首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism controlling G(2)/M checkpoint activation after DNA damage was thought to be mediated primarily by nuclear Chk1/Chk2 kinases. Recent evidence indicates that this checkpoint is more complex, involving at least two different biochemical systems that target the Cdc25B and Cdc25C phosphatases. Following genotoxic stress, different kinases integrate signaling from the damaged DNA and other damaged cellular components to regulate Cdc25 inactivation. Our current model for G(2)/M checkpoint activation after genotoxic stress is discussed emphasizing the roles for Chk1 and p38 kinases in checkpoint regulation.  相似文献   

2.
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) kinases regulate cell cycle checkpoints by phosphorylating multiple substrates including the CHK1 and -2 protein kinases and p53. Caffeine has been widely used to study ATM and ATR signaling because it inhibits these kinases in vitro and overcomes cell cycle checkpoint responses in vivo. Thus, caffeine has been thought to overcome the checkpoint through its ability to prevent phosphorylation of ATM and ATR substrates. Surprisingly, I have found that multiple ATM-ATR substrates including CHK1 and -2 are hyperphosphorylated in cells treated with caffeine and genotoxic agents such as hydroxyurea or ionizing radiation. ATM autophosphorylation in cells is also increased when caffeine is used in combination with inhibitors of replication suggesting that ATM activity is not inhibited in vivo by caffeine. Furthermore, CHK1 hyperphosphorylation induced by caffeine in combination with hydroxyurea is ATR-dependent suggesting that ATR activity is stimulated by caffeine. Finally, the G2/M checkpoint in response to ionizing radiation or hydroxyurea is abrogated by caffeine treatment without a corresponding decrease in ATM-ATR-dependent signaling. This data suggests that although caffeine is an inhibitor of ATM-ATR kinase activity in vitro, it can block checkpoints without inhibiting ATM-ATR activation in vivo.  相似文献   

3.
Cells can respond to DNA damage by activating checkpoints that delay cell cycle progression and allow time for DNA repair. Chemical inhibitors of the G(2) phase DNA damage checkpoint may be used as tools to understand better how the checkpoint is regulated and may be used to sensitize cancer cells to DNA-damaging therapies. However, few inhibitors are known. We used a cell-based assay to screen natural extracts for G(2) checkpoint inhibitors and identified debromohymenialdisine (DBH) from a marine sponge. DBH is distinct structurally from previously known G(2) checkpoint inhibitors. It inhibited the G(2) checkpoint with an IC(50) of 8 micrometer and showed moderate cytotoxicity (IC(50) = 25 micrometer) toward MCF-7 cells. DBH inhibited the checkpoint kinases Chk1 (IC(50) = 3 micrometer) and Chk2 (IC(50) = 3.5 micrometer) but not ataxia-telangiectasia mutated (ATM), ATM-Rad3-related protein, or DNA-dependent protein kinase in vitro, indicating that it blocks two major branches of the checkpoint pathway downstream of ATM. It did not cause the activation or inhibition of different signal transduction proteins, as determined by mobility shift analysis in Western blots, suggesting that it inhibits a narrow range of protein kinases in vivo.  相似文献   

4.
The Chk1 protein kinase plays a critical role in a DNA damage checkpoint pathway conserved between fission yeast and animals. We have developed a quantitative assay for Chk1 activity, using a peptide derived from a region of Xenopus Cdc25C containing Ser-287, a known target of Chk1. Variants of this peptide were used to determine the residues involved in substrate recognition by Chk1, revealing the phosphorylation motif Phi-X-beta-X-X-(S/T)*, where * indicates the phosphorylated residue, Phi is a hydrophobic residue (M>I>L>V), beta is a basic residue (R>K) and X is any amino acid. This motif suggests that Chk1 is a member of a group of stress-response protein kinases which phosphorylate target proteins with related specificities.  相似文献   

5.
Fission yeast Mrc1 (mediator of replication checkpoint 1) is an adaptor checkpoint protein required for Rad3-dependent activation of the checkpoint kinase Cds1 in response to arrest of replication forks. Here we report studies on the regulation of Mrc1 by phosphorylation. Replication arrest induced by hydroxyurea (HU) induces Mrc1 phosphorylation that is detected by a change in Mrc1 electrophoretic mobility. Phosphorylation is maintained in cds1Delta, rad3Delta, and tel1Delta single mutants but eliminated in a rad3Delta tel1Delta double mutant. Mrc1 has two clusters of S/TQ motifs that are potential Rad3/Tel1 phosphorylation sites. Mutation of six S/TQ motifs in these two clusters strongly impairs Mrc1 phosphorylation. Two motifs located at S604 and T645 are vital for HU resistance. The T645A mutation strongly impairs a Cds1-Mrc1 yeast two-hybrid interaction that is dependent on a functional forkhead-associated (FHA) domain in Cds1, indicating that phosphorylation of T645 mediates Mrc1's association with Cds1. Consistent with this model, the T645 region of Mrc1 effectively substitutes for the T11 region of Cds1 that is thought to be phosphorylated by Rad3 and to mediate FHA-dependent oligomerization of Cds1. The S/TQ cluster that includes S604 is needed for Mrc1's increased association with chromatin in replication-arrested cells. These data indicate that Rad3 and Tel1 regulate Mrc1 through differential phosphorylation to control Cds1.  相似文献   

6.
All eukaryotes respond to DNA damage by modulation of diverse cellular processes to preserve genomic integrity and ensure survival. Here we identify mammalian Tousled like kinases (Tlks) as a novel target of the DNA damage checkpoint. During S-phase progression, when Tlks are maximally active, generation of DNA double-strand breaks (DSBs) leads to rapid and transient inhibition of Tlk activity. Experiments with chemical inhibitors, genetic models and gene targeting through RNA interference demonstrate that this response to DSBs requires ATM and Chk1 function. Chk1 phosphorylates Tlk1 on serine 695 (S695) in vitro, and this UCN-01- and caffeine-sensitive site is phosphorylated in vivo in response to DNA damage. Substitution of S695 to alanine impaired efficient downregulation of Tlk1 after DNA damage. These findings identify an unprecedented functional co- operation between ATM and Chk1 in propagation of a checkpoint response during S phase and suggest that, through transient inhibition of Tlk kinases, the ATM-Chk1-Tlk pathway may regulate processes involved in chromatin assembly.  相似文献   

7.
The cellular DNA damage response (DDR) is activated by many types of DNA lesions. Upon recognition of DNA damage by sensor proteins, an intricate signal transduction network is activated to coordinate diverse cellular outcomes that promote genome integrity. Key components of the DDR in mammalian cells are the checkpoint effector kinases Chk1 and Chk2 (referred to henceforth as the effector kinases; orthologous to spChk1 and spCds1 in the fission yeast S. pombe and scChk1 and scRad53 in the budding yeast S. cerevisiae). These evolutionarily conserved and structurally divergent kinases phosphorylate numerous substrates to regulate the DDR. This review will focus on recent advances in our understanding of the structure, regulation, and functions of the effector kinases in the DDR, as well as their potential roles in human disease.  相似文献   

8.
Genome integrity is protected by Cds1 (Chk2), a checkpoint kinase that stabilizes arrested replication forks. How Cds1 accomplishes this task is unknown. We report that Cds1 interacts with Rad60, a protein required for recombinational repair in fission yeast. Cds1 activation triggers Rad60 phosphorylation and nuclear delocalization. A Rad60 mutant that inhibits regulation by Cds1 renders cells specifically sensitive to replication fork arrest. Genetic and biochemical studies indicate that Rad60 functions codependently with Smc5 and Smc6, subunits of an SMC (structural maintenance of chromosomes) complex required for recombinational repair. These studies indicate that regulation of Rad60 is an important part of the replication checkpoint response controlled by Cds1. We propose that control of Rad60 regulates recombination events at stalled forks.  相似文献   

9.
The Rad1-Rad9-Hus1 (9-1-1) complex serves a dual role as a DNA-damage sensor in checkpoint signaling and as a mediator in the DNA repair pathway. However, the intercellular mechanisms that regulate the 9-1-1 complex are poorly understood. Jab1, the fifth component of the COP9 signalosome complex, has a central role in the degradation of multiple proteins and is emerging as an important regulator in cancer development. Here, we tested the hypothesis that Jab1 controls the protein stability of the 9-1-1 complex via the proteosome pathway. We provide evidence that Jab1 physically associates with the 9-1-1 complex, and show that this association is mediated through direct interaction between Jab1 and Rad1, one of the subunits of the 9-1-1 complex. Importantly, Jab1 causes translocation of the 9-1-1 complex from the nucleus to the cytoplasm, mediating rapid degradation of the 9-1-1 complex via the 26 S proteasome. Furthermore, Jab1 significantly suppresses checkpoint signaling activation, DNA synthesis recovery from blockage and cell viability after replication stresses such as UV exposure, gamma radiation and treatment with hydroxyurea. These results suggest that Jab1 is an important regulator for the stability of protein 9-1-1 control in cells, which may provide novel information on the involvement of Jab1 in the checkpoint and DNA repair signaling in response to DNA damage.  相似文献   

10.
To investigate the checkpoint response to aberrant initiation, we analyzed the cell cycle checkpoint response induced by mutations of Schizosaccharomyces pombe DNA primase. DNA primase has two subunits, Spp1 and Spp2 (S. pombe primases 1 and 2). Spp1 is the catalytic subunit that synthesizes the RNA primer, which is then extended by DNA polymerase alpha (Polalpha) to synthesize an initiation DNA structure, and this catalytic function of Polalpha is a prerequisite for generating the S-M phase checkpoint. Here we show that Spp2 is required for coupling the function of Spp1 to Polalpha. Thermosensitive mutations of spp2(+) destabilize the Polalpha-primase complex, resulting in an allele-specific S phase checkpoint defect. The mutant exhibiting a more severe checkpoint defect also has a higher extent of Polalpha-primase complex instability and deficiency in the hydroxyurea-induced Cds1-mediated intra-S phase checkpoint response. However, this mutant is able to activate the Cds1 response to S phase arrest induced by temperature. These findings suggest that the Cds1 response to the S-phase arrest signal(s) induced by a initiation mutant is different from that induced by hydroxyurea. Interestingly, a polalphats mutant with a defective S-M phase checkpoint and an spp2 mutant with an intact checkpoint have a similar Polalpha-primase complex stability, and the Cds1 response induced by hydroxyurea or by the mutant arrests at the restrictive temperature. Thus, the Cds1-mediated intra-S phase checkpoint response induced by hydroxyurea can also be distinguished from the S-M phase checkpoint response that requires the initiation DNA synthesis by Polalpha.  相似文献   

11.
Tsvetkov L 《IUBMB life》2004,56(8):449-456
The cell cycle controls processes of DNA replication and segregation of replicated DNA into two daughter cells. These processes are coordinated by multiple signaling pathways, which employ many protein kinases. The members of the family of Polo-like protein kinases are among these key cell cycle regulators. In response to DNA damage and inhibited DNA replication, DNA structure checkpoints delay cell cycle progression to provide cells with time for repair of damaged DNA and protect it from more severe damage. These effects are achieved by affecting key players of the basic cell cycle regulation of the cells with damaged DNA. This review is focused on the interplay between Chk2, a bona fide checkpoint protein kinase, and Polo-like kinases.  相似文献   

12.
13.
Rad17-Mec3-Ddc1 forms a proliferating cell nuclear antigen-like complex that is required for the DNA damage response in Saccharomyces cerevisiae and acts at an early step of the signal transduction cascade activated by DNA lesions. We used the mec3-dn allele, which causes a dominant negative checkpoint defect in G1 but not in G2, to test the stability of the complex in vivo and to correlate its assembly and disassembly with the mechanisms controlling checkpoint activation. Under physiological conditions, the mutant complex is formed both in G1 and G2, although the mutant phenotype is detectable only in G1, suggesting that is not the presence of the mutant complex per se to cause a checkpoint defect. Our data indicate that the Rad17-Mec3-Ddc1 complex is very stable, and it takes several hours to replace Mec3 with Mec3-dn within a wild type complex. On the other hand, the mutant complex is rapidly assembled when starting from a condition where the complex is not pre-assembled, indicating that the critical factor for the substitution is the disassembly step rather than complex formation. Moreover, the kinetics of mutant complex assembly, starting from conditions in which the wild type form is present, parallels the kinetics of checkpoint inactivation, suggesting that the complex acts in a stoichiometric way, rather than catalytically.  相似文献   

14.
15.
Chk1 is an evolutionarily conserved protein kinase that regulates cell cycle progression in response to checkpoint activation. In this study, we demonstrated that agents that block DNA replication or cause certain forms of DNA damage induce the phosphorylation of human Chk1. The phosphorylated form of Chk1 possessed higher intrinsic protein kinase activity and eluted more quickly on gel filtration columns. Serines 317 and 345 were identified as sites of phosphorylation in vivo, and ATR (the ATM- and Rad3-related protein kinase) phosphorylated both of these sites in vitro. Furthermore, phosphorylation of Chk1 on serines 317 and 345 in vivo was ATR dependent. Mutants of Chk1 containing alanine in place of serines 317 and 345 were poorly activated in response to replication blocks or genotoxic stress in vivo, were poorly phosphorylated by ATR in vitro, and were not found in faster-eluting fractions by gel filtration. These findings demonstrate that the activation of Chk1 in response to replication blocks and certain forms of genotoxic stress involves phosphorylation of serines 317 and 345. In addition, this study implicates ATR as a direct upstream activator of Chk1 in human cells.  相似文献   

16.
In yeasts, the replication protein Cdc6/Cdc18 is required for the initiation of DNA replication and also for coupling S phase with the following mitosis. In metazoans a role for Cdc6 has only been shown in S phase entry. Here we provide evidence that human Cdc6 (HuCdc6) also regulates the onset of mitosis, as overexpression of HuCdc6 in G(2) phase cells prevents entry into mitosis. This block is abolished when HuCdc6 is expressed together with a constitutively active Cyclin B/CDK1 complex or with Cdc25B or Cdc25C. An inhibitor of Chk1 kinase activity, UCN-01, overcomes the HuCdc6 mediated G(2) arrest indicating that HuCdc6 blocks cells in G(2) phase via a checkpoint pathway involving Chk1. When HuCdc6 is overexpressed in G(2), we detected phosphorylation of Chk1. Thus, HuCdc6 can trigger a checkpoint response, which could ensure that all DNA is replicated before mitotic entry. We also present evidence that the ability of HuCdc6 to block mitosis may be regulated by its phosphorylation.  相似文献   

17.
Fission yeast Rad3 is a member of a family of phosphoinositide 3-kinase -related kinases required for the maintenance of genomic stability in all eukaryotic cells. In fission yeast, Rad3 regulates the cell cycle arrest and recovery activities associated with the G2/M checkpoint. We have developed an assay that directly measures Rad3 kinase activity in cells expressing physiological levels of the protein. Using the assay, we demonstrate directly that Rad3 kinase activity is stimulated by checkpoint signals. Of the five other G2/M checkpoint proteins (Hus1, Rad1, Rad9, Rad17, and Rad26), only Rad26 was required for Rad3 kinase activity. Because Rad26 has previously been shown to interact constitutively with Rad3, our results demonstrate that Rad26 is a regulatory subunit, and Rad3 is the catalytic subunit, of the Rad3/Rad26 kinase complex. Analysis of Rad26/Rad3 kinase activation in rad26.T12, a mutant that is proficient for cell cycle arrest, but defective in recovery, suggests that these two responses to checkpoint signals require quantitatively different levels of kinase activity from the Rad3/Rad26 complex.  相似文献   

18.
19.
Checkpoints are biochemical pathways that provide cells a mechanism to detect DNA damage and respond by arresting the cell cycle to allow DNA repair. The conserved checkpoint kinase, Chk1, regulates mitotic progression in response to DNA damage by blocking the activation of Cdk1/cyclin B. In this study, we investigate the regulatory interaction between Chk1 and members of the Atm family of kinases and the functional role of the C-terminal non-catalytic domains of Chk1. Chk1 stimulates the kinase activity of DNA-PK (protein kinase) complexes, which leads to increased phosphorylation of p53 on Ser-15 and Ser-37. In addition, Chk1 stimulates DNA-PK-dependent end-joining reactions in vitro. We also show that Chk1 protein complexes bind to single-stranded DNA and DNA ends. These results indicate a connection between components that regulate the checkpoint pathways and DNA-PK complex proteins, which have a role in the repair of double strand breaks.  相似文献   

20.
Liu JS  Kuo SR  Melendy T 《DNA Repair》2006,5(3):369-380
The major eukaryotic single-stranded DNA (ssDNA) binding protein, replication protein A (RPA), is a heterotrimer with subunits of 70, 32 and 14 kDa (RPA70, RPA32 and RPA14). RPA-coated ssDNA has been implicated as one of the triggers for intra-S-phase checkpoint activation. Phosphorylation of RPA occurs in cells with damaged DNA or stalled replication forks. Here we show that human RPA70 and RPA32 can be phosphorylated by purified S-phase checkpoint kinases, ATR and Chk1. While ATR phosphorylates the N-terminus of RPA70, Chk1 preferentially phosphorylates RPA's major ssDNA binding domain. Chk1 phosphorylated RPA70 shows reduced ssDNA binding activity, and binding of RPA to ssDNA blocks Chk1 phosphorylation, suggesting that Chk1 and ssDNA compete for RPA's major ssDNA binding domain. ssDNA stimulates RPA32 phosphorylation by ATR in a length dependent manner. Furthermore, 3'-, but not 5'-, recessed single strand/double strand DNA junctions produce an even stronger stimulatory effect on RPA32 phosphorylation by ATR. This stimulation occurs for both RNA and DNA recessed ends. RPA's DNA binding polarity and its interaction to 3'-primer-template junctions contribute to efficient RPA32 phosphorylation. Progression of DNA polymerase is able to block the accessibility of the 3'-recessed ends and prevent the stimulatory effects of primer-template junctions on RPA phosphorylation by ATR. We propose models for the role of RPA phosphorylation by Chk1 in S-phase checkpoint pathways, and the possible regulation of ATR activity by different nucleic acid structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号