首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a recent paper (Preparata et aL, 1999) we introduced a novel probing scheme for DNA sequencing by hybridization (SBH). The new gapped-probe scheme combines natural and universal bases in a well-defined periodic pattern. It has been shown (Preparata et al, 1999) that the performance of the gapped-probe scheme (in terms of the length of a sequence that can be uniquely reconstructed using a given size library of probes) is significantly better than the standard scheme based on oligomer probes. In this paper we present and analyze a new, more powerful, sequencing algorithm for the gapped-probe scheme. We prove that the new algorithm exploits the full potential of the SBH technology with high-confidence performance that comes within a small constant factor (about 2) of the information-theory bound. Moreover, this performance is achieved while maintaining running time linear in the target sequence length.  相似文献   

2.
MOTIVATION: A realistic approach to sequencing by hybridization must deal with realistic sequencing errors. The results of such a method can surely be applied to similar sequencing tasks. RESULTS: We provide the first algorithms for interactive sequencing by hybridization which are robust in the presence of hybridization errors. Under a strong error model allowing both positive and negative hybridization errors without repeated queries, we demonstrate accurate and efficient reconstruction with error rates up to 7%. Under the weaker traditional error model of Shamir and Tsur (Proceedings of the Fifth International Conference on Computational Molecular Biology (RECOMB-01), pp 269-277, 2000), we obtain accurate reconstructions with up to 20% false negative hybridization errors. Finally, we establish theoretical bounds on the performance of the sequential probing algorithm of Skiena and Sundaram (J. Comput. Biol., 2, 333-353, 1995) under the strong error model. AVAILABILTY: Freely available upon request. CONTACT: skiena@cs.sunysb.edu.  相似文献   

3.
Sequencing by hybridization (SBH) is a DNA sequencing technique, in which the sequence is reconstructed using its k-mer content. This content, which is called the spectrum of the sequence, is obtained by hybridization to a universal DNA array. Standard universal arrays contain all k-mers for some fixed k, typically 8 to 10. Currently, in spite of its promise and elegance, SBH is not competitive with standard gel-based sequencing methods. This is due to two main reasons: lack of tools to handle realistic levels of hybridization errors and an inherent limitation on the length of uniquely reconstructible sequence by standard universal arrays. In this paper, we deal with both problems. We introduce a simple polynomial reconstruction algorithm which can be applied to spectra from standard arrays and has provable performance in the presence of both false negative and false positive errors. We also propose a novel design of chips containing universal bases that differs from the one proposed by Preparata et al. (1999). We give a simple algorithm that uses spectra from such chips to reconstruct with high probability random sequences of length lower only by a squared log factor compared to the information theoretic bound. Our algorithm is very robust to errors and has a provable performance even if there are both false negative and false positive errors. Simulations indicate that its sensitivity to errors is also very small in practice.  相似文献   

4.
DNA sequencing by hybridization using semi-degenerate bases.   总被引:1,自引:0,他引:1  
One way to enhance the performance of hybridization microarrrays for DNA de novo sequencing is the use of probing patterns with gaps of unsampled positions. Ideally, such gaps could be realized by the inclusion into microarray oligos (probes) of wild-card compounds, referred to as universal bases (which bind nonspecifically to natural bases). The suggested alternative is to deploy in the gap positions degenerate bases, i.e., uniform mixtures of the four natural bases, with ensuing deterioration of the hybridization signal. In this paper, we show that such signal loss is a minor shortcoming, compared with the fact that degenerate bases cannot be treated as universal. Indeed, the substantial spread of hybridization energies at any microarray feature is such that on overwhelming number of mismatches bind more strongly than legal matches. We observed, however, that much narrower energy spreads are exhibited by pairs of bases in the same strength class (A-T and C-G). We call semi-degenerate a gap position realized with bases in the same energy class and show that well-known sequence reconstruction algorithms can be modified to achieve substantial improvements in sequencing effectiveness. For example, with a 4(9)-feature microarray and an acceptable weakening of the hybridization signal, one may achieve lengths of about 4,000 bases (compared with < 250 of the standard uniform method). Our approach also incorporates the use of a spectrum expressed in terms of observed feature melting temperatures (analog spectrum), rather than binary decisions made directly at the biochemical level (digital spectrum). While universal bases represent the ultimate goal of sequencing by hybridization, semidegenerate natural bases are the most effective known substitute.  相似文献   

5.
MOTIVATION: It is widely recognized that the hybridization process is prone to errors and that the future of DNA sequencing by hybridization is predicated on the ability to successfully cope with such errors. However, the occurrence of hybridization errors results in the computational difficulty of the reconstruction of DNA sequencing by hybridization. The reconstruction problem of DNA sequencing by hybridization with errors is a strongly NP-hard problem. So far the problem has not been solved well. RESULTS: In this paper, a new approach is presented to solve the reconstruction problem of DNA sequencing by hybridization, which realizes the computational part of the SBH experiment. The proposed algorithm accepts both the negative and positive errors. The computational experiments show that the algorithm behaves satisfactorily, especially for the case with k-tuple repetitions and positive errors.  相似文献   

6.
Sequencing by hybridization is a method for reconstructing a DNA sequence based on its k-mer content. This content, called the spectrum of the sequence, can be obtained from hybridization with a universal DNA chip. However, even with a sequencing chip containing all 4(9) 9-mers and assuming no hybridization errors, only about 400-bases-long sequences can be reconstructed unambiguously. Drmanac et al. (1989) suggested sequencing long DNA targets by obtaining spectra of many short overlapping fragments of the target, inferring their relative positions along the target, and then computing spectra of subfragments that are short enough to be uniquely recoverable. Drmanac et al. do not treat the realistic case of errors in the hybridization process. In this paper, we study the effect of such errors. We show that the probability of ambiguous reconstruction in the presence of (false negative) errors is close to the probability in the errorless case. More precisely, the ratio between these probabilities is 1 + O(p = (1 - p)(4). 1 = d) where d is the average length of subfragments, and p is the probability of a false negative. We also obtain lower and upper bounds for the probability of unambiguous reconstruction based on an errorless spectrum. For realistic chip sizes, these bounds are tighter than those given by Arratia et al. (1996). Finally, we report results on simulations with real DNA sequences, showing that even in the presence of 50% false negative errors, a target of cosmid length can be recovered with less than 0.1% miscalled bases.  相似文献   

7.
All published approaches to DNA sequencing by hybridization (SBH) consist of the biochemical acquisition of the spectrum of a target sequence (the set of its subsequences conforming to a given probing pattern) followed by the algorithmic reconstruction of the sequence from its spectrum. In the "standard" or "uniform" approach, the probing pattern is a string of length L and the length of reliably reconstructible sequences is known to be m/sub len/ = O(2/sup L/). For a fixed microarray area, higher sequencing performance can be achieved by inserting nonprobing gaps ("wild-cards") in the probing pattern. The reconstruction, however, must cope with the emergence of fooling probes due to the gaps and algorithmic failure occurs when the spectrum becomes too densely populated, although we can achieve m/sub comp/ = O(4/sup L/). Despite the combinatorial success of gapped probing, all current approaches are based on a biochemically unrealistic spectrum-acquisition model (digital-spectrum). The reality of hybridization is much more complex. Departing from the conventional model, in this paper, we propose an alternative, called the analog-spectrum model, which more closely reflects the biochemical process. This novel modeling reestablishes probe length as the performance-governing factor, adopting "semidegenerate bases" as suitable emulators of currently inadequate universal bases. One important conclusion is that accurate biochemical measurements are pivotal to the success of SBH. The theoretical proposal presented in this paper should be a convincing stimulus for the needed biotechnological work.  相似文献   

8.
A genome-wide deletion library is a powerful tool for probing gene functions and one has recently become available for the fission yeast Schizosaccharomyces pombe. Here we use deep sequencing to accurately characterize the barcode sequences in the deletion library, thus enabling the quantitative measurement of the fitness of fission yeast deletion strains by barcode sequencing.  相似文献   

9.
In tandem mass spectrometry (MS/MS), there are several different fragmentation techniques possible, including, collision‐induced dissociation (CID) higher energy collisional dissociation (HCD), electron‐capture dissociation (ECD), and electron transfer dissociation (ETD). When using pairs of spectra for de novo peptide sequencing, the most popular methods are designed for CID (or HCD) and ECD (or ETD) spectra because of the complementarity between them. Less attention has been paid to the use of CID and HCD spectra pairs. In this study, a new de novo peptide sequencing method is proposed for these spectra pairs. This method includes a CID and HCD spectra merging criterion and a parent mass correction step, along with improvements to our previously proposed algorithm for sequencing merged spectra. Three pairs of spectral datasets were used to investigate and compare the performance of the proposed method with other existing methods designed for single spectrum (HCD or CID) sequencing. Experimental results showed that full‐length peptide sequencing accuracy was increased significantly by using spectra pairs in the proposed method, with the highest accuracy reaching 81.31%.  相似文献   

10.

Background

Aortopathies are a group of disorders characterized by aneurysms, dilation, and tortuosity of the aorta. Because of the phenotypic overlap and genetic heterogeneity of diseases featuring aortopathy, molecular testing is often required for timely and correct diagnosis of affected individuals. In this setting next generation sequencing (NGS) offers several advantages over traditional molecular techniques.

Methods

The purpose of our study was to compare NGS enrichment methods for a clinical assay targeting the nine genes known to be associated with aortopathy. RainDance emulsion PCR and SureSelect RNA-bait hybridization capture enrichment methods were directly compared by enriching DNA from eight samples. Enriched samples were barcoded, pooled, and sequenced on the Illumina HiSeq2000 platform. Depth of coverage, consistency of coverage across samples, and the overlap of variants identified were assessed. This data was also compared to whole-exome sequencing data from ten individuals.

Results

Read depth was greater and less variable among samples that had been enriched using the RNA-bait hybridization capture enrichment method. In addition, samples enriched by hybridization capture had fewer exons with mean coverage less than 10, reducing the need for followup Sanger sequencing. Variants sets produced were 77% concordant, with both techniques yielding similar numbers of discordant variants.

Conclusions

When comparing the design flexibility, performance, and cost of the targeted enrichment methods to whole-exome sequencing, the RNA-bait hybridization capture enrichment gene panel offers the better solution for interrogating the aortopathy genes in a clinical laboratory setting.  相似文献   

11.
The efficiency of sequencing by hybridization to an oligonucleotide microchip grows with an increase in the number and in the length of the oligonucleotides; however, such increases raise enormously the complexity of the microchip and decrease the accuracy of hybridization. We have been developing the technique of contiguous stacking hybridization (CSH) to circumvent these shortcomings. Stacking interactions between adjacent bases of two oligonucleotides stabilize their contiguous duplex with DNA. The use of such stacking increases the effective length of microchip oligonucleotides, enhances sequencing accuracy and allows the sequencing of longer DNA. The effects of mismatches, base composition, length and other factors on the stacking are evaluated. Contiguous stacking hybridization of DNA with immobilized 8mers and one or two 5mers labeled with two different fluorescent dyes increases the effective length of sequencing oligonucleotides from 8 to 13 and 18 bases, respectively. The incorporation of all four bases or 5-nitroindole as a universal base into different positions of the 5mers permitted a decrease in the number of additional rounds of hybridization. Contiguous stacking hybridization appears to be a promising approach to significantly increasing the efficiency of sequencing by hybridization.  相似文献   

12.
High-throughput, low-cost DNA sequencing has emerged as one of the challenges of the postgenomic era. Here we present the proof of concept for a single-molecule platform that allows DNA identification and sequencing. In contrast to most present methods, our scheme is not based on the detection of the fluorescent nucleotides but on DNA hairpin length. By pulling on magnetic beads tethered by a DNA hairpin to the surface, the molecule can be unzipped. In this open state it can hybridize with complementary oligonucleotides, which transiently block the hairpin rezipping when the pulling force is reduced. By measuring from the surface to the bead of a blocked hairpin, one can determine the position of the hybrid along the molecule with nearly single-base precision. Our approach can be used to identify a DNA fragment of known sequence in a mix of various fragments and to sequence an unknown DNA fragment by hybridization or ligation.  相似文献   

13.
The performance of hybridization capture combined with next‐generation sequencing (NGS) has seen limited investigation with samples from hot and arid regions until now. We applied hybridization capture and shotgun sequencing to recover DNA sequences from bone specimens of ancient‐domestic dromedary (Camelus dromedarius) and its extinct ancestor, the wild dromedary from Jordan, Syria, Turkey and the Arabian Peninsula, respectively. Our results show that hybridization capture increased the percentage of mitochondrial DNA (mtDNA) recovery by an average 187‐fold and in some cases yielded virtually complete mitochondrial (mt) genomes at multifold coverage in a single capture experiment. Furthermore, we tested the effect of hybridization temperature and time by using a touchdown approach on a limited number of samples. We observed no significant difference in the number of unique dromedary mtDNA reads retrieved with the standard capture compared to the touchdown method. In total, we obtained 14 partial mitochondrial genomes from ancient‐domestic dromedaries with 17–95% length coverage and 1.27–47.1‐fold read depths for the covered regions. Using whole‐genome shotgun sequencing, we successfully recovered endogenous dromedary nuclear DNA (nuDNA) from domestic and wild dromedary specimens with 1–1.06‐fold read depths for covered regions. Our results highlight that despite recent methodological advances, obtaining ancient DNA (aDNA) from specimens recovered from hot, arid environments is still problematic. Hybridization protocols require specific optimization, and samples at the limit of DNA preservation need multiple replications of DNA extraction and hybridization capture as has been shown previously for Middle Pleistocene specimens.  相似文献   

14.
DNA sequencing by hybridization was carried out with a microarray of all 4(6) = 4,096 hexadeoxyribonucleotides (the generic microchip). The oligonucleotides immobilized in 100 x 100 x 20-microm polyacrylamide gel pads of the generic microchip were hybridized with fluorescently labeled ssDNA, providing perfect and mismatched duplexes. Melting curves were measured in parallel for all microchip duplexes with a fluorescence microscope equipped with CCD camera. This allowed us to discriminate the perfect duplexes formed by the oligonucleotides, which are complementary to the target DNA. The DNA sequence was reconstructed by overlapping the complementary oligonucleotide probes. We developed a data processing scheme to heighten the discrimination of perfect duplexes from mismatched ones. The procedure was united with a reconstruction of the DNA sequence. The scheme includes the proper definition of a discriminant signal, preprocessing, and the variational principle for the sequence indicator function. The effectiveness of the procedure was confirmed by sequencing, proofreading, and nucleotide polymorphism (mutation) analysis of 13 DNA fragments from 31 to 70 nucleotides long.  相似文献   

15.
In recent years, an intense interest has grown in the DNA logic gates having high potential for computation at literally the “nano-size” level. A limitation of traditional DNA logic gates is that each target strand hybridizes with only a single copy of the probe. This 1:1 hybridization radio limits the gain of the approach and thus its sensitivity. The exponential amplification of nucleic acids has become a core technology in medical diagnostics and has been widely used for the construction of DNA sensor, DNA nanomachine and DNA sequencing. It would be of great interest to develop DNA-based logic systems with exponential amplification for the output signal. In the present study, a series of three-input DNA logic gates with the cycle isothermal amplification based on nicking endonuclease (NEase) are designed. Very low concentrations of the analytes were sufficient to initiate an autocatalytic cascade, achieving a significant improvement of the detection limit, 100-fold improvement compared to the non-autocatalytic system. This was achieved by engineering a simple and flexible biological circuit designed to initiate a cascade of events to detect and amplify a specific DNA sequence. This procedure has the potential to greatly simplify the logic operation because amplification can be performed in “one-pot”.  相似文献   

16.
The use of charged nylon membranes in nucleic acid blotting applications has become an important factor in the success of hybridization-based assays. Retention of nucleic acids on these membranes is promoted by baking at 80 degrees C under vacuum or by exposure to short wavelength UV light, with the latter method preferred. Immobilon-Ny+ is an advanced, positively charged nylon membrane that has been optimized to show superior retention of target DNA and RNA under hybridization conditions. Higher signal levels are obtained in these assays compared to competitive membranes, even after 13 cycles of probing. This report illustrates the superior performance of Immobilon-Ny+ in 32P and chemiluminescent hybridization assays on blotted DNA and RNA.  相似文献   

17.
We present a new random array format together with a decoding scheme for targeted multiplex digital molecular analyses. DNA samples are analyzed using multiplex sets of padlock or selector probes that create circular DNA molecules upon target recognition. The circularized DNA molecules are amplified through rolling-circle amplification (RCA) to generate amplified single molecules (ASMs). A random array is generated by immobilizing all ASMs on a microscopy glass slide. The ASMs are identified and counted through serial hybridizations of small sets of tag probes, according to a combinatorial decoding scheme. We show that random array format permits at least 10 iterations of hybridization, imaging and dehybridization, a process required for the combinatorial decoding scheme. We further investigated the quantitative dynamic range and precision of the random array format. Finally, as a demonstration, the decoding scheme was applied for multiplex quantitative analysis of genomic loci in samples having verified copy-number variations. Of 31 analyzed loci, all but one were correctly identified and responded according to the known copy-number variations. The decoding strategy is generic in that the target can be any biomolecule which has been encoded into a DNA circle via a molecular probing reaction.  相似文献   

18.
An improved method for peptide sequencing based on acetylation/deuteroacetylation in conjunction with ESI MS is introduced. Derivatization with a 1:1 mixture of acetic anhydride and deuterated acetic anhydride incorporates a stable isotope label into the analyzed molecule. This approach has been initially applied to FAB. Using MS/MS, the technique provides a fast, highly sensitive and reliable determination of the primary structure of unknown peptides. This procedure labels N-terminal fragments formed during MS/MS analysis, resulting in a simplification and faster interpretation of the spectra. The performance of the method has been tested with several synthetic peptides and applied to an efficient sequencing of the peptide map, using a nano-scale LC coupled on-line to a tandem mass spectrometer.  相似文献   

19.
A method for DNA sequencing by hybridization with oligonucleotide matrix.   总被引:12,自引:0,他引:12  
A new technique of DNA sequencing by hybridization with oligonucleotide matrix (SHOM) which could also be applied for DNA mapping and fingerprinting, mutant diagnostics, etc., has been tested in model experiments. A dot matrix was prepared which contained 9 overlapping octanucleotides (8-mers) complementary to a common 17-mer. Each of the 8-mers was immobilized as individual dot in thin layer of polyacrylamide gel fixed on a glass plate. The matrix was hybridized with the 32P-labeled 17-mer and three other 17-mers differing from the first one by a single base change. The hybridization enabled us to distinguish perfect duplexes from those containing mismatches in 32 out of 35 cases. These results are discussed with respect to the applicability of the approach for sequencing. It was shown that hybridization of DNA with an immobilized 8-mer in the presence of a labeled 5-mer led to the formation of a stable duplex with the 5-mer only if the 5- and the 8-mers were in continuous stacking making a perfect nicked duplex 13 (5+8) base pairs long. These experiments and computer simulations suggest that continuous stacking hybridization may increase the efficiency of sequencing so that random or natural coding DNA fragments about 1000 bases long could be sequenced in more than 97% of cases. Miniaturized matrices or sequencing chips were designed, where oligonucleotides were immobilized within 100 x 100 micron dots disposed at 100 micron intervals. Hybridization of fluorescently labeled DNA fragments with microchips may simplify sequencing and ensure sensitivity of at least 10 attomoles per dot. The perspectives and limitations of SHOM are discussed.  相似文献   

20.
The recent expansion of next-generation sequencing has significantly improved biological research. Nevertheless, deep exploration of genomes or metagenomic samples remains difficult because of the sequencing depth and the associated costs required. Therefore, different partitioning strategies have been developed to sequence informative subsets of studied genomes. Among these strategies, hybridization capture has proven to be an innovative and efficient tool for targeting and enriching specific biomarkers in complex DNA mixtures. It has been successfully applied in numerous areas of biology, such as exome resequencing for the identification of mutations underlying Mendelian or complex diseases and cancers, and its usefulness has been demonstrated in the agronomic field through the linking of genetic variants to agricultural phenotypic traits of interest. Moreover, hybridization capture has provided access to underexplored, but relevant fractions of genomes through its ability to enrich defined targets and their flanking regions. Finally, on the basis of restricted genomic information, this method has also allowed the expansion of knowledge of nonreference species and ancient genomes and provided a better understanding of metagenomic samples. In this review, we present the major advances and discoveries permitted by hybridization capture and highlight the potency of this approach in all areas of biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号