首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mathematical model describing the constitutive properties of biofilms is required for predicting biofilm deformation, failure, and detachment in response to mechanical forces. Laboratory observations indicate that biofilms are viscoelastic materials. Likewise, current knowledge of biofilm internal structure suggests modeling biofilms as associated polymer viscoelastic systems. Supporting experimental results and a system of viscoelastic fluid equations with a linear Jeffreys viscoelastic stress-strain law are presented here. This system of equations is based on elements of associated polymer physics and is also consistent with presented and previous experimental results. A number of predictions can be made. One particularly interesting result is the prediction of an elastic relaxation time on the order of a few minutes-biofilm disturbances on shorter time scales produce an elastic response, biofilm disturbances on longer time scales result in viscous flow, i.e., nonreversible biofilm deformation. Although not previously recognized, evidence of this phenomenon is in fact present in recent experimental results.  相似文献   

2.
The mechanical properties of mixed culture biofilms were determined by creep analysis using an AR1000 rotating disk rheometer. The biofilms were grown directly on the rheometer disks which were rotated in a chemostat for 12 d. The resulting biofilms were heterogeneous and ranged from 35 microns to 50 microns in thickness. The creep curves were all viscoelastic in nature. The close agreement between stress and strain ratio of a sample tested at 0.1 and 0.5 Pa suggested that the biofilms were tested in the linear viscoelastic range and supported the use of linear viscoelastic theory in the development of a constitutive law. The experimental data was fit to a 4-element Burger spring and dashpot model. The shear modulus (G) ranged from 0.2 to 24 Pa and the viscous coefficient (eta) from 10 to 3000 Pa. These values were in the same range as those previously estimated from fluid shear deformation of biofilms in flow cells. A viscoelastic biofilm model will help to predict shear related biofilm phenomena such as elevated pressure drop, detachment, and the flow of biofilms over solid surfaces.  相似文献   

3.
The mechanical properties of mixed culture biofilms were determined by creep analysis using an AR1000 rotating disk rheometer. The biofilms were grown directly on the rheometer disks which were rotated in a chemostat for 12 d. The resulting biofilms were heterogeneous and ranged from 35?μm to 50?μm in thickness. The creep curves were all viscoelastic in nature. The close agreement between stress and strain ratio of a sample tested at 0.1 and 0.5 Pa suggested that the biofilms were tested in the linear viscoelastic range and supported the use of linear viscoelastic theory in the development of a constitutive law. The experimental data was fit to a 4-element Burger spring and dashpot model. The shear modulus (G) ranged from 0.2 to 24 Pa and the viscous coefficient (η) from 10 to 3000 Pa. These values were in the same range as those previously estimated from fluid shear deformation of biofilms in flow cells. A viscoelastic biofilm model will help to predict shear related biofilm phenomena such as elevated pressure drop, detachment, and the flow of biofilms over solid surfaces.  相似文献   

4.
Stewart PS 《Biofouling》2012,28(2):187-198
Water that flows around a biofilm influences the transport of solutes into and out of the biofilm and applies forces to the biofilm that can cause it to deform and detach. Engineering approaches to quantifying and understanding these phenomena are reviewed in the context of biofilm systems. The slow-moving fluid adjacent to the biofilm acts as an insulator for diffusive exchange. External mass transfer resistance is important because it can exacerbate oxygen or nutrient limitation in biofilms, worsen product inhibition, affect quorum sensing, and contribute to the development of tall, fingerlike biofilm clusters. Measurements of fluid motion around biofilms by particle velocimetry and magnetic resonance imaging indicate that water flows around, but not through biofilm cell clusters. Moving fluid applies forces to biofilms resulting in diverse outcomes including viscoelastic deformation, rolling, development of streamers, oscillatory movement, and material failure or detachment. The primary force applied to the biofilm is a shear force in the main direction of fluid flow, but complex hydrodynamics including eddies, vortex streets, turbulent wakes, and turbulent bursts result in additional force components.  相似文献   

5.
Biofilms commonly develop in flowing aqueous environments, where the flow causes the biofilm to deform. Because biofilm deformation affects the flow regime, and because biofilms behave as complex heterogeneous viscoelastic materials, few models are able to predict biofilm deformation. In this study, a phase-field (PF) continuum model coupled with the Oldroyd-B constitutive equation was developed and used to simulate biofilm deformation. The accuracy of the model was evaluated using two types of biofilms: a synthetic biofilm, made from alginate mixed with bacterial cells, and a Pseudomonas aeruginosa biofilm. Shear rheometry was used to experimentally determine the mechanical parameters for each biofilm, used as inputs for the model. Biofilm deformation under fluid flow was monitored experimentally using optical coherence tomography. The comparison between the experimental and modeling geometries, for selected horizontal cross sections, after fluid-driven deformation was good. The relative errors ranged from 3.2 to 21.1% for the synthetic biofilm and from 9.1 to 11.1% for the P. aeruginosa biofilm. This is the first demonstration of the effectiveness of a viscoelastic PF biofilm model. This model provides an important tool for predicting biofilm viscoelastic deformation. It also can benefit the design and control of biofilms in engineering systems.  相似文献   

6.
A two-dimensional pore-scale numerical model was developed to evaluate the dynamics of preferential flow paths in porous media caused by bioclogging. The liquid flow and solute transport through the pore network were coupled with a biofilm model including biomass attachment, growth, decay, lysis, and detachment. Blocking of all but one flow path was obtained under constant liquid inlet flow rate and biomass detachment caused by shear forces only. The stable flow path formed when biofilm detachment balances growth, even with biomass weakened by decay. However, shear forces combined with biomass lysis upon starvation could produce an intermittently shifting location of flow channels. Dynamic flow pathways may also occur when combined liquid shear and pressure forces act on the biofilm. In spite of repeated clogging and unclogging of interconnected pore spaces, the average permeability reached a quasi-constant value. Oscillations in the medium permeability were more pronounced for weaker biofilms.  相似文献   

7.
Changes in the viscoelastic material properties of bacterial biofilms resulting from chemical and antimicrobial treatments were measured by rheometry. Colony biofilms of Staphylococcus epidermidis or a mucoid Pseudomonas aeruginosa were subjected to a classical creep test performed using a parallel plate rheometer. Data were fit to the 4-parameter Burger model to quantify the material properties. Biofilms were exposed to the chloride salts of several common mono-, di-, and tri- valent cations, and to urea, industrial biocides, and antibiotics. Many of these treatments resulted in statistically significant alterations in the material properties of the biofilm. Multivalent cations stiffened the P. aeruginosa biofilm, while ciprofloxacin and glutaraldehyde weakened it. Urea, rifampin, and a quaternary ammonium biocide weakened the S. epidermidis biofilm. In general, there was no correspondence between the responses of the two different types of biofilms to a particular treatment. These results underscore the distinction between the killing power of an antimicrobial agent and its ability to alter biofilm mechanical properties and thereby influence biofilm removal. Understanding biofilm rheology and how it is affected by chemical treatment could lead to improvements in biofilm control.  相似文献   

8.
Changes in the viscoelastic material properties of bacterial biofilms resulting from chemical and antimicrobial treatments were measured by rheometry. Colony biofilms of Staphylococcus epidermidis or a mucoid Pseudomonas aeruginosa were subjected to a classical creep test performed using a parallel plate rheometer. Data were fit to the 4-parameter Burger model to quantify the material properties. Biofilms were exposed to the chloride salts of several common mono-, di-, and tri- valent cations, and to urea, industrial biocides, and antibiotics. Many of these treatments resulted in statistically significant alterations in the material properties of the biofilm. Multivalent cations stiffened the P. aeruginosa biofilm, while ciprofloxacin and glutaraldehyde weakened it. Urea, rifampin, and a quaternary ammonium biocide weakened the S. epidermidis biofilm. In general, there was no correspondence between the responses of the two different types of biofilms to a particular treatment. These results underscore the distinction between the killing power of an antimicrobial agent and its ability to alter biofilm mechanical properties and thereby influence biofilm removal. Understanding biofilm rheology and how it is affected by chemical treatment could lead to improvements in biofilm control.  相似文献   

9.
Staphylococcus aureus is a leading cause of catheter-related bloodstream infections and endocarditis. Both involve (i) biofilm formation, (ii) exposure to fluid shear, and (iii) high rates of dissemination. We found that viscoelasticity allowed S. aureus biofilms to resist detachment due to increased fluid shear by deformation, while remaining attached to a surface. Further, we report that S. aureus microcolonies moved downstream by rolling along the lumen walls of a glass flow cell, driven by the flow of the overlying fluid. The rolling appeared to be controlled by viscoelastic tethers. This tethered rolling may be important for the surface colonization of medical devices by nonmotile bacteria.  相似文献   

10.
Staphylococcus aureus is a leading cause of catheter-related bloodstream infections and endocarditis. Both involve (i) biofilm formation, (ii) exposure to fluid shear, and (iii) high rates of dissemination. We found that viscoelasticity allowed S. aureus biofilms to resist detachment due to increased fluid shear by deformation, while remaining attached to a surface. Further, we report that S. aureus microcolonies moved downstream by rolling along the lumen walls of a glass flow cell, driven by the flow of the overlying fluid. The rolling appeared to be controlled by viscoelastic tethers. This tethered rolling may be important for the surface colonization of medical devices by nonmotile bacteria.  相似文献   

11.
The mechanical stability of biofilms is important for biotechnology, as sloughing of the biomass due to mechanical failure of the biofilm matrix can lead to severe interferences with biofilm processes. In cases of biofouling, biofilms have to be removed, in which case their mechanical stability must be overcome. The apparent modulus of elasticity and the yield strength as obtained from uniaxial compression experiments can be taken as parameters indicative for the mechanical stability of a biofilm. A film rheometer is presented which allows for the determination of these quantities, using model biofilms of Pseudomonas aeruginosa grown on membrane filters. The compressive stress-strain behaviour up to the point of failure is recorded at a compression speed of 1 microm s(-1). In accordance with the stress-strain curve, the investigated biofilm can be described as viscoelastic material, which demonstrates plastic flow properties. The extracellular polymeric substances (EPS), which keep biofilms together, form a temporary network of fluctuating junction points. Above the yield point, the gel structure fails and the system behaves as a highly viscous fluid. The apparent modulus of elasticity and the yield point are considered to be useful parameters for characterizing the mechanical properties of biofilms.  相似文献   

12.
Biofilms can increase pathogenic contamination of drinking water, cause biofilm-related diseases, alter the sediment erosion rate, and degrade contaminants in wastewater. Compared with mature biofilms, biofilms in the early-stage have been shown to be more susceptible to antimicrobials and easier to remove. Mechanistic understanding of physical factors controlling early-stage biofilm growth is critical to predict and control biofilm development, yet such understanding is currently incomplete. Here, we reveal the impacts of hydrodynamic conditions and microscale surface roughness on the development of early-stage Pseudomonas putida biofilm through a combination of microfluidic experiments, numerical simulations, and fluid mechanics theories. We demonstrate that early-stage biofilm growth is suppressed under high flow conditions and that the local velocity for early-stage P. putida biofilms (growth time < 14 h) to develop is about 50 μm/s, which is similar to P. putida's swimming speed. We further illustrate that microscale surface roughness promotes the growth of early-stage biofilms by increasing the area of the low-flow region. Furthermore, we show that the critical average shear stress, above which early-stage biofilms cease to form, is 0.9 Pa for rough surfaces, three times as large as the value for flat or smooth surfaces (0.3 Pa). The important control of flow conditions and microscale surface roughness on early-stage biofilm development, characterized in this study, will facilitate future predictions and managements of early-stage P. putida biofilm development on the surfaces of drinking water pipelines, bioreactors, and sediments in aquatic environments.  相似文献   

13.
We develop a multiphasic hydrodynamic theory for biofilms taking into account interactions among various bacterial phenotypes, extracellular polymeric substance (EPS), quorum sensing (QS) molecules, solvent, and antibiotics. In the model, bacteria are classified into down-regulated QS, up-regulated QS, and non-QS cells based on their QS ability. The model is first benchmarked against an experiment yielding an excellent fit to experimental measurements on the concentration of QS molecules and the cell density during biofilm development. It is then applied to study development of heterogeneous structures in biofilms due to interactions of QS regulation, hydrodynamics, and antimicrobial treatment. Our 3D numerical simulations have confirmed that (i). QS is beneficial for biofilm development in a long run by building a robust EPS population to protect the biofilm; (ii). biofilms located upstream can induce QS downstream when the colonies are close enough spatially; (iii). QS induction may not be fully operational and can even be compromised in strong laminar flows; (v). the hydrodynamic stress alters the biofilm morphology. Through further numerical investigations, our model suggests that (i). QS-regulated EPS production contributes to the structural formation of heterogeneous biofilms; (ii) QS down-regulated cells tend to grow at the surface of the biofilm while QS up-regulated ones tend to grow in the bulk; (iii) when nutrient supply is sufficient, QS induction might be more effective upstream than downstream; (iv) QS may be of little benefit in a short timescale in term of fighting against invading strain/species; (v) the material properties of biomass (bacteria and EPS) have strong impact on the dilution of QS molecules under strong shear flow. In addition, with this modeling framework, hydrodynamic details and rheological quantities associated with biofilm formation under QS regulation can be resolved.  相似文献   

14.
Grooming is a proactive method to keep a ship’s hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.  相似文献   

15.
Abstract

Biofilms were grown on smooth acrylic surfaces for nominal incubation times of three, five, and ten weeks in a flow loop at the University of Michigan. The biofilm covered surfaces were exposed to the turbulent flow in a high-aspect ratio, fully developed channel flow facility at height-based Reynolds numbers from ReH ≈ 5,000 to 30,000. Measurements of the pressure drop along each fouled upper surface revealed that the friction drag increased from approximately 10% to 400%. The wide range in drag penalty was linked to variations in flow speed, the average thickness of the biofilms, and the level of film coverage over each surface through scaling parameters and empirical correlations. Rigid replicas of select biofilms were produced from time-averaged laser scans collected while the biofilm was subjected to flow. These rigid biofilm replicas experienced roughly half the drag increase of their compliant counterparts with the increase in friction spanning roughly 50% to 200%.  相似文献   

16.
Despite an increased awareness of biofilm formation by pathogens and the role of biofilms in human infections, the potential role of environmental biofilms as an intermediate stage in the host-to-host cycle is poorly described. To initiate infection, pathogens in biofilms on inanimate environmental surfaces must detach from the biofilm and be transmitted to a susceptible individual in numbers large enough to constitute an infectious dose. Additionally, while detachment has been recognized as a discrete event in the biofilm lifestyle, it has not been studied to the same extent as biofilm development or biofilm physiology. Successful integration of Pseudomonas aeruginosa strain PA01 expressing green fluorescent protein (PA01GFP), employed here as a surrogate pathogen, into multispecies biofilm communities isolated and enriched from sink drains in public washrooms and a hospital intensive care unit is described. Confocal laser scanning microscopy indicated that PA01GFP cells were most frequently located in the deeper layers of the biofilm, near the attachment surface, when introduced into continuous flow cells before or at the same time as the multispecies drain communities. A more random integration pattern was observed when PA01GFP was introduced into established multispecies biofilms. Significant numbers of single PA01GFP cells were continuously released from the biofilms to the bulk liquid environment, regardless of the order of introduction into the flow cell. Challenging the multispecies biofilms containing PA01GFP with sub-lethal concentrations of an antibiotic, chelating agent and shear forces that typically prevail at distances away from the point of treatment showed that environmental biofilms provide a suitable habitat where pathogens are maintained and protected, and from where they are continuously released.  相似文献   

17.
Drag and Flexibility in Sessile Organisms   总被引:5,自引:0,他引:5  
Most large, sessile organisms when exposed to rapid flows ofair or water are markedly deformed as a consequence of theirstructural flexibility. Responses to air and water movementare similar, although both extreme and typical forces generatedby water flows are greater, and erect organisms are commonlyshorter in water than in air. A useful way of viewing data onthe scaling of drag with flow speed is with a graph of speed-specificdrag (drag divided by the square of speed) against speed. Sincean ordinary solid body usually gives a horizontal line on sucha plot, deviations from the ordinary are immediately evident.The slopes of the double logarithmic version of these graphsprovide useful numerical comparisons. All of the cases consideredhere—trees, macroalgae, sea pens, etc.—give negativeslopes at high flow rates, indicating that speed-specific dragdrops with increasing flow. Such results may be taken as evidencethat the flexible response commonly constitutes an adaptivelyuseful reconfiguration as opposed to a mere incidental consequenceof the material economy afforded by flexibility.  相似文献   

18.
Microbial biofilms facilitate adhesion in biofouling invertebrates   总被引:1,自引:0,他引:1  
Much interest has focused on the role of microbial layers--biofilms--in stimulating attachment of invertebrates and algae to submerged marine surfaces. We investigated the influence of biofilms on the adhesion strength of settling invertebrates. Larvae of four species of biofouling invertebrate were allowed to attach to test surfaces that were either clean or coated with a natural biofilm. Measuring larval removal under precisely controlled flow forces, we found that biofilms significantly increased adhesion strength in the ascidian Phallusia nigra, the polychaete tubeworm Hydroides elegans, and the barnacle Balanus amphitrite at one or more developmental stages. Attachment strength in a fourth species, the bryozoan Bugula neritina, was neither facilitated nor inhibited by the presence of a biofilm. These results suggest that adhesive strength and perhaps composition may vary across different invertebrate taxa at various recruitment stages, and mark a new path of inquiry for biofouling research.  相似文献   

19.
The presence of bacterial biofilms is detrimental in a wide range of healthcare situations especially wound healing. Physical debridement of biofilms is a method widely used to remove them. This study evaluates the use of microfluidic jet impingement to debride biofilms. In this case, a biofilm is treated as a saturated porous medium also having linear elastic properties. A numerical modeling approach is used to calculate the von Mises stress distribution within a porous medium under fluid-structure interaction (FSI) loading to determine the initial rupture of the biofilm structure. The segregated model first simulates the flow field to obtain the FSI interface loading along the fluid-solid interface and body force loading within the porous medium. A stress-strain model is consequently used to calculate the von Mises stress distribution to obtain the biofilm deformation. Under a vertical jet, 60% of the deformation of the porous medium can be accounted for by treating the medium as if it was an impermeable solid. However, the maximum deformation in the porous medium corresponds to the point of maximum shear stress which is a different position in the porous medium than that of the maximum normal stress in an impermeable solid. The study shows that a jet nozzle of 500 μm internal diameter (ID) with flow of Reynolds number (Re) of 200 can remove the majority of biofilm species.  相似文献   

20.
Modeling biocide action against biofilms   总被引:1,自引:0,他引:1  
A phenomenological model of biocide action against microbial biofilms was derived. Processes incorporated in the model include bulk flow in and out of a well-mixed reactor, transport of dissolved species into the biofilm, substrate consumption by bacterial metabolism, bacterial growth, advection of cell mass within the biofilm, cell detachment from the biofilm, cell death, and biocide concentration-dependent disinfection. Simulations were performed to analyze the general behavior of the model and to perform preliminary sensitivity analysis to identify key input parameters. The model captured several general features of antimicrobial agent action against biofilms that have been observed widely by experimenters and practitioners. These included (1) rapid disinfection followed by biofilm regrowth, (2) slower detachment than disinfection, and (3) reduced susceptibility of microorganisms in biofilms. The results support the plausibility of a mechanism of biofilm resistance in which the biocide is neutralized by reaction with biofilm constituents, leading to a reduction in the bulk biocide concentration and, more significantly, biocide concentration gradients within the biofilm. Sensitivity experiments and analyses identified which input parameters influence key response variables. Each of three response variables was sensitive to each of the five input parameters, but they were most sensitive to the initial biofilm thickness and next most sensitive to the biocide disinfection rate coefficient. Statistical regression modeling produced simple equations for approximating the response variables for situations within the range of conditions covered by the sensitivity experiment. The model should be useful as a tool for studying alternative biocide control strategies. For example, the simulations suggested that a good interval between pulses of biocide is the time to minimum thickness. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号