首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The P2X7 nucleotide receptor is an ATP-gated ion channel expressed widely in cells of hematopoietic origin. Our purpose was to explore the involvement of the P2X7 receptor in bone development and remodeling by characterizing the phenotype of mice genetically modified to disrupt the P2X7 receptor [knockout (KO)]. Femoral length did not differ between KO and wild-type (WT) littermates at 2 or 9 months of age, indicating that the P2X7 receptor does not regulate longitudinal bone growth. However, KO mice displayed significant reduction in total and cortical bone content and periosteal circumference in femurs, and reduced periosteal bone formation and increased trabecular bone resorption in tibias. Patch clamp recording confirmed expression of functional P2X7 receptors in osteoclasts from WT but not KO mice. Osteoclasts were present in vivo and formed in cultures of bone marrow from KO mice, indicating that this receptor is not essential for fusion of osteoclast precursors. Functional P2X7 receptors were also found in osteoblasts from WT but not KO mice, suggesting a direct role in bone formation. P2X7 receptor KO mice demonstrate a unique skeletal phenotype that involves deficient periosteal bone formation together with excessive trabecular bone resorption. Thus, the P2X7 receptor represents a novel therapeutic target for the management of skeletal disorders such as osteoporosis.  相似文献   

2.
ATP, signaling through P2 receptors, is one of the most important extracellular regulatory molecules in the skeleton. P2 receptors are divided into two subclasses, P2Y which are G-protein coupled and P2X which are ligand-gated ion channels. There is molecular and functional evidence for widespread expression of both subclasses of receptors by bone cells. Co-activation of P2Y and PTH1 receptors on osteoblasts, leads to synergistic expression of osteoblastic genes, providing a mechanism for integrating local and systemic regulatory signals in bone. Activation of P2Y1 receptors on osteoblasts enhances expression of RANKL leading indirectly to an increase in osteoclast formation and resorption. Expression of P2X7 inducible pores on osteoclast precursor cell membranes allows fusion to form multinucleated osteoclasts and blockade of this receptor inhibits resorption. Bone cells release nucleotides into the extracellular environment to provide highly localized and transient signals that regulate bone formation and bone resorption.  相似文献   

3.
Abundant evidence indicted that P2X7 receptor show a essential role in human health and some human diseases including hypertension, atherosclerosis, pulmonary inflammation, tuberculosis infection, psychiatric disorders, and cancer. P2X7 receptor also has an important role in some central nervous system diseases such as neurodegenerative disorders. Recently, more research suggested that P2X7 receptor also plays a crucial role in bone and joint diseases. But the effect of P2X7 receptor on skeletal and joint diseases has not been systematically reviewed. In this article, the role of P2X7 receptor in skeletal and joint diseases is elaborated. The activation of P2X7 receptor can ameliorate osteoporosis by inducing a fine balance between osteoclastic resorption and osteoblastic bone formation. The activation of P2X7 receptor can relieve the stress fracture injury by increasing the response to mechanical loading and inducing osteogenesis. But the activation of P2X7 receptor mediates the cell growth and cell proliferation in bone cancer. In addition, the activation of P2X7 receptor can aggravate the process of some joint diseases such as osteoarthritis, rheumatoid arthritis, and acute gouty arthritis. The inhibition of P2X7 receptor can alleviate the pathological process of joint disease to some extent. In conclusion, P2X7 receptor may be a critical regulator and therapeutic target for bone and joint diseases.  相似文献   

4.
Extracellular nucleotides, released in response to mechanical or inflammatory stimuli, signal through P2 receptors in many cell types, including osteoblasts. P2X7 receptors are ATP-gated cation channels that can induce formation of large membrane pores. Disruption of the gene encoding the P2X7 receptor leads to decreased periosteal bone formation and insensitivity of the skeleton to mechanical stimulation. Our purpose was to investigate signaling pathways coupled to P2X7 activation in osteoblasts. Live cell imaging showed that ATP or 2 ',3 '-O-(4-benzoylbenzoyl)-ATP (BzATP), but not UTP, UDP, or 2-methylthio-ADP, induced dynamic membrane blebbing in calvarial osteoblasts. Blebbing was observed in calvarial cells from wildtype but not P2X7 knock-out mice. P2X7 receptors coupled to activation of phospholipase D and A2, inhibition of which suppressed BzATP-induced blebbing. Activation of these phospholipases leads to production of lysophosphatidic acid (LPA). LPA caused dynamic blebbing in osteoblasts from both wild-type and P2X7 knock-out mice, similar to that induced by BzATP in wildtype cells. However, LPA-induced blebbing was more rapid in onset and was not affected by inhibition of phospholipase D or A2. Blockade or desensitization of LPA receptors suppressed blebbing in response to LPA and BzATP, without affecting P2X7-stimulated pore formation. Thus, LPA functions downstream of P2X7 receptors to induce membrane blebbing. Furthermore, inhibition of Rho-associated kinase abolished blebbing induced by both BzATP and LPA. In summary, we propose a novel signaling axis that links P2X7 receptors through phospholipases to production of LPA and activation of Rho-associated kinase. This pathway may contribute to P2X7-stimulated osteogenesis during skeletal development and mechanotransduction.  相似文献   

5.
ATP (adenosine 5'-triphosphate) is one of the most important extracellular regulatory molecules in the skeleton. Extracellular ATP and other nucleotides signal through P2 receptors, a diverse group of receptors that are widely expressed by bone cells. P2 receptors are divided into two subclasses; P2Y G-protein coupled receptors, and P2X ligand-gated ion channels, and there is functional and molecular evidence for the expression of these receptors on both osteoblasts and osteoclasts. In order to activate P2 receptors, nucleotides must be released into the bone microenvironment. ATP is present in mmol concentrations in cells and can be released by cell lysis, cell trauma or physiological mechanisms, possibly through ABC transporters. Following co-activation of P2Y and PTH1 receptors on osteoblasts, there are multiple levels of interaction in downstream signalling that eventually lead to synergistic expression of osteoblastic genes, providing a mechanism for integrating local and systemic regulatory signals in bone particularly with regard to the activation of bone remodelling. Activation of P2Y1 receptors on osteoblasts enhances expression of RANKL leading indirectly to an increase in osteoclast formation and resorption. Expression of P2X7 inducible pores on osteoclast precursor cell membranes allows fusion to form multinucleated osteoclasts and blockade of this receptor inhibits resorption. The capacity of extracellular nucleotides to provide a highly localized and transient signal coupled with the profound effects of P2 receptor activation on osteoblastic and osteoclastic cells and the synergistic interactions with systemic hormones, indicate that nucleotides have a strong influence over bone tissue growth and regeneration.  相似文献   

6.
The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other mechanism involves the passage of a small messenger through gap junctions to the cytoplasm of the neighboring cells, inducing depolarization of the plasma membrane with subsequent opening of membrane bound voltage-operated calcium channels. Next, we found that osteoblasts can propagate these signals to osteoclasts as well. We demonstrated that paracrine action of ATP was responsible for the wave propagation, but now the purinergic P2X7 receptor was involved. Thus, the studies demonstrate that calcium signals can be propagated not only among osteoblasts, but also between osteoblasts and osteoclasts in response to mechanical stimulation. Thus, intercellular calcium signaling can be a mechanism by which mechanical stimuli on bone are translated into biological signals in bone cells, and propagated through the network of cells in bone. Further, the observations offer new pharmacological targets for the modulation of bone turnover, and perhaps even for the treatment of bone metabolic disorders.  相似文献   

7.
Mechanical instability of bone implants stimulate osteoclast differentiation and peri-implant bone loss, leading to prosthetic loosening. It is unclear which cells at the periprosthetic interface transduce mechanical signals into a biochemical response, and subsequently facilitate bone loss. We hypothesized that mechanical overloading of hematopoietic bone marrow progenitor cells, which are located near to the inserted bone implants, stimulates the release of osteoclast-inducing soluble factors. Using a novel in vitro model to apply mechanical overloading, we found that hematopoietic progenitor cells released adenosine triphosphate (ATP) after only 2 min of mechanical loading. The released ATP interacts with its specific receptor P2X7 to stimulate the release of unknown soluble factors that inhibit (physiological loading) or promote (supraphysiological loading) the differentiation of multinucleated osteoclasts derived from bone marrow cultures. Inhibition of ATP-receptor P2X7 by Brilliant Blue G completely abolished the overloading-induced stimulation of osteoclast formation. Likewise, stimulation of P2X7 receptor on hematopoietic cells by BzATP enhanced the release of osteoclastogenesis-stimulating signaling molecules to a similar extent as supraphysiological loading. Supraphysiological loading affected neither gene expression of inflammatory markers involved in aseptic implant loosening (e.g., interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α, and PTGES2) nor expression of the osteoclast modulators receptor activator of nuclear factor κ-Β ligand and osteoprotegerin. Our findings suggest that murine hematopoietic progenitor cells are a potential key player in local mechanical loading-induced bone implant loosening via the ATP/P2X7-axis. Our approach identifies potential therapeutic targets to prevent prosthetic loosening.  相似文献   

8.
Bone remodeling is regulated by local factors and modulated by mechanical stimuli. Mechanical stimulation can cause release of ATP, an agent that stimulates osteoclastic resorption at low concentrations and inhibits at high concentrations. We examined whether osteoclasts express P2X(7) receptors, which are activated by high concentrations of ATP and can behave as ion channels or cause the formation of membrane pores. Rabbit osteoclasts were studied using patch clamp techniques. Successive or prolonged applications of 2'- & 3'-O-(4-benzoylbenzoyl)-ATP (BzATP, a relatively potent P2X(7) agonist) or high concentrations of ATP caused the development of a slowly deactivating inward current. The underlying channel was permeable only to small cations, ruling out pore formation. Divalent cations reduced current magnitude, consistent with the presence of P2X(7) receptors, a finding confirmed in rat osteoclasts by immunocytochemistry. Successive applications of BzATP also elicited [Ca(2+)](i) elevations that required extracellular Ca(2+). The BzATP-induced current and the rise of [Ca(2+)](i) were temporally associated, and both were inhibited by PPADS, a P2X(7) antagonist. This study demonstrates that high concentrations of ATP activate P2X(7) receptors and provides the first functional evidence for an extracellular ligand-gated Ca(2+) influx pathway in osteoclasts. ATP released in response to mechanical stimuli may act through P2X(7) receptors to inhibit osteoclastic resorption.  相似文献   

9.
Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca(2+)/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca(2+)-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca(2+) concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca(2+) and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation.  相似文献   

10.
P2X receptors function as ATP-gated cation channels. The P2X(7) receptor subtype is distinguished from other P2X family members by a very low affinity for extracellular ATP (millimolar EC50) and its ability to trigger induction of nonselective pores on repeated or prolonged stimulation. Previous studies have indicated that certain P2X(7) receptor-positive cell types, such as human blood monocytes and murine thymocytes, lack this pore-forming response. In the present study we compared pore formation in response to P2X(7) receptor activation in human blood monocytes with that in macrophages derived from these monocytes by in vitro tissue culture. ATP induced nonselective pores in macrophages but not in freshly isolated monocytes when both cell types were identically stimulated in standard NaCl-based salines. However, ion substitution studies revealed that replacement of extracellular Na+ and Cl- with K+ and nonhalide anions strongly facilitated ATP-dependent pore formation in monocytes. These ionic conditions also resulted in increased agonist affinity, such that 30-100 microM ATP was sufficient for activation of nonselective pores by P2X(7) receptors. Comparison of P2X(7) receptor expression in blood monocytes with that in macrophages indicated no differences in steady-state receptor mRNA levels but significant increases (up to 10-fold) in the amount of immunoreactive P2X(7) receptor protein at the cell surface of macrophages. Thus ability of ATP to activate nonselective pores in cells that natively express P2X(7) receptors can be modulated by receptor subunit density at the cell surface and ambient levels of extracellular Na+ and Cl-. These mechanisms may prevent adventitious P2X(7) receptor activation in monocytes until these proinflammatory leukocytes migrate to extravascular sites of tissue damage.  相似文献   

11.
Bone osteoblasts and osteocytes express large amounts of connexin (Cx) 43, the component of gap junctions and hemichannels. Previous studies have shown that these channels play important roles in regulating biological functions in response to mechanical loading. Here, we characterized the distribution of mRNA and protein of Cx43 in mechanical loading model of tooth movement. The locations of bone formation and resorption have been well defined in this model, which provides unique experimental systems for better understanding of potential roles of Cx43 in bone formation and remodeling under mechanical stimulation. We found that mechanical loading increased Cx43 mRNA expression in osteoblasts and bone lining cells, but not in osteocytes, at both formation and resorption sites. Cx43 protein, however, increased in both osteoblasts and osteocytes in response to loading. Interestingly, the upregulation of Cx43 protein by loading was even more pronounced in osteocytes compared to other bone cells, with an appearance of punctate staining on the cell body and dendritic process. Cx45 was reported to be expressed in several bone cell lines, but here we did not detect the Cx45 protein in the alveolar bone cells. These results further suggest the potential involvement of Cx43-forming gap junctions and hemichannels in the process of mechanically induced bone formation and resorption.  相似文献   

12.
Bone osteoblasts and osteocytes express large amounts of connexin (Cx) 43, the component of gap junctions and hemichannels. Previous studies have shown that these channels play important roles in regulating biological functions in response to mechanical loading. Here, we characterized the distribution of mRNA and protein of Cx43 in mechanical loading model of tooth movement. The locations of bone formation and resorption have been well defined in this model, which provides unique experimental systems for better understanding of potential roles of Cx43 in bone formation and remodeling under mechanical stimulation. We found that mechanical loading increased Cx43 mRNA expression in osteoblasts and bone lining cells, but not in osteocytes, at both formation and resorption sites. Cx43 protein, however, increased in both osteoblasts and osteocytes in response to loading. Interestingly, the upregulation of Cx43 protein by loading was even more pronounced in osteocytes compared to other bone cells, with an appearance of punctate staining on the cell body and dendritic process. Cx45 was reported to be expressed in several bone cell lines, but here we did not detect the Cx45 protein in the alveolar bone cells. These results further suggest the potential involvement of Cx43-forming gap junctions and hemichannels in the process of mechanically induced bone formation and resorption.  相似文献   

13.
We previously demonstrated, using osteoblastic MC3T3-E1 cells, that P2Y2 purinergic receptors are involved in osteoblast mechanotransduction. In this study, our objective was to further investigate, using a knockout mouse model, the roles of P2Y2 receptors in bone mechanobiology. We first examined bone structure with micro-CT and measured bone mechanical properties with three point bending experiments in both wild type mice and P2Y2 knockout mice. We found that bones from P2Y2 knockout mice have significantly decreased bone volume, bone thickness, bone stiffness and bone ultimate breaking force at 17 week old age. In order to elucidate the mechanisms by which P2Y2 receptors contribute to bone biology, we examined differentiation and mineralization of bone marrow cells from wild type and P2Y2 knockout mice. We found that P2Y2 receptor deficiency reduces the differentiation and mineralization of bone marrow cells. Next, we compared the response of primary osteoblasts, from both wild type and P2Y2 knockout mice, to ATP and mechanical stimulation (oscillatory fluid flow), and found that osteoblasts from wild type mice have a stronger response, in terms of ERK1/2 phosphorylation, to both ATP and fluid flow, relative to P2Y2 knockout mice. However, we did not detect any difference in ATP release in response to fluid flow between wild type and P2Y2 knock out osteoblasts. Our findings suggest that P2Y2 receptors play important roles in bone marrow cell differentiation and mineralization as well as in bone cell mechanotransduction, leading to an osteopenic phenotype in P2Y2 knockout mice.  相似文献   

14.
P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor channel. Here we show that pore-forming properties of human and rodent P2X7 receptors are sensitive to perturbations of cholesterol levels. Acute depletion of cholesterol with 5 mm methyl-β-cyclodextrin (MCD) caused a substantial increase in the rate of agonist-evoked pore formation, as measured by the uptake of ethidium dye, whereas cholesterol loading inhibited this process. Patch clamp analysis of P2X7 receptor currents carried by Na+ and N-methyl-d-glucamine (NMDG+) showed enhanced activation and current facilitation following cholesterol depletion. This contrasts with the inhibitory effect of methyl-β-cyclodextrin reported for other P2X subtypes. Mutational analysis suggests the involvement of an N-terminal region and a proximal C-terminal region that comprises multiple cholesterol recognition amino acid consensus (CRAC) motifs, in the cholesterol sensitivity of channel gating. These results reveal cholesterol as a negative regulator of P2X7 receptor pore formation, protecting cells from P2X7-mediated cell death.  相似文献   

15.
Nucleotides are released from cells in response to mechanical stimuli and signal in an autocrine/paracrine manner through cell surface P2 receptors. P2rx7-/- mice exhibit diminished appositional growth of long bones and impaired responses to mechanical loading. We find that calvarial sutures are wider in P2rx7-/- mice. Functional P2X7 receptors are expressed on osteoblasts in situ and in vitro. Activation of P2X7 receptors by exogenous nucleotides stimulates expression of osteoblast markers and enhances mineralization in cultures of rat calvarial cells. Moreover, osteogenesis is suppressed in calvarial cell cultures from P2rx7-/- mice compared with the wild type. P2X7 receptors couple to production of the potent lipid mediators lysophosphatidic acid (LPA) and prostaglandin E2. Either an LPA receptor antagonist or cyclooxygenase (COX) inhibitors abolish the stimulatory effects of P2X7 receptor activation on osteogenesis. We conclude that P2X7 receptors enhance osteoblast function through a cell-autonomous mechanism. Furthermore, a novel signaling axis links P2X7 receptors to production of LPA and COX metabolites, which in turn stimulate osteogenesis.  相似文献   

16.
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.  相似文献   

17.
The P2X7 receptor is a frequently studied member of the purinergic receptor family signalling via channel opening and membrane pore formation. Fluorescent imaging is an important molecular method for studying cellular receptor expression and localization. Fusion of receptors to fluorescent proteins might cause major functional changes and requires careful functional evaluation such as has been done for the rat P2X7 receptor. This study examines fusion constructs of the human P2X7 receptor. We assessed surface expression, channel opening with calcium influx, and pore formation using YO-PRO-1 dye uptake in response to BzATP stimulation in transfected cells. We found that tagging at the N-terminal of the human P2X7 receptor with the enhanced green fluorescent protein (eGFP) disturbed channel opening and pore formation despite intact surface expression. A triple hemagglutinin (3HA) fused to the N-terminal also disrupted pore formation but not channel opening showing that even a small tag alters the normal function of the receptor. Together, this suggests that in contrast to what has been observed for the rat P2X7 receptor, the human P2X7 receptor contains N-terminal motifs important for signalling that prevent the construction of a functionally active fusion protein.  相似文献   

18.
The function of P2X(7) receptors (ATP-gated ion channels) in innate immune cells is unclear. In the setting of Toll-like receptor (TLR) stimulation, secondary activation of P2X(7) ion channels has been linked to pro-caspase-1 cleavage and cell death. Here we show that cell death is a surprisingly early triggered event. We show using live-cell imaging that transient (1-4 min) stimulation of mouse macrophages with high extracellular ATP ([ATP]e) triggers delayed (hours) cell death, indexed as DEVDase (caspase-3 and caspase-7) activity. Continuous or transient high [ATP]e did not induce cell death in P2X(7)-deficient (P2X(7)(-/-)) macrophages or neutrophils (in which P2X(7) could not be detected). Blocking sustained Ca(2+) influx, a signature of P2X(7) ligation, was highly protective, whereas no protection was conferred in macrophages lacking caspase-1 or TLR2 and TLR4. Furthermore, pannexin-1 (Panx1) deficiency had no effect on transient ATP-induced delayed cell death or ATP-induced Yo-Pro-1 uptake (an index of large pore pathway formation). Thus, "transient" P2X(7) receptor activation and Ca(2+) overload act as a death trigger for native mouse macrophages independent of Panx1 and pro-inflammatory caspase-1 and TLR signaling.  相似文献   

19.
Extracellular nucleotides, such as ATP, are released from cells and play roles in various physiological and pathological processes through activation of P2 receptors. Here, we show that autocrine signaling through release of ATP and activation of P2X7 receptor influences migration of human lung cancer cells. Release of ATP was induced by stimulation with TGF-β1, which is a potent inducer of cell migration, in human lung cancer H292 cells, but not in noncancerous BEAS-2B cells. Treatment of H292 cells with a specific antagonist of P2X7 receptor resulted in suppression of TGF-β1-induced migration. PC-9 human lung cancer cells released a large amount of ATP under standard cell culture conditions, and P2X7 receptor-dependent dye uptake was observed even in the absence of exogenous ligand, suggesting constitutive activation of P2X7 receptor in this cell line. PC-9 cells showed high motile activity, which was inhibited by treatment with ecto-nucleotidase and P2X7 receptor antagonists, whereas a P2X7 receptor agonist enhanced migration. PC-9 cells also harbor a constitutively active mutation in epidermal growth factor receptor (EGFR). Treatment with EGFR tyrosine kinase inhibitor AG1478 suppressed both cell migration and P2X7 receptor expression in PC-9 cells. Compared to control PC-9 cells, cells treated with P2X7 antagonist exhibited broadened lamellipodia around the cell periphery, while AG1478-treated cells lacked lamellipodia. These results indicate that P2X7-mediated signaling and EGFR signaling may regulate migration of PC-9 cells through distinct mechanisms. We propose that autocrine ATP-P2X7 signaling is involved in migration of human lung cancer cells through regulation of actin cytoskeleton rearrangement.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9411-x) contains supplementary material, which is available to authorized users.  相似文献   

20.
The P2X? receptor is an ATP-gated cation channel expressed by a number of cell types, including osteoblasts. Genetically modified mice with loss of P2X? function exhibit altered bone formation. Moreover, activation of P2X? in vitro stimulates osteoblast differentiation and matrix mineralization, although the underlying mechanisms remain unclear. Because osteogenesis is associated with enhanced cellular metabolism, our goal was to characterize the effects of nucleotides on metabolic acid production (proton efflux) by osteoblasts. The P2X? agonist 2',3'-O-(4-benzoylbenzoyl)ATP (BzATP; 300 μM) induced dynamic membrane blebbing in MC3T3-E1 osteoblast-like cells (consistent with activation of P2X? receptors) but did not induce cell death. Using a Cytosensor microphysiometer, we found that 9-min exposure to BzATP (300 μM) caused a dramatic increase in proton efflux from MC3T3-E1 cells (~2-fold), which was sustained for at least 1 h. In contrast, ATP or UTP (100 μM), which activate P2 receptors other than P2X?, failed to elicit a sustained increase in proton efflux. Specific P2X? receptor antagonists A 438079 and A 740003 inhibited the sustained phase of the BzATP-induced response. Extracellular Ca2? was required during P2X? receptor stimulation for initiation of sustained proton efflux, and removal of extracellular glucose within the sustained phase abolished the elevation elicited by BzATP. In addition, inhibition of phosphatidylinositol 3-kinase blocked the maintenance but not initiation of the sustained phase. Taken together, we conclude that brief activation of P2X? receptors on osteoblast-like cells triggers a dramatic, Ca2?-dependent stimulation of metabolic acid production. This increase in proton efflux is sustained and dependent on glucose and phosphatidylinositol 3-kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号