首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor–ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer‐mediated recycling of the plant VSR BP80 starts at the trans‐Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co‐expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII‐mediated transport route. Retention of soluble cargo despite ongoing COPII‐mediated bulk flow can only be explained by an interaction with membrane‐bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER‐anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR–ligand interaction. It also implies that the retromer‐mediated recycling route for the VSRs leads from the TGN back to the ER.  相似文献   

2.
In yeast, particular emphasis has been given to endoplasmic reticulum (ER)-derived, cisternal maturation models of Golgi assembly while in mammalian cells more emphasis has been given to golgins as a potentially stable assembly framework. In the case of de novo Golgi formation from the ER after brefeldin A/H89 washout in HeLa cells, we found that scattered, golgin-enriched, structures formed early and contained golgins including giantin, ranging across the entire cis to trans spectrum of the Golgi apparatus. These structures were incompetent in VSV-G cargo transport. Second, we compared Golgi competence in cargo transport to the kinetics of addition of various glycosyltransferases and glycosidases into nascent, golgin-enriched structures after drug washout. Enzyme accumulation was sequential with trans and then medial glycosyltransferases/glycosidases found in the scattered, nascent Golgi. Involvement in cargo transport preceded full accumulation of enzymes or GPP130 into nascent Golgi. Third, during mitosis, we found that the formation of a golgin-positive acceptor compartment in early telophase preceded the accumulation of a Golgi glycosyltransferase in nascent Golgi structures. We conclude that during mammalian Golgi assembly components fit into a dynamic, first-formed, multigolgin-enriched framework that is initially cargo transport incompetent. Resumption of cargo transport precedes full Golgi assembly.  相似文献   

3.
Cargo sorting that promotes the transport of cargo proteins from a membrane compartment has been predicted to be unlikely in the endocytic recycling pathways. We now show that ACAP1 binds specifically and directly to recycling cargo proteins. Reducing this interaction for TfR inhibits its recycling. Moreover, ACAP1 binds to two distinct phenylalanine-based sequences in the cytoplasmic domain of TfR that function as recycling sorting signals to promote its transport from the recycling endosome. Taken together, these findings indicate that ACAP1 promotes cargo sorting by recognizing recycling sorting signals.  相似文献   

4.
Hehnly H  Stamnes M 《FEBS letters》2007,581(11):2112-2118
During vesicular transport, the assembly of the coat complexes and the selection of cargo proteins must be coordinated with the subsequent translocation of vesicles from the donor to an acceptor compartment. Here, we review recent progress toward uncovering the molecular mechanisms that connect transport vesicles to the protein machinery responsible for cytoskeleton-mediated motility. An emerging theme is that vesicle cargo proteins, either directly or through binding interactions with coat proteins, are able to influence cytoskeletal dynamics and motor protein function. Hence, a vesicle's cargo composition may help direct its intracellular motility and targeting.  相似文献   

5.
Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway.  相似文献   

6.
Many proteins are transported to the plant vacuole through the secretory pathway in small transport vesicles by a series of vesicle budding and fusion reactions. Vesicles carrying vacuolar cargo bud from the trans-Golgi network are thought to fuse with a pre-vacuolar compartment before being finally transported to the vacuole. In mammals and yeast, the fusion of a vesicle with its target organelle is mediated by a 20S protein complex containing membrane and soluble proteins that appear to be conserved between different species. A number of membrane proteins have been identified in plants that show sequence similarity with a family of integral membrane proteins (t-SNAREs) on target organelles that are required for the fusion of transport vesicles with that organelle. However, the biochemical function of these proteins has remained elusive. Here, we demonstrate for the first time the formation of a 20S complex in plants that has characteristics of complexes involved in vesicle fusion. This complex contains AtPEP12p, an Arabidopsis protein thought to be involved in protein transport to the prevacuolar compartment. In addition, we have shown that AtPEP12p can bind to alpha-SNAP, indicating that AtPEP12p does indeed function as a SNAP receptor or SNARE. These preliminary data suggest that AtPEP12p may function jointly with alpha-SNAP and NSF in the fusion of transport vesicles containing vacuolar cargo proteins with the pre-vacuolar compartment.  相似文献   

7.
Secretory proteins are exported from the endoplasmic reticulum (ER) by bulk flow and/or receptor-mediated transport. Our understanding of this process is limited because of the low number of identified transport receptors and cognate cargo proteins. In mammalian cells, the lectin ER Golgi intermediate compartment 53-kD protein (ERGIC-53) represents the best characterized cargo receptor. It assists ER export of a subset of glycoproteins including coagulation factors V and VIII and cathepsin C and Z. Here, we report a novel screening strategy to identify protein interactions in the lumen of the secretory pathway using a yellow fluorescent protein-based protein fragment complementation assay. By screening a human liver complementary DNA library, we identify alpha1-antitrypsin (alpha1-AT) as previously unrecognized cargo of ERGIC-53 and show that cargo capture is carbohydrate- and conformation-dependent. ERGIC-53 knockdown and knockout cells display a specific secretion defect of alpha1-AT that is corrected by reintroducing ERGIC-53. The results reveal ERGIC-53 to be an intracellular transport receptor of alpha1-AT and provide direct evidence for active receptor-mediated ER export of a soluble secretory protein in higher eukaryotes.  相似文献   

8.
Coat proteins play multiple roles in the life cycle of a membrane‐bound transport intermediate, functioning in lipid bilayer remodeling, cargo selection and targeting to an acceptor compartment. The Coat Protein complex II (COPII) coat is known to act in each of these capacities, but recent work highlights the necessity for numerous accessory factors at all stages of transport carrier existence. Here, we review recent findings that highlight the roles of COPII and its regulators in the biogenesis of tubular COPII‐coated carriers in mammalian cells that enable cargo transport between the endoplasmic reticulum and ER‐Golgi intermediate compartments, the first step in a series of trafficking events that ultimately allows for the distribution of biosynthetic secretory cargoes throughout the entire endomembrane system.  相似文献   

9.
Transport between the trans-Golgi network (TGN) and late endosome represents a conserved, clathrin-dependent sorting event that separates lysosomal from secretory cargo molecules and is also required for localization of integral membrane proteins to the TGN. Previously, we reported a cell-free reaction that reconstitutes transport from the yeast TGN to the late endosome/prevacuolar compartment (PVC) and requires the PVC t-SNARE Pep12p. Here, we report that factors required both for formation of clathrin-coated vesicles at the TGN (the Chc1p clathrin heavy chain and the Vps1p dynamin homolog) and for vesicle fusion at the PVC (the Vps21p rab protein and Vps45p SM (Sec1/Munc18) protein) are required for cell-free transport. The marker for TGN-PVC transport, Kex2p, is initially present in a clathrin-containing membrane compartment that is competent for delivery of Kex2p to the PVC. A Kex2p chimera containing the cytosolic tail (C-tail) of the vacuolar protein sorting receptor, Vps10p, is also efficiently transported to the PVC. Antibodies against the Kex2p and Vps10p C-tails selectively block transport of Kex2p and the Kex2-Vps10p chimera. The requirements for factors involved in vesicle formation and fusion, the identification of the donor compartment as a clathrin-containing membrane, and the need for accessibility of C-tail sequences argue that the TGN-PVC transport reaction involves selective incorporation of TGN cargo molecules into clathrin-coated vesicle intermediates. Further biochemical dissection of this reaction should help elucidate the molecular requirements and hierarchy of events in TGN-to-PVC sorting and transport.  相似文献   

10.
Neurons are highly specialized cells with polarized cellular processes and subcellular domains. As vital organelles for neuronal functions, mitochondria are distributed by microtubule-based transport systems. Although the essential components of mitochondrial transport including motors and cargo adaptors are identified, it is less clear how mitochondrial distribution among somato-dendritic and axonal compartment is regulated. Here, we systematically study mitochondrial motors, including four kinesins, KIF5, KIF17, KIF1, KLP-6, and dynein, and transport regulators in C. elegans PVD neurons. Among all these motors, we found that mitochondrial export from soma to neurites is mainly mediated by KIF5/UNC-116. Interestingly, UNC-116 is especially important for axonal mitochondria, while dynein removes mitochondria from all plus-end dendrites and the axon. We surprisingly found one mitochondrial transport regulator for minus-end dendritic compartment, TRAK-1, and two mitochondrial transport regulators for axonal compartment, CRMP/UNC-33 and JIP3/UNC-16. While JIP3/UNC-16 suppresses axonal mitochondria, CRMP/UNC-33 is critical for axonal mitochondria; nearly no axonal mitochondria present in unc-33 mutants. We showed that UNC-33 is essential for organizing the population of UNC-116-associated microtubule bundles, which are tracks for mitochondrial trafficking. Disarrangement of these tracks impedes mitochondrial transport to the axon. In summary, we identified a compartment-specific transport regulation of mitochondria by UNC-33 through organizing microtubule tracks for different kinesin motors other than microtubule polarity.  相似文献   

11.
Plant vacuolar sorting receptors (VSRs) display cytosolic Tyr motifs (YMPL) for clathrin-mediated anterograde transport to the prevacuolar compartment. Here, we show that the same motif is also required for VSR recycling. A Y612A point mutation in Arabidopsis thaliana VSR2 leads to a quantitative shift in VSR2 steady state levels from the prevacuolar compartment to the trans-Golgi network when expressed in Nicotiana tabacum. By contrast, the L615A mutant VSR2 leaks strongly to vacuoles and accumulates in a previously undiscovered compartment. The latter is shown to be distinct from the Golgi stacks, the trans-Golgi network, and the prevacuolar compartment but is characterized by high concentrations of soluble vacuolar cargo and the rab5 GTPase Rha1(RabF2a). The results suggest that the prevacuolar compartment matures by gradual receptor depletion, leading to the formation of a late prevacuolar compartment situated between the prevacuolar compartment and the vacuole.  相似文献   

12.
We tested if different classes of vacuolar cargo reach the vacuole via distinct mechanisms by interference at multiple steps along the transport route. We show that nucleotide-free mutants of low molecular weight GTPases, including Rab11, the Rab5 members Rha1 and Ara6, and the tonoplast-resident Rab7, caused induced secretion of both lytic and storage vacuolar cargo. In situ analysis in leaf epidermis cells indicates a sequential action of Rab11, Rab5, and Rab7 GTPases. Compared with Rab5 members, mutant Rab11 mediates an early transport defect interfering with the arrival of cargo at prevacuoles, while mutant Rab7 inhibits the final delivery to the vacuole and increases cargo levels in prevacuoles. In contrast with soluble cargo, membrane cargo may follow different routes. Tonoplast targeting of an α-TIP chimera was impaired by nucleotide-free Rha1, Ara6, and Rab7 similar to soluble cargo. By contrast, the tail-anchored tonoplast SNARE Vam3 shares only the Rab7-mediated vacuolar deposition step. The most marked difference was observed for the calcineurin binding protein CBL6, which was insensitive to all Rab mutants tested. Unlike soluble cargo, α-TIP and Vam3, CBL6 transport to the vacuole was COPII independent. The results indicate that soluble vacuolar proteins follow a single route to vacuoles, while membrane spanning proteins may use at least three different transport mechanisms.  相似文献   

13.
Ubiquitin functions as a signal for sorting cargo at multiple steps of the endocytic pathway and controls the activity of trans-acting components of the endocytic machinery (reviewed in refs 1, and 2). By contrast to proteasome degradation, which generally requires a polyubiquitin chain that is at least four subunits long, internalization and sorting of endocytic cargo at the late endosome are mediated by mono-ubiquitination. Here, we demonstrate that ubiquitin-interacting motifs (UIMs) found in epsins and Vps27p (ref. 9) from Saccharomyces cerevisiae are required for ubiquitin binding and protein transport. Epsin UIMs are important for the internalization of receptors into vesicles at the plasma membrane. Vps27p UIMs are necessary to sort biosynthetic and endocytic cargo into vesicles that bud into the lumen of a late endosomal compartment, the multivesicular body. We propose that mono-ubiquitin regulates internalization and endosomal sorting by interacting with modular ubiquitin-binding domains in core components of the protein transport machinery. UIM domains are found in a broad spectrum of proteins, consistent with the idea that mono-ubiquitin can function as a regulatory signal to control diverse biological activities.  相似文献   

14.
Rapidly cycling proteins of the early secretory pathway can operate as cargo receptors. Known cargo receptors are abundant proteins, but it remains mysterious why their inactivation leads to rather limited secretion phenotypes. Studies of Surf4, the human orthologue of the yeast cargo receptor Erv29p, now reveal a novel function of cargo receptors. Surf4 was found to interact with endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-53 and p24 proteins. Silencing Surf4 together with ERGIC-53 or silencing the p24 family member p25 induced an identical phenotype characterized by a reduced number of ERGIC clusters and fragmentation of the Golgi apparatus without effect on anterograde transport. Live imaging showed decreased stability of ERGIC clusters after knockdown of p25. Silencing of Surf4/ERGIC-53 or p25 resulted in partial redistribution of coat protein (COP) I but not Golgi matrix proteins to the cytosol and partial resistance of the cis-Golgi to brefeldin A. These findings imply that cargo receptors are essential for maintaining the architecture of ERGIC and Golgi by controlling COP I recruitment.  相似文献   

15.
Here, we report the localization and characterization of BHKp23, a member of the p24 family of transmembrane proteins, in mammalian cells. We find that p23 is a major component of tubulovesicular membranes at the cis side of the Golgi complex (estimated density: 12,500 copies/μm2 membrane surface area, or ≈30% of the total protein). Our data indicate that BHKp23-containing membranes are part of the cis-Golgi network/intermediate compartment . Using the G protein of vesicular stomatitis virus as a transmembrane cargo molecule, we find that p23 membranes are an obligatory station in forward biosynthetic membrane transport, but that p23 itself is absent from transport vesicles that carry the G protein to and beyond the Golgi complex. Our data show that p23 is not present to any significant extent in coat protein (COP) I-coated vesicles generated in vitro and does not colocalize with COP I buds and vesicles. Moreover, we find that p23 cytoplasmic domain is not involved in COP I membrane recruitment. Our data demonstrate that microinjected antibodies against the cytoplasmic tail of p23 inhibit G protein transport from the cis-Golgi network/ intermediate compartment to the cell surface, suggesting that p23 function is required for the transport of transmembrane cargo molecules. These observations together with the fact that p23 is a highly abundant component in the intermediate compartment, lead us to propose that p23 contributes to membrane structure, and that this contribution is necessary for efficient segregation and transport.  相似文献   

16.
In eukaryotic cells, the budding and fusion of intracellular transport vesicles is carefully orchestrated in space and time. Locally, a vesicle's source compartment, its cargo, and its destination compartment are controlled by dynamic multi-protein specificity modules. Globally, vesicle constituents must be recycled to ensure homeostasis of compartment compositions. The emergence of a novel vesicle pathway therefore requires new specificity modules as well as new recycling routes. Here, we review recent research on local (molecular) constraints on gene module duplication and global (cellular) constraints on intracellular recycling. By studying the evolution of vesicle traffic, we may discover general principles of how complex traits arise via multiple intermediate steps.  相似文献   

17.
Proper cell homeostasis requires the efficient transport of a large variety of soluble acid hydrolases and transmembrane proteins from the trans-Golgi network (TGN) to lysosomes. While most of these molecules reach this degradative compartment, some transmembrane proteins, in particular, the acid hydrolase receptors are retrieved to the TGN. This bidirectional transport process involves the formation of several vesicular transport intermediates in which cargo molecules are selectively packaged. This review summarizes our current understanding of the molecular mechanisms leading to the proper targeting of lysosomal proteins.  相似文献   

18.
Three overlapping pathways mediate the transport of cytoplasmic material to the vacuole in Saccharomyces cerevisiae. The cytoplasm to vacuole targeting (Cvt) pathway transports the vacuolar hydrolase, aminopeptidase I (API), whereas pexophagy mediates the delivery of excess peroxisomes for degradation. Both the Cvt and pexophagy pathways are selective processes that specifically recognize their cargo. In contrast, macroautophagy nonselectively transports bulk cytosol to the vacuole for recycling. Most of the import machinery characterized thus far is required for all three modes of transport. However, unique features of each pathway dictate the requirement for additional components that differentiate these pathways from one another, including at the step of specific cargo selection.We have identified Cvt9 and its Pichia pastoris counterpart Gsa9. In S. cerevisiae, Cvt9 is required for the selective delivery of precursor API (prAPI) to the vacuole by the Cvt pathway and the targeted degradation of peroxisomes by pexophagy. In P. pastoris, Gsa9 is required for glucose-induced pexophagy. Significantly, neither Cvt9 nor Gsa9 is required for starvation-induced nonselective transport of bulk cytoplasmic cargo by macroautophagy. The deletion of CVT9 destabilizes the binding of prAPI to the membrane and analysis of a cvt9 temperature-sensitive mutant supports a direct role of Cvt9 in transport vesicle formation. Cvt9 oligomers peripherally associate with a novel, perivacuolar membrane compartment and interact with Apg1, a Ser/Thr kinase essential for both the Cvt pathway and autophagy. In P. pastoris Gsa9 is recruited to concentrated regions on the vacuole membrane that contact peroxisomes in the process of being engulfed by pexophagy. These biochemical and morphological results demonstrate that Cvt9 and the P. pastoris homologue Gsa9 may function at the step of selective cargo sequestration.  相似文献   

19.
Domains of the TGN: coats, tethers and G proteins   总被引:6,自引:1,他引:5  
The trans-Golgi network is the major sorting compartment of the secretory pathway for protein, lipid and membrane traffic. There is a constant flow of membrane and cargo to and from this compartment. Evidence is emerging that the trans-Golgi network has multiple biochemically and functionally distinct subdomains, each of which contributes to the combined sorting and transport requirements of this dynamic compartment. The recruitment of distinct arrays of protein complexes to trans-Golgi network membranes is likely to produce the diversity of structure and biochemistry observed amongst subdomains that serve to generate different carriers or maintain resident trans-Golgi network components. This review discusses how these subdomains may be formed and examines the molecular players involved, including G proteins, clathrin adaptors and golgin tethers. Diversity within these protein families is highlighted and shown to be critical for the functionality of the trans-Golgi network, as a mediator of protein sorting and membrane transport, and for the maintenance of Golgi structure.  相似文献   

20.
The human ADP-ribosylation factor-like protein, ARF4L is a member of the ARF family, which are small GTP-binding proteins that play significant roles in vesicle transport and protein secretion. However, little is known about the physiological roles of ARF4L. In this study, to understand the biological functions of ARF4L, we carried out immunocytochemical analysis of ARF4L molecules with mutations in the functional domains. ARF4L was shown to be distributed to the plasma membrane following binding to GTP (Q80L), and into endosomes following binding to GDP (T35N). Moreover, the inactive-form of ARF4L (T35N) causes localization of transferrin receptors to the endosomal compartment, while the active form (Q80L) causes transport to the plasma membrane. These findings indicate that ARF4L drive the transport of cargo protein and subsequent fusion of recycling vesicles with the plasma membrane for maintenance of the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号