin B causes the antigen to lose its apical position and eventually become distributed around the outside of the cell. Microtubules are visible radiating from two foci closely associated with the nucleus in untreated cells. Treatment of isolated cells with nocodazole leaves the apical cell surface marker and its associated actin undisturbed, but causes the nucleus to lose its apical position. Cytochalasin B and colchicine both prevent reorientation of cells in aggregates. Thus polarity appears to be a constant for the cells, and their reorientation in aggregates occurs prior to the polarized release of extraembryonic matrix and basal lamina.  相似文献   

4.
Locomoting cells are characterized by a pronounced external and internal anterior-posterior polarity. One of the events associated with cell polarization at the onset of locomotion is a shift of the centrosome, or MTOC, ahead of the nucleus. This position is believed to be of strategic importance for directional cell movement and cell polarity. We have used BSC-1 cells at the edge of an in vitro wound to clarify the causal relationship between MTOC position and the initiation of cell polarization. We find that pronounced cell polarization (the extension of a lamellipod) can take place in the absence of MTOC repositioning or microtubules. Conversely, MTOCs will reposition even after lamellar extension and cell polarization have occurred. Repositioning requires microtubules that extend to the cell periphery and is independent of selective detyrosination of microtubules extending towards the cell front. Significantly, MTOCs maintain, or at least attempt to maintain, a position at the cell's centroid. This is most clearly demonstrated in wounded monolayers of enucleated cells where the MTOC closely follows the centroid position. We suggest that the primary response to the would is the biased extension of a lamellipod, which can occur in the absence of microtubules and MTOC repositioning. Lamellipod extension leads to a shift of the cell's centroid towards the wound. The MTOC, in an attempt to maintain a position near the cell center, will follow. This will automatically put the MTOC ahead of the nucleus in the vast majority of cells. The nucleus as a reference for MTOC position may not be as meaningful as previously thought.  相似文献   

5.
In murine colonic epithelial cells, cell-coat glycoproteins are transported to the cell surface in vesicles that originate at the Golgi apparatus. To determine the role of microtubules in the movement of these vesicles the antimicrotubule agent colchicine was injected into mice at several time intervals prior to sacrifice. In the mice that were treated with colchicine for 4.5 h it was observed that the polarity of the cells was disturbed. The Golgi apparatus and nucleus often appeared interchanged in their positions. The glycoprotein-containing vesicles, normally located apically, were sparse in that location, but abundant near the lateral plasma membranes of the cells at the level of the nucleus and Golgi apparatus. Straining by the periodic acid-chromic acid-silver methenamine technique for glycoproteins clearly revealed the reduction of vesicles apically and accumulation of vesicles laterally. The mechanism responsible for the movement of the vesicles to this location is unclear. It is suggested that the accumulation of vesicles in the lateral region may reflect some hindrance in the fusion of the vesicles with the lateral cell membranes.  相似文献   

6.
以甜菜无融合生殖单体附加系M14(Betavulgaris,2n=18+1)为实验材料,利用电子显微镜技术对成熟胚囊及其超微结构进行研究。结果表明:M14成熟胚囊包括1个卵细胞、2个退化的助细胞、1个具有次生核的中央细胞和3-6个反足细胞。其卵细胞具有3种不同的形态:(1)极性正常的卵细胞,细胞核位于合点端,细胞质含有大量核糖体、线粒体、内质网等细胞器;(2)细胞核位于细胞中央;(3)细胞核位于珠孔端,且后2种形态细胞器的种类与数量少。大多数胚囊中的2个助细胞在开花前已退化。中央细胞的次生核位于反足细胞附近;未经受精自发分裂前的卵细胞与中央细胞的细胞核大、核仁明显,细胞器的种类与数量多,呈现旺盛代谢活动特征,成为二倍体孢子无融合生殖过程中,卵细胞与次生核自发分裂的细胞学标志。  相似文献   

7.
Nucleus movement, positioning, and orientation is precisely specified and actively regulated within cells, and it plays a critical role in many cellular and developmental processes. Mutation of proteins that regulate the nucleus anchoring and movement lead to diverse pathologies, laminopathies in particular, suggesting that the nucleus correct positioning and movement is essential for proper cellular function. In motile cells that polarize toward the direction of migration, the nucleus undergoes controlled rotation promoting the alignment of the nucleus with the axis of migration. Such spatial organization of the cell appears to be optimal for the cell migration. Nuclear reorientation requires the cytoskeleton to be anchored to the nuclear envelope, which exerts pulling or pushing torque on the nucleus. Here we discuss the possible molecular mechanisms regulating the nuclear rotation and reorientation and the significance of this type of nuclear movement for cell migration.  相似文献   

8.
Nucleus movement, positioning, and orientation is precisely specified and actively regulated within cells, and it plays a critical role in many cellular and developmental processes. Mutation of proteins that regulate the nucleus anchoring and movement lead to diverse pathologies, laminopathies in particular, suggesting that the nucleus correct positioning and movement is essential for proper cellular function. In motile cells that polarize toward the direction of migration, the nucleus undergoes controlled rotation promoting the alignment of the nucleus with the axis of migration. Such spatial organization of the cell appears to be optimal for the cell migration. Nuclear reorientation requires the cytoskeleton to be anchored to the nuclear envelope, which exerts pulling or pushing torque on the nucleus. Here we discuss the possible molecular mechanisms regulating the nuclear rotation and reorientation and the significance of this type of nuclear movement for cell migration.  相似文献   

9.
Summary The fine structure of granulosa lutein cells from three crabeater seals, Lobodon carcinophagus, and two leopard seals, Hydrurga leptonyx, has been studied from early through mid-pregnancy. Analysis of the arrangement and modifications of the cytoplasmic organelles and inclusions has revealed three types of lutein cells throughout the corpus. Type I cell typically possesses a central nucleus and cytoplasm containing very large amounts of smooth and/or fenestrated endoplasmic cisternae which frequently extend from the juxta-nuclear to the periphery of the cell. Type II cell contains a central or eccentric nucleus, moderate amounts of peripheral, smooth and fenestrated cisternae which often form large and concentric membranous whorls, numerous mitochondria and small lipid droplets. Frequently these cells show polarity in the arrangement of the cytoplasmic organelles and inclusions. Type III cell contains predominant large lipid droplets, many mitochondria, and small amounts of smooth and fenestrated cisternae. In light microscopy the type I cell is evenly granular, while the type III cell is highly vacuolated. Type II cells have both granular and vacuolated conditions. Ultrastructural features of type I and II cells suggest that they probably secrete most of the steroids, whereas the primary role of the type III cells appear to be lipid storage.This research was supported by National Science Foundation, Grant No. 1325 from the Office of Antarctic Biology.  相似文献   

10.
Shindo A  Yamamoto TS  Ueno N 《PloS one》2008,3(2):e1600
Cell polarity is an essential feature of animal cells contributing to morphogenesis. During Xenopus gastrulation, it is known that chordamesoderm cells are polarized and intercalate each other allowing anterior-posterior elongation of the embryo proper by convergent extension (CE). Although it is well known that the cellular protrusions at both ends of polarized cells exert tractive force for intercalation and that PCP pathway is known to be essential for the cell polarity, little is known about what triggers the cell polarization and what the polarization causes to control intracellular events enabling the intercalation that leads to the CE. In our research, we used EB3 (end-binding 3), a member of +TIPs that bind to the plus end of microtubule (MT), to visualize the intracellular polarity of chordamesoderm cells during CE to investigate the trigger of the establishment of cell polarity. We found that EB3 movement is polarized in chordamesoderm cells and that the notochord-somite tissue boundary plays an essential role in generating the cell polarity. This polarity was generated before the change of cell morphology and the polarized movement of EB3 in chordamesoderm cells was also observed near the boundary between the chordamesoderm tissue and na?ve ectoderm tissue or lateral mesoderm tissues induced by a low concentration of nodal mRNA. These suggest that definitive tissue separation established by the distinct levels of nodal signaling is essential for the chordamesodermal cells to acquire mediolateral cell polarity.  相似文献   

11.
Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front–rear polarity axis for directional movement. Although front–rear polarity can be easily identified in in vitro conditions, its assessment in vivo by live‐imaging is challenging due to tissue complexity and lack of reliable markers. Here, we describe a novel and unique double fluorescent reporter mouse line to study front–rear cell polarity in living tissues, called GNrep. This mouse line simultaneously labels Golgi complexes and nuclei allowing the assignment of a nucleus‐to‐Golgi axis to each cell, which functions as a readout for cell front–rear polarity. As a proof‐of‐principle, we validated the efficiency of the GNrep line using an endothelial‐specific Cre mouse line. We show that the GNrep labels the nucleus and the Golgi apparatus of endothelial cells with very high efficiency and high specificity. Importantly, the features of fluorescent intensity and localization for both mCherry and eGFP fluorescent intensity and localization allow automated segmentation and assignment of polarity vectors in complex tissues, making GNrep a great tool to study cell behavior in large‐scale automated analyses. Altogether, the GNrep mouse line, in combination with different Cre recombinase lines, is a novel and unique tool to study of front–rear polarity in mice, both in fixed tissues or in intravital live imaging. This new line will be instrumental to understand cell migration and polarity in development, homeostasis, and disease.  相似文献   

12.
Mating yeast cells remove their cell walls and fuse their plasma membranes in a spatially restricted cell contact region. Cell wall removal is dependent on Fus2p, an amphiphysin-associated Rho-GEF homolog. As mating cells polarize, Fus2p-GFP localizes to the tip of the mating projection, where cell fusion will occur, and to cytoplasmic puncta, which show rapid movement toward the tip. Movement requires polymerized actin, whereas tip localization is dependent on both actin and a membrane protein, Fus1p. Here, we show that Fus2p-GFP movement is specifically dependent on Myo2p, a type V myosin, and not on Myo4p, another type V myosin, or Myo3p and Myo5p, type I myosins. Fus2p-GFP tip localization and actin polarization in shmoos are also dependent on Myo2p. A temperature-sensitive tropomyosin mutation and Myo2p alleles that specifically disrupt vesicle binding caused rapid loss of actin patch organization, indicating that transport is required to maintain actin polarity. Mutant shmoos lost actin polarity more rapidly than mitotic cells, suggesting that the maintenance of cell polarity in shmoos is more sensitive to perturbation. The different velocities, differential sensitivity to mutation and lack of colocalization suggest that Fus2p and Sec4p, another Myo2p cargo associated with exocytotic vesicles, reside predominantly on different cellular organelles.  相似文献   

13.
To understand the mechanism of cell migration, we cultured fibroblasts on micropatterned tracks to induce persistent migration with a highly elongated morphology and well-defined polarity, which allows microfluidic pharmacological manipulations of regional functions. The function of myosin II was probed by applying inhibitors either globally or locally. Of interest, although global inhibition of myosin II inhibited tail retraction and caused dramatic elongation of the posterior region, localized inhibition of the cell body inhibited nuclear translocation and caused elongation of the anterior region. In addition, local application of cytochalasin D at the tip inhibited frontal extension without inhibiting forward movement of the cell nucleus, whereas local treatment posterior to the nucleus caused reversal of nuclear movement. Imaging of cortical dynamics indicated that the region around the nucleus is a distinct compression zone where activities of anterior and posterior regions converge. These observations suggest a three-component model of cell migration in which a contractile middle section is responsible for the movement of a bulky cell body and the detachment/retraction of a resistive tail, thereby allowing these regions to undergo coordinated movement with a moving anterior region that carries little load.  相似文献   

14.
Positioning of the microtubule-organizing center (MTOC) in Dictyostelium discoideum was found to be genetically regulated. We examined the wild-type strain NC-4 cells independently maintained in different laboratories, freshly recovered cells from spores stocked for over 20 years, the temperature-sensitive growth mutant HU49 isolated from NC-4, as well as strain V-12 which is the opposite mating-type to NC-4. During aggregation on nonnutrient agar plates, all these strains showed similar cell polarity, as defined by the alignment of the nucleus ahead of the MTOC. By contrast, in Ax2 and Ax3, axenic strains carrying axenic mutations on linkage groups II and III, the MTOC was usually positioned ahead of the nucleus. Cells containing axenic linkage group II but not III positioned the MTOC ahead of the nucleus. Conversely cell polarity of strains including axenic linkage group III but not II was similar to that of wild-type cells. Thus axenic linkage group II, probably axeC or other linked gene(s) not yet identified, is responsible for the location of the MTOC anterior to the nucleus during aggregation. The anterior positioning of the MTOCs was prevented by growth on bacteria in cells carrying both axenic linkage groups, but not in those carrying only axenic linkage group II.  相似文献   

15.
For plant viruses to systemically infect a host requires the active participation of viral-encoded movement proteins. It has been suggested that BL1 and BR1, the two movement proteins encoded by the bipartite geminivirus squash leaf curl virus (SqLCV), act cooperatively to facilitate movement of the viral single-stranded DNA genome from its site of replication in the nucleus to the cell periphery and across the cell wall to adjacent uninfected cells. To better understand the mechanism of SqLCV movement, we investigated the ability of BL1 and BR1 to interact specifically with each other using transient expression assays in insect cells and Nicotiana tabacum cv Xanthi protoplasts. In this study, we showed that when individually expressed, BL1 is localized to the periphery and BR1 to nuclei in both cell systems. However, when coexpressed in either cell type, BL1 relocalized BR1 from the nucleus to the cell periphery. This interaction was found to be specific for BL1 and BR1, because BL1 did not relocalize the SqLCV nuclear-localized AL2 or coat protein. In addition, mutations in BL1 known to affect viral infectivity and pathogenicity were found to be defective in either their subcellular localization or their ability to relocalize BR1, and, thus, identified regions of BL1 required for correct subcellular targeting or interaction with BR1. These findings extend our model for SqLCV movement, demonstrating that BL1 and BR1 appear to interact directly with each other to facilitate movement cooperatively and that BL1 is responsible for providing directionality to movement of the viral genome.  相似文献   

16.
In euechinoid sea urchin embryos, a subset of epithelial cells in the wall of the blastula become pulsatile, elongate, lose connections with their neighboring cells, and move into the blastocoel to form the primary mesenchyme cells. The Golgi apparatus and microtubule organizing center (MTOC) are located at the apical end of these epithelial cells. We show that as primary mesenchyme cells begin to move into the blastocoel, the Golgi apparatus and MTOC move to a new position adjacent to the apical side of the nucleus. They do not move to a position between the nucleus and the leading (i.e., basal) end of the cell as they do in cultured fibroblasts undergoing directed migration. In addition, we have inhibited the movement of membranous vesicles to the cell surface by incubating embryos in the ionophore monensin. We have used antibodies to msp130, a primary mesenchyme cell surface-specific glycoprotein, to demonstrate that monensin inhibits the movement of msp130-containing vesicles to the cell surface. Despite the inhibition of membrane shuttling by monensin, primary mesenchyme cells ingress on schedule and display normal cell-shape changes. We draw two conclusions from our data. First, the cellular elongation that characterizes ingression is not due to the local insertion of membrane at the leading (basal) end of the cell. Second, ingression does not depend upon establishment of the same cell polarity required for fibroblasts to carry out directed cell migration.  相似文献   

17.
In Myxococcus xanthus morphogenetic cell movements constitute the basis for the formation of spreading vegetative colonies and fruiting bodies in starving cells. M. xanthus cells move by gliding and gliding motility depends on two polarly localized engines, type IV pili pull cells forward, and slime extruding nozzle-like structures appear to push cells forward. The motility behaviour of cells provides evidence that the two engines are localized to opposite poles and that they undergo polarity switching. Several proteins involved in regulating polarity switching have been identified. The cell surface-associated C-signal induces the directed movement of cells into nascent fruiting bodies. Recently, the molecular nature of the C-signal molecule was elucidated and the motility parameters regulated by the C-signal were identified. From the effect of the C-signal on cell behaviour it appears that the C-signal inhibits polarity switching of the two motility engines. This establishes a connection between cell polarity, signalling by an intercellular signal and morphogenetic cell movements during fruiting body formation.  相似文献   

18.
八角莲大孢子发生和雌配子体形成   总被引:4,自引:2,他引:2  
黄衡宇  马绍宾 《植物研究》2004,24(3):309-315
首次报道了八角莲(Dysosma versipellis (Hance)M.cheng)大孢子发生和雌配子体形成的过程.结果:双珠被,多为厚珠心胚珠,少数为假厚珠心,胚珠多为横生,少数为弯生;边缘胎座,子房一室,多胚珠,珠孔由两层珠被共同形成,呈"之"字形;多为单孢原,位于珠心表皮下:偶见2~3个孢原细胞位于珠心表皮下;大孢子母细胞有两种发生方式;直线形大孢子四分体,合点端的大孢子发育为功能大孢子,蓼型胚囊;成熟胚囊中,二个极核在受精前合并为次生核;三个反足细胞不发达,较早退化;"品"字形卵器极性明显,其中卵细胞与助细胞极性相反;助细胞发达,其丝状器在不同发育时期形态及大小不同,且具吸器功能.  相似文献   

19.
Hpt-13 is a Chinese hamster cell line deficient in hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) and sensitive to a medium containing 10(-4) M hypoxanthine, 5.5 X 10(-6) M aminopterin, and 10(-4) M thymidine. In this cell line there is a high incidence of cells resistant to this selective medium after an incubation with either ethyl methane sulfonate or adenovirus type 2 complete virions or their incomplete particles. The rate of reversion in the presence of these agents was 34-fold higher with ethyl methane sulfonate and 2.5- to 5.6-fold higher with adenovirus particles than the spontaneous rate of reversion. The revertant phenotypes were stable for many generations without selective pressure. All of the revertants tested recovered the hypoxanthine phosphoribosyltransferase activity. Most of them, however, carried an enzyme of lower activity and faster electrophoretic mobility than that of the wild type. The preferential reversion to this type of enzyme was observed among spontaneous revertants as well as among those induced by mutagenesis with ethyl methane sulfonate or exposure to viral particles. Our results suggest that adenovirus particles and ethyl methane sulfonate induce mutations at the hpt locus of Hpt-13 cells through similar mechanisms.  相似文献   

20.
Dictyostelium amoebae can migrate in several different modes. We tested for correlations of the direction of cell locomotion with the relative positions of the nucleus and microtubule-organizing center (MTOC). Five cases were analyzed on electron micrographs with a microcomputer. Each mode of movement showed characteristic locations of the MTOC relative to the nucleus; however, they differed in the various cases. In randomly migrating interphase amoebae, the number of cells with the MTOC located behind the nucleus was twice as great as those with the MTOC located ahead of the nucleus. During chemotactic migration toward folic acid, cells with the MTOC behind the nucleus were more numerous, with a concomitant reduction of anterior MTOCs. When amoebae aggregated on agar plates, a posterior location of the MTOC was most strikingly favored, whereas in cells aggregating under submerged conditions, the MTOC was indifferently anterior or posterior to the nucleus. (It may be significant that EDTA-resistant cell-cell adhesion was fully expressed in the former cells, but weaker in the latter.) Finally, in the case of chemotactically migrating cells from dissociated pseudoplasmodia, which adhere by means of other molecules, the MTOC was consistently ahead of the nucleus. Thus the MTOC shows no necessary preferential position anterior or posterior to the nucleus; its position, rather, correlates with the type of migration and perhaps with the nature of cell-cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号