首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies of stomatal behaviour on detached epidermisof Commelina communis L. have suggested that abscisic acid (ABA)and C02 act independently to cause stomatal closure. Evidenceis presented here that if indol-3ylacetic acid (IAA) is addedto the medium used for incubating the epidermis, an interactionbetween ABA and Co2 becomes apparent. Increasing concentrationsof IAA reduce the ability of the stomata to respond to CO2,and ABA appears to antagonize this effect. Recognition of therole of IAA enables us to reconcile earlier conflicting reportsconcerning the interdependence of effects of ABA and Co2on stomata.  相似文献   

2.
The Physiology of a Wilty Pea: Abscisic Acid Production under Water Stress   总被引:4,自引:0,他引:4  
‘Wilty’ (JI 1069), a mutant of Pisum sativum, hasbeen examined for its ability to produce abscisic acid (ABA)under water stress. ABA was measured using combined gas chromatography-massspectrometry and multiple-ion-monitoring employing a deuteratedinternal standard. In intact droughted plants, ‘Wilty’produced less ABA than a non-wilty line (JI 1194) and maximumproduction was delayed. Detached leaves of the wilty mutantlost significantly more water than control leaves but did notshow an increase in ABA content. Non-stressed mutant materialfrom both intact plants and isolated leaves contained less ABAthan control tissue. Key words: Pea, Wilty mutant, Abscisic acid  相似文献   

3.
The response of w-1, a wilty sunflower (Helianthus annuus L.)mutant, to water stress is described in comparison with thecontrol line (W-1). Detached leaves of w-1 strongly dehydratedduring the first 30 min without significant changes in leafconductance, whereas W-1 responded rapidly to water loss byreducing stomatal aperture. After 2 h stress ABA increased slightlyin w-1, while W-1 leaves showed a 20-fold increase. When waterstress was imposed to potted plants by water withholding, w-1quickly dehydrated, and lost turgor, while W-1 maintained positiveturgor values for a longer period. Wild-type plants respondedto small changes in leaf water potential by accumulating ABAand by closing stomata, whereas in the mutant significant changesin ABA content and in stomatal conductance were found only atvery low water potentials. In another experiment in which waterwas withheld under high relative humidity, when soil water contentstarted to decrease W-1 rapidly closed stomata in the absenceof any change in leaf water status and the reduction in conductancewas paralleled by a rise in xylem sap ABA concentration. Bycontrast the mutant started to accumulate ABA in the xylem sapand to close stomata when soil water content and leaf waterpotential were dramatically reduced. The low endogenous ABAlevels and the inability to synthesize the hormone rapidly eitherin the leaves or in the roots seem to be responsible for thehigh sensitivity of w-1 to water stress. Key words: ABA, Helianthus annuus L, water relations, stomatal conductance, drought, wilty mutant  相似文献   

4.
Effect of the Mesophyll on Stomatal Opening in Commelina communis   总被引:1,自引:0,他引:1  
The effect of a number of factors on the opening of stomatain the intact leaf and in the isolated leaf epidermis of Commelinacommunishas been investigated. Stomata in the intact leaf opened widein the light and closed rapidly on transfer to the dark. Theywere also sensitive to CO2. In contrast, stomata in isolatedepidermis floated on an incubation solution containing 100 molm–3KCl responded neither to light nor CO2. They opened as widelyas those in the intact leaf when treated with fusicoccin. Stomata in isolated epidermis opened almost as wide as thosein the intact leaf when they were incubated with isolatedmesophyllcells in the light. The solution in which the mesophyll cellswere incubated was separated by centrifugation. Themedium fromcells previously incubated in the light caused the stomata inisolated epidermis to open but that from cells kept inthe darkhad no effect. A similar effect was observed when isolated chloroplastswere incubated with the isolated epidermis.However, the supernatantfrom the chloroplast suspension had no significant effect onstomatal opening. These results indicate that the mesophyll plays an importantrole in stomatal opening in the light. The mesophyll appearstoproduce in the light, but not in the dark, a soluble compoundwhich moves to the guard cells to bring about stomatal opening.Theexperiments with isolated chloroplasts suggest that this substanceis a product of photosynthesis. Key words: Commelina communis, stomata, light, mesophyll  相似文献   

5.
Morphological and physiological characteristics of micropropagatedplants of Delphinium cv. Princess Caroline were studied. Leavesproduced in vitro showed poor control of water loss which appearsto result from restricted responses by stomata and not frompoor cuticular development. Stomata of leaves produced in vitrowere larger and more frequent than those produced during acclimatization.Despite the fact that stomata from isolated epidermis of leavesproduced in vitro reduced their apertures when exposed to turgor-reducingtreatments, they did not close fully. This, together with highstomatal frequencies might explain the poor control of waterloss shown by intact leaves produced in culture when exposedto dry air. While leaves from acclimatized plants showed almostcomplete closure with ABA, low water potentials, darkness andCO2, stomata from leaves produced in vitro reduced their apertureswhen exposed to those factors, but only to a limit. Therefore,stomata from leaves cultured in vitro seem to be partially functional,but some physiological or anatomical alteration prevents themfrom closing fully. Stomata from leaves produced in vitro wereparticularly insensitive to ABA which appears to be partly associatedwith the high cytokinin concentration in the culture medium.In the long-term, this stomatal insensitivity to ABA might contributeto plant losses when micropropagated plantlets are transferredto soil. Key words: Micropropagation, stomatal physiology, dehydration, PEG, ABA, BAP, darkness, CO2, Delphinium  相似文献   

6.
The present study was conducted to evaluate phenotypic interactionin reciprocal grafts between wilty (w-1) sunflower mutant andnormal (W-1) plants. The w-1 genotype is a ‘leaky’ABA-deficient mutant, characterized by high stomatal conductance,in both light and dark conditions, and high transpiration rate. In well-watered conditions, mutant scions grafted on to normalrootstock (w-1/W-1) showed higher leaf relative water content,leaf water potential and ABA levels than those of control grafts(w-1/w-1). In addition, detached leaves of w-1/W-1 exhibitedlower water loss than w-1/w-1 grafts, while mutant rootstockdid not affect the transpiration rate of detached W-1 leaves.When drought stress was imposed to potted plants by withholdingwater, the mutant scions grafted on to normal roots showed apartial phenotypic reversion. A rapid stomatal closure and arise in ABA levels in response to a small decrease in leaf waterpotential was observed. By contrast, in w-1/w-1 grafts significantreductions in stomatal conductance and ABA accumulation weredetected only in conjunction with a severe water deficit. W-1scions on mutant stocks (W-1/w-1) maintained the normal phenotypeof control wild-type grafts (W1/W-1). Key words: ABA, grafting, Helianthus annuus, stomatal conductance, water relations, wilty mutant  相似文献   

7.
Infection of barley leaves by the fungus Rhynchosporium secalisincreases the degree to which stomata open in the light. Openingis enhanced at CO2, levels between 0 and 4000 parts/106. Theability of stomata to close in the dark, as normal, is retaineduntil an advanced stage of tissue necrosis is reached. Increased stomatal opening is confined to those areas of theleaf which have been colonized by the fungus. Abnormal stomatalbehaviour results from the loss of osmotically active substancesfrom the epidermis of diseased leaves with a consequent alterationof the turgor relations between guard cells and their surroundingepidermal cells.  相似文献   

8.
A comparison was made of stomatal behaviour, and related phenomena,between leaves of garden pea (Pisum sativum cv. Feltham First)inoculated with powdery mildew fungus (Erysiphe pisi) and uninfectedleaves on healthy plants. Twenty four hours after inoculation,stomata opened more widely in the light in infected leaves thanin healthy leaves. Thereafter, stomatal opening was progressivelyreduced by infection and stomata failed to close completelyin the dark until, 7 d after inoculation, all movements ceasedand stomata remained partly open. Transpiration in the lightfollowed closely the pattem of stomatal opening and, after anearly increase compared with healthy controls, was progressivelyreduced by infection. Evidence is presented that transpirationfrom the fungus was less than the reduction in transpiraationfrom the leaf which was caused when development of the myceliumincreased the boundary layer resistance of the leaf. Seven daysafter inoculation, transpiration in the dark was greater frominfected leaves than from healthy leaves because of partly openstomata in the dark. Net photosynthesis in infected leaves was reduced within 24h of inoculation to a level below that found in healthy leavesand thereafter it declined progressively. The initial reductionwas due to a transient increase in photorespiration, for whenthe glycolate pathway was inhibited by a 2% O2 concentrationthere was no difference between the (gross) photosynthetic ratesof healthy and infected leaves. Changes in photorespirationrate were confirmed from the interpretation of the CO2 burston darkening. Reduced stomatal opening was a contributory causeof the reduction in net photosynthesis in the later stages ofinfection. Since the rate of gross photosynthesis, but not therate of photorespiration, of infected plants fell below thatof healthy plants, and infected plants had a higher rate ofrelease of CO2 in the dark than healthy plants from the thirdday after inoculation onwards, infected plants consume an increasinglygreater proportion of their photosynthate in respiratory processesthan do healthy plants. The CO2 compensation point of infectedplants increased at every time of sampling after inoculation.  相似文献   

9.
In situ Observations of Stomatal Movements   总被引:8,自引:0,他引:8  
Kappen, L., Andresen, G. and L?sch, R. 1987. In situ observationsof stomatal movements.—J. exp. Bot. 38: 126–141. A device is described by which stomatal movements in situ canbe observed and recorded continuously in light and in darkness.It is mounted in a conditioned CO2 exchange measuring chamberso that stomatal movements can be observed whilst CO2 exchange(photosynthesis and respiration) of the same leaf is measured.Advantages and limitations are discussed. By this method itwas shown that stomata of Vicia faba although responding inthe same direction to environmental stimuli exhibited a widerange of pore widths. Responses to changes of air humidity andof CO2 content were clearly evident when the leaves were exposedto light. Before stomata closed due to decreasing water vapourpressure differences between leaf and air they showed a markedwidening of the pore. An inverse response occurred when watervapour pressure deficit decreased. In darkness stomata did notrespond to such changes. Key words: Stomata, leaf gas exchange, microscopic observation  相似文献   

10.
Previous work has shown that stomata respond directly to light,but it was not clear whether the only additional response isthrough CO2, or whether some other metabolite is involved inthis response. Gas exchange experiments were done with normallypositioned and inverted leaves of Hedera helix to investigatethis problem. The macroscopic optical properties of the leavesand their anatomical structure were also studied. These experimentssnowed that there is no need to postulate the existence of amessenger other than CO2 to explain the indirect response ofstomata to light. The experiments also showed that leaf inversionaffects both stomatal conductance and photosynthesis, and highlightthe difficulties involved in the interpretation of the effectof leaf inversion on stomata when stomatal conductance measurementsare not done concurrently with measurements of CO2 flux densityand intercellular CO2 molar fraction Key words: Hedera helix, ivy, gas exchange, leaf inversion, stomatal conductance, light, CO2 flux density, photosynthesis  相似文献   

11.
Tentoxin and, to a lesser extent, dihydrotentoxin (both at 10mmol m–3) reduce stomatal opening in epidermal stripsof Commelina communis in the light but not in darkness. Thiseffect was significantly greater in normal air than in CO2-freeair. Fusicoccin overcame the tentoxin effect. However, tentoxindid not inhibit stomatal opening in the light in epidermal stripsof Paphiopedilum harrisianum, a species which lacks guard cellchloroplasts. It is concluded that tentoxin exerts its actionon stomata not by an ionophorous effect in the plasmalemma ofguard cells but by the inhibition of photophosphorylation intheir chloroplasts. The effects of DCMU and tentoxin on guardcells are discussed in terms of their effects on chloroplastsand the extent to which energy is supplied from this organelleduring stomatal opening in the light. The results indicate thatneither photophosphorylation nor non-cyclic electron transportin guard cell chloroplasts are essential for stomatal opening. Key words: Commelina, epidermal strips, Paphiopedilum, photophosphorylation, stomata, tentoxin  相似文献   

12.
Abstract Soil waterlogging decreased leaf conductance (interpreted as stomatal closure) of vegetative pea plants (Pisuin sativum L. cv. ‘Sprite’) approximately 24 h after the start of flooding, i.e. from the beginning of the second 16 h-long photo-period. Both adaxial and abaxial surfaces of leaves of various ages and the stipules were affected. Stomatal closure was sustained for at least 3 d with no decrease in foliar hydration measured as water content per unit area, leaf water potential or leaf water saturation deficit. Instead, leaves became increasingly hydrated in association with slower transpiration. These changes in the waterlogged plants over 3 d were accompanied by up to 10-fold increases in the concentration of endogenous abscisic acid (ABA). Waterlogging also increased foliar hydration and ABA concentrations in the dark. Leaves detached from non-waterlogged plants and maintained in vials of water for up to 3 d behaved in a similar way to leaves on flooded plants, i.e. stomata closed in the absence of a water deficit but in association with increased ABA content. Applying ABA through the transpiration stream to freshly detached leaflets partially closed stomata within 15 min. The extractable concentrations of ABA associated with this closure were similar to those found in flooded plants. When an ABA-deficient ‘wilty’ mutant of pea was waterlogged, the extent of stomatal closure was less pronounced than that in ordinary non-mutant plants, and the associated increase in foliar ABA was correspondingly smaller. Similarly, waterlogging closed stomata of tomato plants within 24 h, but no such closure was seen in ‘flacca’, a corresponding ABA-deficient mutant. The results provide an example of stomatal closure brought about by stress in the root environment in the absence of water deficiency. The correlative factor operating between the roots and shoots appeared to be an inhibition of ABA transport out of the shoots of flooded plants, causing the hormone to accumulate in the leaves.  相似文献   

13.
This research examined the hypothesis that as cacti evolve tothe leafless condition, the stem epidermis and cortex becomemore leaflike and more compatible with a photosynthetic role.All cacti in the relict genus Pereskia have non-succulent stemsand broad, thin leaves. All members of the derived subfamilyCactoideae are ‘leafless’, having an expanded cortexthat is the plant's only photosynthetic tissue. In Pereskia,leaves have a high stomatal density (mean: 50.7 stomata mm–2in the lower epidermis, 38.1 mm–2 in the upper epidermis),but stems have low stomatal densities (mean: 11.3 mm 2, threeof the species have none). Stems of Cactoideae have a high stomataldensity (mean: 31.1 mm–2, all species have stomata). Theouter cortex cells of stems of Cactoideae occur in columns,forming a palisade cortex similar to a leaf palisade parenchyma.In this palisade cortex, the fraction of tissue volume availablefor gas diffusion has a mean volume of 12.9%, which is identicalto that of Pereskia leaf palisade parenchyma. Pereskia stemcortex is much less aerenchymatous (mean: 5.3% of cortex volume).Cactoideae palisade cortex has a high internal surface density(0.0207 cm2 cm–2 which is higher than in Pereskia stemcortex (0.0150 cm2 cm–3) but not as high as Pereskia leafpalisade parenchyma (0.0396 cm2 cm–3). Pereskia stem cortexhas no cortical bundles, but Cactoideae cortexes have extensivenetworks of collateral vascular bundles that resemble leaf veins. Cactaceae, cactus, intercellular space, stomatal density, internal surface/volume, evolution  相似文献   

14.
Plants of ryegrass (Lolium perenne L. cv. Melle) were grownfrom the early seedling stage in growth cabinets at a day/nighttemperature of 20/15 °C, with a 12-h photoperiod, and aCO2 concentration of either 340 or 680 ± 15 µl1–1 CO2. Young, fully-expanded, acclimated leaves fromprimary branches were sampled for length of stomata, and ofepidermal cells between stomata, numbers of stomata and epidermalcells per unit length of stomatal row, numbers of stomatal rowsacross the leaf and numbers of stomatal rows between adjacentvein ridges. Elevated CO2 had no significant effect on any ofthe measured parameters. Elevated CO2, Lolium perenne, ryegrass, stomatal distribution, stomatal size  相似文献   

15.
Stomatal Responses and the Senescence of Leaves   总被引:1,自引:0,他引:1  
WARDLE  K.; SHORT  K. C. 《Annals of botany》1983,52(3):411-412
Guard cell responses were examined in green and senescing leavesof Victa faba using detached epidermal strips to eliminate influencesfrom the mesophyll. Stomatal opening was greater in epidermalstrips from mature leaves than from senescing leaves althoughthe latter still retained the ability to respond to CO2 andto kinetin. It was concluded that the decline in stomatal activityduring senescence is an independent but parallel process tochanges occurring in the mesophyll. Vicia faba, leaf senescence, stomata, kinetin  相似文献   

16.
The wilty tomato mutant flacca and the normal variety RheinlandsRuhm were compared in terms of: (1) potassium transport intoand out of the guard cells, (2) cell wall properties which includeprotein, hydroxyproline and peroxidase activity, and (3) activityof indol-3yl-acetic acid oxidase. Also studied were the effectsof auxin on stomatal behaviour and peroxidase activity whenapplied to normal plants during development, and the short-termeffect of abscisic acid on the resistance of flacca stomatato closure under plasmolysis. Potassium transport, wall protein and hydroxyproline all seemedto be equal in mutant and normal plants. Peroxidase activitywas higher in the soluble and wall fractions of the mutant,and decreased toward normal in the mutant treated with abscisicacid. More stomata were open and peroxidase activity was higherin normal plants treated with auxin during development. Thepercentage of open stomata under plasmolysis was lower and theiraperture size was smaller in the epidermal strips taken fromabscisic-acid-treated mutant plants than from control mutantplants.  相似文献   

17.
HENSON  I. E. 《Annals of botany》1983,52(2):247-255
The effects of a period of water stress (drought conditioning)on responses to a second (challenge) stress were examined inyoung vegetative rice (Oryza sativa L.) plants. Drought conditioningdid not affect the rate of subsequent stress development, nor,in a first experiment, did it influence relations between turgor(p) and total () leaf water potential. However, conditioningdid extend the range of p over which stomata remained open andsignificantly reduced the amount of ABA which accumulated inthe leaf at a given p. The change in stomatal behaviour (stomataladjustment) was quantitatively accounted for by the change inleaf ABA accumulation. The reduction in ABA accumulation due to conditioning did notinvolve a change in the potential capacity to produce ABA, asABA accumulation in partially dehydrated detached leaves wasnot reduced by conditioning. It is suggested that effects ofconditioning on leaf ABA content in the intact plant involvechanges in the rate of ABA export from the leaf. Oryza sativa L, rice, drought conditioning, stomata, water stress, abscisic acid  相似文献   

18.
The influence of elevated CO2 concentration (670 ppm) on thestructure, distribution, and patterning of stomata in Tradescantialeaves was studied by making comparisons with plants grown atambient CO2. Extra subsidiary cells, beyond the normal complementof four per stoma, were associated with nearly half the stomatalcomplexes on leaves grown in elevated CO2. The extra cells sharedcharacteristics, such as pigmentation and expansion, with thetypical subsidiary cells. The position and shape of the extrasubsidiary cells in face view differed in the green and purplevarieties of Tradescantia. Substomatal cavities of complexeswith extra subsidiary cells appeared larger than those foundin control leaves. Stomatal frequency expressed on the basisof leaf area did not differ from the control. Stomatal frequencybased on cell counts (stomatal index) was greater in leavesgrown in CO2-enriched air when all subsidiary cells were countedas part of the stomatal complex. This difference was eliminatedwhen subsidiary cells were included in the count of epidermalcells, thereby evaluating the frequency of guard cell pairs.The extra subsidiary cells were, therefore, recruited from theepidermal cell population during development. Stomatal frequencyin plants grown at elevated temperature (29 C) was not significantlydifferent from that of the control (24 C). The linear aggregationsof stomata were similar in plants grown in ambient and elevatedCO2. Since enriched CO2 had no effect on the structure or patterningof guard cells, but resulted in the formation of additionalsubsidiary cells, it is likely that separate and independentevents pattern the two cell types. Plants grown at enrichedCO2 levels had significantly greater internode lengths, butleaf area and the time interval between the appearance of successiveleaves were similar to that of control plants. Porometric measurementsrevealed that stomatal conductance of plants grown under elevatedCO2 was lower than that of control leaves and those grown atelevated temperature. Tradescantia was capable of regulatingstomatal conductance in response to elevated CO2 without changingthe relative number of stomata present on the leaf. Key words: Elevated CO2, stomata, subsidiary cells, patterning  相似文献   

19.
Neill, S. J. and Horgan, R. 1985. Abscisic acid production andwater relations in wilty tomato mutants subjected to water deficiency.—J.exp. BoL 36: 1222-1231. Abscisic acid (ABA) concentrations were determined in shootsof Lycopersicon esculentum Mill. cv. Ailsa Craig wild type andthe three wilty mutants notabilis (not), flacca (flc) and sitiens(sit). ABA content of unstressed wild type leaves was 1.5 nmolg–1 fr. wt.; concentrations in not, flc and sit were 49,26 and 15% of this respectively. Gradual water stress was imposed on potted plants and a morerapid stress imposed on detached leaves. Leaves of the wildtype and not responded to both stresses by increasing theirABA content but leaves of flc and sit did not produce any moreABA under stress. Transpiration rates of flc plants were three times greater thanthose of the wild type and stomatal resistances correspondinglylower. Stomata of both flc and the wild type responded to darknessand externally supplied ABA by closing. However, only wild typestomata responded to water stress by dosing; those of flc leavesremained open until the leaves were severely desiccated. Thus,there was some relationship between the lack of stomatal responseto water stress and the failure to synthesize ABA. Key words: ABA, biosynthesis, stomata, water shortage, wilty mutants  相似文献   

20.
The effects of air temperature (To), leaf-air vapour pressuredifferences [VPD) and water deficit on stomatal responses tochanging irradiance were studied in Phaseolus vulgaris L. Responseswere approximately sigmoidal, with rates of closure being fasterthan the rates of opening. The mean half-time for closure was5.4 min and for the opening 9.2 min. Under water deficit, bothstomatal opening and closing were faster than in well-wateredconditions. Stomata were more sensitive to VPD and water stressthan to To. The higher the VPD or To the more rapid was thestomatal response, except in stressed plants where there wasno significant effect of To. Under water stress, stomata weremore sensitive to water potential (  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号