首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved primed in situ labeling (PRINS) procedure that provides fast, highly sensitive, and nonradioactive cytogenetic localization of chromosome-specific tandem repeat sequences is presented. The PRINS technique is based on the sequence-specific annealing in situ of unlabeled DNA. This DNA then serves as primer for chain elongation in situ catalyzed by a DNA polymerase. If biotin-labeled nucleotides are used as substrate for the chain elongation, the hybridization site becomes labeled with biotin. The biotin is subsequently made visible through the binding of FITC-labeled avidin. Tandem repeat sequences may be detected in a few hours with synthetic oligonucleotides as primers, but specific labeling of single chromosomes is not easily obtained. This may be achieved, however, if denatured double-stranded DNA fragments from polymerase-chain-reaction products or cloned probes are used as primers. In the latter case, single chromosome pairs are stained with a speed and ease (1 h reaction and no probe labeling) that are superior to traditional in situ hybridization. Subsequent high-quality Q banding of the chromosomes is also possible. The developments described here extends the range of applications of the PRINS technique, so that it now can operate with any type of probe that is available for traditional in situ hybridization.  相似文献   

2.
Direct in situ labeling of human spermatozoa was performed using the PRINS method. This technique is based on annealing of specific oligonucleotide primers, and subsequent primer extension by a Taq DNA polymerase. The reaction was carried out on a programmable temperature cycler, and labeling was obtained in a 1-hr reaction. The method was successfully tested with specific primers for chromosomes 13, 16, and 21. This suggests that PRINS may be a fast and reliable technique for detecting aneuploidies. © 1995 Wiley-Liss Inc.  相似文献   

3.
Recently, molecular techniques have become an indispensable tools for cytogenetic research. Especially, development of in situ techniques made possible detection at the chromosomal level, genes as well as repetitive sequences like telomeres or the DNA component of telomeres. One of these methods is primed in situ DNA synthesis (PRINS) using an oligonucleotide primer complementary to the specific DNA sequence. In this report we described application of PRINS technique with telomere human commercial kit to telomere sequences identification. This commercial kit may be use to visualization of interstitial telomeric signal in pig genome. PRINS is attractive complement to FISH for detection of DNA repetitive sequences and displays lower level of non-specific hybridization than conventional FISH.  相似文献   

4.

AIMS AND OBJECTIVE:

Primed in situ labeling/synthesis (PRINS) technique is an alternative to fluorescent in situ hybridization for chromosome analysis. This study was designed to evaluate the application of PRINS for rapid diagnosis of common chromosomal aneuploidy.

MATERIALS AND METHODS:

We have carried out PRINS using centromere specific oligonucleotide primers for chromosome X, Y, 13, 18 and 21 on lymphocyte metaphase and interphase cells spread. Specific primer was annealed in situ, followed by elongation of primer by Taq DNA polymerase in presence of labeled nucleotides. Finally, reaction was stopped and visualized directly under fluorescent microscope.

RESULTS:

Discrete centromere specific signals were observed with each primer.

CONCLUSION:

PRINS seems to be a rapid and reliable method to detect common chromosome aneuploidy in peripheral blood lymphocyte metaphase and interphase cells.  相似文献   

5.
Primed in situ labeling (PRINS) is a sensitive and specific technique that can be used for the localization of single copy genes and DNA segments that are too small to be detected by conventional FISH. With PRINS, we physically localized the SRY gene to Yp11.31p11.32 and the SOX3 gene to Xq26q27. Locus-specific oligonucleotide primers were annealed in situ and extended on chromosome preparations fixed on microscope slides, in the presence of dATP, dCTP, dGTP, dTTP, biotin-16-dUTP, Tris-HCl, KCl, MgCl2, BSA, and Taq DNA polymerase. Fluorescent signals were detected in metaphase spreads and interphase nuclei. Our method may prove valuable for use with single copy genes in general.  相似文献   

6.
以待检测的寡核苷酸本身作为一个引物,加上两个载体特异引物,组成两对PCR引物。含待检测寡核苷酸片段的重组DNA用这两对引物可分别扩增出两个大小不同的片段,而载体DNA只有一对引物(即载体特异引物)可扩增出一个较小的片段。  相似文献   

7.
The fluorescence in situ hybridization (FISH) technique is widely used in animal cytogenetics. Contrary to FISH procedure, primed in situ DNA synthesis (PRINS) does not require the DNA probe preparation (design, synthesis, gel purification of PCR products and labeling). The PRINS method with primers used as 'DNA probes' is both PCR-sensitive and allows for chromosomal localization of DNA sequences. Here, we show the application of PRINS reaction with one unlabeled oligonucleotide pair to identify 18S rDNA loci in three different animal species: domestic pig (Sus scrofa), red fox (Vulpes vulpes) and Chinese raccoon dog (Nyctereutes procyonoides procyonoides). We present the data of indirect labeling with the digoxigenin-PRINS using two different pairs of primers complementary to centromeric region of horse (Equus caballus) chromosomes. Our new PRINS application may be considered as a useful tool for chromosome investigation in the field of domestic and wild animal genetics and evolution.  相似文献   

8.
染色体上引物原位延伸标记在研究染色体结构和基因定位等方面具有重要意义,分别应用随机引物和SOX基因兼并引物人类染色体上进行了原位延伸标记,结果表明,随机引物伸在染色体上呈现明暗相间的带纹样特征。SOX基因兼并引物延伸发现了更多的SOX基因位座,并进一步证实该家族基因在基因组中是散存在的。  相似文献   

9.
 Ethanol fixation combined with microwave pretreatment allows rapid and simple detection of signals produced by cycling primed in situ (PRINS) amplification, which uses a single primer, and in situ polymerase chain reaction (ISPCR) in intact cells. After thermal cycling, signals remain as discrete subnuclear spots in the region of amplification and are clearly distinguishable from non-specific background labelling. These methods are applicable to routine blood smears, even after Giemsa staining or immunocytochemistry, and cellular morphology is retained. Chromosome enumeration by cycling PRINS is demonstrated using primers for repeat DNA sequences, whilst single copy sequence detection is demonstrated using bcl-2, CFTR and chromosome 21 specific primer pairs in ISPCR. We show that ethanol fixation supports efficient extension of cycling PRINS products to approximately 550 bp using up to 70 rounds of thermal cycling. Accepted: 15 February 1999  相似文献   

10.
Flow karyotyping and sorting of individual chromosome types is difficult when chromosomes of a complement do not differ sufficiently in DNA content. A strategy for sorting chromosomes of similar size has been developed. For this purpose oligonucleotide primed in situ (PRINS)-labelling was adapted to field bean chromosomes in suspension. With a primer designed according to a tandemly repetitive sequence ( Fokl element) PRINS-labelling resulted in fluorescence signals specific in position and intensity for each chromosome. A bivariate sorting mode combining fluorescence pulse areas obtained from propidium iodide staining (representing DNA content) and fluorescein isothiocyanate signals (representing chromosome-specific label) allowed chromosomes deviating in length by less than 1% of the haploid metaphase complement to be sorted. The average purity of sorted fractions was 95%. This technique should be applicable also to chromosomes of other species for obtaining chromosome-specific painting probes, for construction of chromosome-specific libraries (both without additional DNA amplification), and for gene mapping.  相似文献   

11.
As a non-isotopic molecular cytogenetic technique, the primed in situ (PRINS) labelling reaction represents a major technological progress achieved in the past decade. It has become a routine technique for the microscopic visualization of specific DNA sequences in cells and nuclei and constitutes a good alternative to the fluorescence in situ hybridization (FISH) procedure. Among the multiple advantages that characterize the PRINS technique, specificity, rapidity, reliability, reproducibility, and cost-effectiveness can be mentioned. PRINS can be in addition associated with other techniques like FISH, indirect immunofluorescence, and nick translation. The most recent developments show the great potential of this technique. Now PRINS can be used to study single-copy genes and, consequently, can be routinely used to investigate deletions associated with microdeletion syndromes. Therefore, the PRINS technique has the potential to become a widely used molecular cytogenetic tool in clinics and research. This short review presents how the PRINS technique contributed to further the understanding of biological phenomena and describes the different possibilities and applications of the PRINS method in several biological and clinical fields (pre-implantation testing, prenatal, constitutional and oncologic genetic diagnosis).  相似文献   

12.
Telomeres are chromosomal elements composed of variable numbers of a TTAGGG repeated DNA sequence required for genomic stability. Telomeric length is correlated with the number of copies of this repeated DNA sequence and is an important property relevant to telomeric function. Recently, it has been demonstrated that the length of the shortest telomere, not average telomeric length, is important for cell viability and chromosomal stability. Consequently, assays permitting assessment of telomeric length are important for the analysis of genomic instability disorders. The length of individual telomeres can be analyzed using the primed in situ (PRINS) labeling reaction, which produces a labeled copy of the telomeric DNA repeats in situ. In this study, we tested different variables to optimize the PRINS reaction to enable it to be applied to the detection of mouse telomeric DNA and the study of telomeric length. The specificity, efficiency and uniformity of staining were evaluated using digital fluorescence microscopy. Labeling efficiency is dependent upon the conditions used to denature the telomeric DNA and reaction duration. Staining uniformity is increased at higher annealing and elongation temperatures as well as when a fluorescently labeled nucleotide is incorporated during the elongation step. Our results also indicate that chromosomal background staining is observed when a fluorochrome-labeled nucleotide is used as opposed to a hapten-labeled nucleotide. From this study, we conclude that an optimized PRINS technique can be reliably employed to analyze mouse telomeres and, compared with the FISH (fluorescence in situ hybridization) technique, presents advantages including greater cost efficiency and reduced processing time. These advantages may encourage wider use of the PRINS technique for quantitative evaluation of the length of individual telomeres in situ.  相似文献   

13.
The spatial relationship between the families of repetitive DNAs present at the centromeres of human chromosomes and the position of the kinetochore was examined by combining immunocytochemistry with the PRINS oligonucleotide primer extension technique. Heterochromatic domains were decondensed with 5-azacytidine to facilitate this study. Using this approach our results clearly show that the alphoid DNA sequences are closely associated with the kinetochore of human chromosomes. Simple-sequence satellite DNAs occupy separate, non-overlapping domains within the centromere. These two major families are separated by a third, relatively low-copy repetitive DNA family, SAU-3A. Pulse-field gel electrophoresis was employed to analyse the centromeric domain of human chromosome no. 9 in more detail and the results although preliminary support the conclusions drawn from the immunocytochemistry/PRINS approach.by W.C. Earnshaw  相似文献   

14.
Yan J  Bronsard M  Drouin R 《Chromosoma》2001,109(8):565-570
In the multiple color primed in situ labeling (multi-PRINS) technique, the blocking step using ddNTPs, incorporated by a DNA polymerase, is an important procedure that blocks the free 3' end generated in the previous PRINS reaction, thus avoiding the next PRINS reaction using it as a primer to perform spurious elongation at non-desired sites. However, we found that omission of the blocking step never affected the correct identification of two chromosomes because the signals from the second PRINS reaction site always showed the pure original color. Nevertheless, taking advantage of the color mixing, we successfully used a multi-PRINS technique to create a third color using the two most common forms of labeled dUTP (biotin- and digoxigenin-labeled dUTP) and two fluorochromes (fluorescein and rhodamine) in order simultaneously to detect three chromosomes in the same cell. By arranging the labeling either in bio-dig-bio or in dig-bio-dig order in the sequential PRINS reaction, then detecting with a mixture of avidin-fluorescein/anti-dig-rhodamine or a mixture of anti-dig-fluorescein/avidin-rhodamine, the signals at the centromeres of three different chromosomes displayed perfect yellow, red and green colors, respectively. The entire procedure could be completed in less than 90 min because the blocking step was omitted. We showed that this is a practical and efficient way to carry out multiPRINS so that even more than three chromosome targets could be detected in the same cell.  相似文献   

15.
Yan J  Chen BZ  Bouchard EF  Drouin R 《Chromosoma》2004,113(4):204-209
Telomeres are composed of tandem repeated sequences, TTAGGG, that can be detected either by fluorescence in situ hybridization (FISH), more efficiently by using a peptide nucleic acid (PNA) probe, or by the primed in situ (PRINS) technique. However, the efficiency of human telomere labeling using PRINS is somewhat lower than the efficiency using PNA-FISH. To solve this problem, we developed a double-strand PRINS technique, which uses two primers, (TTAGGG)7 and (CCCTAA)7, to label both forward and reverse telomeric DNA strands. A total of 120 lymphocyte metaphases obtained from three normal adults were scored to evaluate the labeling efficiency based upon the telomere signal frequency present in chromatid ends and chromosome arms. As a comparison, 30 metaphases from the same three individuals were evaluated using PNA-FISH. The average labeling efficiency of PRINS was increased to a level very close to that obtained with PNA-FISH. Therefore, we demonstrated that the low labeling efficiency of human telomeres with regular PRINS was likely caused by uneven annealing of primers at the relatively short human telomere sequences, resulting in some telomere sites with very weak or absent labeling. We suggest that the present double-strand labeling protocol is critical to maximize the labeling efficiency of the human telomere sequence when using the PRINS technique.  相似文献   

16.
Polymerase chain reaction (PCR) amplification was employed to construct a mosaic gene consisting of the propeptide region of protein S and the glutamic acid-rich domain of osteonectin. The strategy is straightforward, results in large amounts of material, and is universally applicable for the generation of protein domain chimeras. In some cases 10% dimethyl sulfoxide aided the amplification. Four base CCGC "clamp" sequences adjacent to BamHI restriction sites at the ends of the PCR products were used to enhance the ligation of products. A hybrid inverse complement oligonucleotide primer composed of sequences containing 20 nucleotides of protein S and 16 nucleotides of osteonectin was used in the first round of PCR. An additional osteonectin sequence was added to the initial amplified product by performing PCR using a second "boot-strap" primer containing 18 nucleotides of osteonectin. Primers used to amplify osteonectin encompassed the 146-aminoacid NH2-terminal half of osteonectin. The double-stranded first-round fragments of protein S-osteonectin and osteonectin were subsequently mixed together and one elongation cycle of PCR was performed. Annealing occurred as the result of the 34-base-pair overlap region composed of osteonectin sequence. Taq polymerase was used for elongation with subsequent recombinant DNA synthesis. After elongation, external primers were added to amplify the protein S-osteonectin gene construct. The protocol we have developed allows noncoding and coding segments of DNA to be linked, GC-rich areas of DNA to be amplified, hybridization temperatures to be increased, annealing times to be reduced, and PCR of products to be subcloned.  相似文献   

17.
The centromeric alpha satellite DNA subfamilies from chromosomes 13 and 21 are almost identical in sequence and cannot be easily distinguished by mean of probes for Southern blot or in situ hybridisation. We have used the oligonucleotide-primed in situ (PRINS) labelling technique with primers defined from the alpha satellite sequence of chromosome 13. One primer was found to label specifically the centromeric region of chromosomes 13 and allowed the detection of a polymorphism between two chromosome 13 homologues in one individual.  相似文献   

18.
In yeast, rRNA genes can be detected with the FISH technique using rRNA gene probes. This technique yields reliable, reproducible and precise results, but is time-consuming. Here, the primed in situ DNA synthesis (PRINS) procedure has been optimized for rapid detection of yeast rRNA genes. PRINS, which is as sensitive as PCR and allows cytological localization of analyzed sequences, can be adapted for various screening tests requiring fast labeling of rRNA genes.  相似文献   

19.
Primed in situ labeling (PRINS) technique is an alternative to in situ hybridization for rapid chromosome screening. We employed triple-color PRINS technique to detect chromosomal abnormalities in Klinefelter syndrome patients diagnosed by G-banding karyotype analysis. Among 1034 infertile male patients, 134 were found to be cytogenetically abnormal, including 70 with chromosomal number abnormalities and 64 with chromosomal structure abnormalities. Among these cytogenetically abnormal patients, 56 were diagnosed as having Klinefelter syndrome. PRINS technique was used on cultured lymphocyte metaphase cells of the Klinefelter syndrome patients; the same result was obtained with G-banding karyotype analysis. PRINS proved to be a rapid and reliable method to detect numerical chromosome abnormalities in peripheral blood lymphocytes in metaphase.  相似文献   

20.
The centromeric alpha-satellite DNA subfamilies from chromosomes 13 and 21 are almost identical in sequence. So far it has proven difficult to discriminate between sequence variations in the chromosome 13 and 21 alpha-satellite regions using in situ techniques. To analyze whether the method of modified single-color and double-color PRINS could be used to detect single nucleotide polymorphisms within this region, we used previously published primers D13Z and D21Z that differ in the terminal 3'-nucleotide and an additionally constructed primer "D13/21-test" lacking the final nucleotide at the 3' end. The results show that a one-base pair mismatch at the 3' end is sufficient to be detected by PRINS. Surprisingly, only about 35% of our samples exhibited the expected combination of two chromosomes 13 specifically labeled with only primer D13Z and two chromosomes 21 specifically labeled with only primer D21Z. The rest of the samples showed a polymorphic distribution of the target sequence for the primers, therefore these primers are not suited for routine detection of chromosomes 13 and 21 during interphase. Our data indicate that an interchromosomal exchange of alpha-satellite DNA takes place between chromosomes 13 and 21, possibly due to a concerted evolution process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号