首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexity of Hsp90 in organelle targeting   总被引:3,自引:0,他引:3  
  相似文献   

2.
热激蛋白90在植物发育和疾病抗性中的作用   总被引:3,自引:0,他引:3  
相对分子质量90000的热激蛋白(heatshock protein,HSP90)是真核细胞必需的分子伴侣。拟南芥中HSP90有7个成员,其中AtHSP90-1、AtHSP90-2、AtHSP90-3和AtHSP90-4组成细胞质亚族;AtHSP90-5、AtHSP90-6、AtHSP90-7分别位于叶绿体、线粒体和内质网。HSP90分子伴侣复合物在植物发育和对外部刺激应答中非常重要,尤其是在抗性(resistance R)蛋白介导的抵抗病毒侵入的过程中起重要作用。  相似文献   

3.
4.
During protein import into chloroplasts, one of the Hsp70 proteins in pea (Hsp70-IAP), previously reported to localize in the intermembrane space of chloroplasts, was found to interact with the translocating precursor protein but the gene for Hsp70-IAP has not been identified yet. In an attempt to identify the Arabidopsis homolog of Hsp70-IAP, we employed an in vitro protein import assay to determine the localization of three Arabidopsis Hsp70 homologs (AtHsp70-6 through 8), predicted for chloroplast targeting. AtHsp70-6 and AtHsp70-7 were imported into chloroplasts and processed into similar-sized mature forms. In addition, a smaller-sized processed form of AtHsp70-6 was observed. All the processed forms of both AtHsp70 proteins were localized in the stroma. Organelle-free processing assays revealed that the larger processed forms of both AtHsp70-6 and AtHsp70-7 were cleaved by stromal processing peptidase, whereas the smaller processed form of AtHsp70-6 was produced by an unspecified peptidase.  相似文献   

5.
During protein import into chloroplasts, one of the Hsp70 proteins in pea (Hsp70-IAP), previously reported to localize in the intermembrane space of chloroplasts, was found to interact with the translocating precursor protein but the gene for Hsp70-IAP has not been identified yet. In an attempt to identify the Arabidopsis homolog of Hsp70-IAP, we employed an in vitro protein import assay to determine the localization of three Arabidopsis Hsp70 homologs (AtHsp70-6 through 8), predicted for chloroplast targeting. AtHsp70-6 and AtHsp70-7 were imported into chloroplasts and processed into similar-sized mature forms. In addition, a smaller-sized processed form of AtHsp70-6 was observed. All the processed forms of both AtHsp70 proteins were localized in the stroma. Organelle-free processing assays revealed that the larger processed forms of both AtHsp70-6 and AtHsp70-7 were cleaved by stromal processing peptidase, whereas the smaller processed form of AtHsp70-6 was produced by an unspecified peptidase.  相似文献   

6.
7.
The ATPase cycle of the endoplasmic chaperone Grp94   总被引:2,自引:0,他引:2  
Grp94, the Hsp90 paralog of the endoplasmic reticulum, plays a crucial role in protein secretion. Like cytoplasmic Hsp90, Grp94 is regulated by nucleotide binding to its N-terminal domain. However, the question of whether Grp94 hydrolyzes ATP was controversial. This sets Grp94 apart from other members of the Hsp90 family where a slow but specific turnover of ATP has been unambiguously established. In this study we aimed at analyzing the nucleotide binding properties and the potential ATPase activity of Grp94. We show here that Grp94 has an ATPase activity comparable with that of yeast Hsp90 with a k(cat) of 0.36 min(-1) at 25 degrees C. Kinetic and equilibrium constants of the partial reactions of the ATPase cycle were determined using transient kinetic methods. Nucleotide binding appears to be tighter compared with other Hsp90s investigated, with dissociation constants (K(D)) of approximately 4 microm for ADP, ATP, and AMP-PCP. Interestingly, all nucleotides and inhibitors (radicicol, 5'-N-ethylcarboxamidoadenosine) studied here bind with similar rate constants for association (0.2-0.3 x 10(6) M(-1) s(-1)). Furthermore, there is a marked difference from cytosolic Hsp90s in that after binding, the ATP molecule does not seem to become trapped by conformational changes in Grp94. Grp94 stays predominantly in the open state concerning the nucleotide-binding pocket as evidenced by kinetic analyses. Thus, Grp94 shows mechanistically important differences in the interaction with adenosine nucleotides, but the basic hydrolysis reaction seems to be conserved between cytosolic and endoplasmic members of the Hsp90 family.  相似文献   

8.
9.
We have identified 24 members of the DnaK subfamily of heat shock 70 proteins (Hsp70s) in the complete genomes of 5 diverse photosynthetic eukaryotes. The Hsp70s are a ubiquitous protein family that is highly conserved across all domains of life. Eukaryotic Hsp70s are found in a number of subcellular compartments in the cell: cytoplasm, mitochondrion (MT), chloroplast (CP), and endoplasmic reticulum (ER). Although the Hsp70s have been the subject of intense study in model organisms, very little is known of the Hsp70s from early diverging photosynthetic lineages. The sequencing of the complete genomes of Thalassiosira pseudonana (a diatom), Cyanidioschyzon merolae (a red alga), and 3 green algae (Chlamydomonas reinhardtii, Ostreococcus lucimarinus, Ostreococcus tauri) allow us to conduct comparative genomics of the Hsp70s present in these diverse photosynthetic eukaryotes. We have found that the distinct lineages of Hsp70s (MT, CP, ER, and cytoplasmic) each have different evolutionary histories. In general, evolutionary patterns of the mitochondrial and endoplasmic reticulum Hsp70s are relatively stable even among very distantly related organisms. This is not true of the chloroplast Hsp70s and we discuss the distinct evolutionary patterns between "green" and "red" plastids. Finally, we find that, in contrast to the angiosperms Arabidopsis thaliana and Oryza sativa that have numerous cytoplasmic Hsp70, the 5 algal species have only 1 cytoplasmic Hsp70 each. The evolutionary and functional implications of these differences are discussed.  相似文献   

10.
SQN (SQUINT) is the Arabidopsis ortholog of the immunophilin CyP40 (cyclophilin 40) and promotes microRNA activity by promoting the activity of AGO1. In animals and Saccharomyces cerevisiae, CyP40 promotes protein activity in association with the protein chaperone Hsp90. To determine whether CyP40 also acts in association with Hsp90 in plants, we examined the interaction between SQN and Hsp90 in vitro and tested the importance of this interaction for the function of SQN in planta. We found that SQN interacts with cytoplasmic Hsp90 proteins but not with Hsp90 proteins localized to chloroplasts, mitochondria, or the endoplasmic reticulum. The interaction between SQN and Hsp90 in vitro requires the MEEVD domain of Hsp90, as well as several conserved amino acids within the tetratricopeptide repeat domain of SQN. Amino acid substitutions that disrupt the interaction between SQN and Hsp90 in vitro also impair the activity of SQN in planta. Our results indicate that the interaction between CyP40 and Hsp90 is conserved in plants and that this interaction is essential for the function of CyP40.  相似文献   

11.
The Hsp90 family of proteins in mammalian cells consists of Hsp90 alpha and beta, Grp94, and Trap-1 (Hsp75). Radicicol, an antifungal antibiotic that inhibits various signal transduction proteins such as v-src, ras, Raf-1, and mos, was found to bind to Hsp90, thus making it the prototype of a second class of Hsp90 inhibitors, distinct from the chemically unrelated benzoquinone ansamycins. We have used two novel methods to immobilize radicicol, allowing for detailed analyses of drug-protein interactions. Using these two approaches, we have studied binding of the drug to N-terminal Hsp90 point mutants expressed by in vitro translation. The results point to important drug contacts with amino acids inside the N-terminal ATP/ADP-binding pocket region and show subtle differences when compared with geldanamycin binding. Radicicol binds more strongly to Hsp90 than to Grp94, the Hsp90 homolog that resides in the endoplasmic reticulum. In contrast to Hsp90, binding of radicicol to Grp94 requires both the N-terminal ATP/ADP-binding domain as well as the adjacent negatively charged region. Radicicol also specifically binds to yeast Hsp90, Escherichia coli HtpG, and a newly described tumor necrosis factor receptor-interacting protein, Trap-1, with greater homology to bacterial HtpG than to Hsp90. Thus, the radicicol-binding site appears to be specific to and is conserved in all members of the Hsp90 family of molecular chaperones from bacteria to mammals, but is not present in other molecular chaperones with nucleotide-binding domains.  相似文献   

12.
Transport of cytoplasmically synthesized precursor proteins into chloroplasts, like the protein transport systems of mitochondria and the endoplasmic reticulum, appears to require the action of molecular chaperones. These molecules are likely to be the sites of the ATP hydrolysis required for precursor proteins to bind to and be translocated across the two membranes of the chloroplast envelope. Over the past decade, several different chaperones have been identified, based mainly on their association with precursor proteins and/or components of the chloroplast import complex, as putative factors mediating chloroplast protein import. These factors include cytoplasmic, chloroplast envelope-associated and stromal members of the Hsp70 family of chaperones, as well as stromal Hsp100 and Hsp60 chaperones and a cytoplasmic 14-3-3 protein. While many of the findings regarding the action of chaperones during chloroplast protein import parallel those seen for mitochondrial and endoplasmic reticulum protein transport, the chloroplast import system also has unique aspects, including its hypothesized use of an Hsp100 chaperone to drive translocation into the organelle interior. Many questions concerning the specific functions of chaperones during protein import into chloroplasts still remain that future studies, both biochemical and genetic, will need to address.  相似文献   

13.
Grp94 and Hsp90 are the ER and cytoplasmic paralog members, respectively, of the hsp90 family of molecular chaperones. The structural and biochemical differences between Hsp90 and Grp94 that allow each paralog to efficiently chaperone its particular set of clients are poorly understood. The two paralogs exhibit a high degree of sequence similarity, yet also display significant differences in their quaternary conformations and ATPase activity. In order to identify the structural elements that distinguish Grp94 from Hsp90, we characterized the similarities and differences between the two proteins by testing the ability of Hsp90/Grp94 chimeras to functionally substitute for the wild-type chaperones in vivo. We show that the N-terminal domain or the combination of the second lobe of the Middle domain plus the C-terminal domain of Grp94 can functionally substitute for their yeast Hsp90 counterparts but that the equivalent Hsp90 domains cannot functionally replace their counterparts in Grp94. These results also identify the interface between the Middle and C-terminal domains as an important structural unit within the Hsp90 family.  相似文献   

14.
Both the Grp170 and Hsp110 families represent relatively conserved and distinct sets of stress proteins, within a more diverse category that also includes the Hsp70s. All of these families are found in a wide variety of organisms from yeasts to humans. Although Hsp110s or Grp170s are not Hsp70s any more than Hsp70s are Hsp110s or Grp170s, it is still reasonable to refer to this combination of related families as the Hsp70 superfamily based on arguments discussed above and since no obvious prokaryotic Hsp110 or Grp170 has yet been identified. These proteins are related to their counterparts in the Hsp70/Grp78 family of eukaryotic stress proteins but are characterized by significantly larger molecular weights. The members of the Grp170 family are characterized by C-terminal ER retention sequences and are ER localized in yeasts and mammals. As a Grp, Grp170 is recognized to be coregulated with other major Grps by a well-known set of stress conditions, sometimes referred to as the unfolded protein response (Kozutsumi et al 1988; Nakaki et al 1989). The Hsp110 family members are localized in the nucleus and cytoplasm and, with other major Hsps, are also coregulated by a specific set of stress conditions, most notably including hyperthermic exposures. Hsp110 is sometimes called Hsp105, although it would be preferable to have a uniform term. The large Hsp70-like proteins are structurally similar to the Hsp70s but differ from them in important ways. In both the Grp170 and Hspl10 families, there is a long loop structure that is interposed between the peptide-binding ,-domain and the alpha-helical lid. In the Hsp110 family and Grp170, there are differing degrees of expansion in the alpha-helical domain and the addition of a C-terminal loop. This gives the appearance of much larger lid domains for Hsp110 and Grp170 compared with Hsp70. Both Hsp110 and Grp170 families have relatively conserved short sequences in the alpha-helical domain in the lid, which are conserved motifs in numerous proteins (we termed these motifs Magic and TedWylee as discussed earlier). The structural differences detailed in this review result in functional differences between the large (Grp170 and Hspl10) members of the Hsp70 superfamily, the most distinctive being an increased ability of these proteins to bind (hold) denatured polypeptides compared with Hsc70, perhaps related to the enlarged C-terminal helical domain. However, there is also a major difference between these large stress proteins; Hsp110 does not bind ATP in vitro, whereas Grp170 binds ATP avidly. The role of the Grp170 and Hsp110 stress proteins in cellular physiology is not well understood. Overexpression of Hsp110 in cultured mammalian cells increases thermal tolerance. Grp170 binds to secreted proteins in the ER and may be cooperatively involved in folding these proteins appropriately. These roles are similar to those of the Hsp70 family members, and, therefore, the question arises as to the differential roles played by the larger members of the superfamily. We have discussed evidence that the large members of the superfamily cooperate with members of the Hsp70 family, and these chaperones probably interact with a large number of chaperones and cochaperones in their functional activities. The fundamental point is that Hsp110 is found in conjunction with Hsp70 in the cytoplasm (and nucleus) and Grp170 is found in conjunction with78 in tha ER in every eucaryotic cell examined from yeast to humans. This would strongly argue that Hsp110 Grp170 exhibit functions in eucaryotes not effectively performed by Hsp70s or Grp78, respectively. Of interest in this respect is the observation that all Hsp110s loss of function or deletion mutants listed in the Drosophila deletion project database are lethal. The important task for the future is to determine the roles these conserved molecular chaperones play in normal and physiologically stressed cells.  相似文献   

15.
Heat shock protein 90 (Hsp90) is an abundant and highly conserved molecular chaperone that is essential for viability in eukaryotes. They have a crucial role in the folding of a set of proteins involved in the regulation of many essential cellular pathways and also re-folding of stress-denatured polypeptides. However, their exact function is still not clearly elucidated. In this study the full-length cDNA encoding for Hsp90 polypeptide and its corresponding gene was isolated from Pennisetum glaucum (designated PgHsp90). PgHsp90 cDNA encoded for a polypeptide of 698 amino acids with a predicted molecular mass of 80.3kDa and shared a high sequence homology (97-81%) to other plant cytosolic Hsp90s and shared less sequence homology (40-45%) to organelle and endoplasmic reticulum specific Hsp90 isoforms. A deduced amino acid sequence possessed three structural domains: N-terminus (1-211) ATP binding domain, middle (281-540) client protein interacting domain and C-terminus (541-698) dimerization domain; the N-terminus and middle domain is linked by a charged linker domain (212-280). It possesses the five-conserved amino acid signature sequence motifs characteristic of the Hsp90 family and a C-terminus MEEVD penta-peptide characteristic of the cytosolic Hsp90 isoform. The predicted quaternary architecture generated for PgHsp90 through molecular modeling was globally akin to that of yeast Hsp90. The PgHsp90 gene consists of 3 exons and 2 introns. The position and phasing of these introns were conserved in other plant cytosolic Hsp90 genes. Recombinant PgHsp90 protein was expressed in E. coli and purified to homogeneity, which possessed in vitro chaperone activity. E. coli expressing PgHsp90 protein showed enhanced tolerance to heat, salt and dehydration stresses. The quantitative up-regulation of PgHsp90 gene expression positively correlates in response to different stresses to meet the additional demand for protein folding support. Cumulatively, the in vivo and in vitro experiments indicated that PgHsp90 plays an adaptive or protective role to counter the stress induced protein damage.  相似文献   

16.
GRP94, the endoplasmic reticulum (ER) paralog of the chaperone Hsp90, plays an essential role in the structural maturation or secretion of a subset of proteins destined for transport to the cell surface, such as the Toll-like receptors 2 and 4, and IgG, respectively. GRP94 differs from cytoplasmic Hsp90 by exhibiting very weak ATP binding and hydrolysis activity. GRP94 also binds selectively to a series of substituted adenosine analogs. The high resolution crystal structures at 1.75-2.1 A of the N-terminal and adjacent charged domains of GRP94 in complex with N-ethylcarboxamidoadenosine, radicicol, and 2-chlorodideoxyadenosine reveals a structural mechanism for ligand discrimination among hsp90 family members. The structures also identify a putative subdomain that may act as a ligand-responsive switch. The residues of the charged region fold into a disordered loop whose termini are ordered and continue the twisted beta sheet that forms the structural core of the N-domain. This continuation of the beta sheet past the charged domain suggests a structural basis for the association of the N-terminal and middle domains of the full-length chaperone.  相似文献   

17.
18.
The spatial and temporal distribution of expression of two cytosolic members of the AtHsp90 gene family was assessed during early development. In stressed transgenic plants bearing the AtHsp90-3 promoter, beta-glucuronidase (GUS) activity was strong in meristematic tissues. Expression was also detected in vascular tissues, leaf veins, siliques, and in pollen sacs. The promoter induced gene expression after heat shock in a time-course dependent manner. AtHsp90-1 promoter activity was low throughout the early stages of embryo development but high just before embryo maturation, with expression most prominent in cotyledons. AtHsp90-3 promoter activity was almost constant and restricted to the root and the cotyledon tips of the embryo. This highly specific spatial distribution of GUS activity changed when the tissues were heat-stressed. Both promoters were also active in unstressed mature pollen grains and during pollen germination. The results shown here indicate that different regulatory and developmental mechanisms control and differentiate the expression of the two cytosolic members of the Arabidopsis AtHsp90 gene family under normal conditions. The developmental and restricted pattern of expression of the AtHsp90-1 and -3 gene promoters in unstressed transgenic plants suggest prominent and distinctive roles of these two genes during different developmental processes.  相似文献   

19.
Members of the Hsp100 family of heat stress proteins are present in species throughout the bacterial, plant, and fungal kingdoms. Most Hsp100 proteins are composed of five domains that include two nucleotide-binding domains required for their ATP-dependent oligomerization. Mutations within the first but not the second nucleotide-binding site disrupt self-assembly of bacterial Hsp100, whereas the reverse is true for yeast Hsp104. We have examined the functional requirements for oligomerization of plant Hsp101 and have found that Hsp101 resembles Hsp104 in that it assembles into a hexameric complex in an ATP-dependent manner. Self-assembly of Hsp101 involves at least three distinct interaction domains located in the N-proximal domain and in the first and second nucleotide-binding domains. The interaction domain in the second nucleotide-binding domain included the Walker A motif, and mutations within this element disrupted self-assembly of Hsp101. In contrast, mutations affecting conserved residues of the Walker A motif within the first nucleotide-binding site did not affect self-assembly. No interaction between Hsp101 and Hsp104 was observed. These results suggest that plant Hsp101 self-assembly involves multiple evolutionarily diverged interaction domains as well as an evolutionarily conserved requirement for a functional C-proximal nucleotide-binding site.  相似文献   

20.
Human DJ-1 and Escherichia coli Hsp31 belong to ThiJ/PfpI family, whose members contain a conserved domain. DJ-1 is associated with autosomal recessive early onset parkinsonism and Hsp31 is a molecular chaperone. Structural comparisons between DJ-1, Hsp31, and an Archaea protease, a member of ThiJ/PfpI family, lead to the identification of the chaperone activity of DJ-1 and the proteolytic activity of Hsp31. Moreover, the comparisons provide insights into how the functional diversity is realized in proteins that share an evolutionarily conserved domain. On the basis of the chaperone activity the possible role of DJ-1 in the pathogenesis of Parkinson's disease is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号