首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feeding behavior, in an ad libitum situation on potato plants in the laboratory, was continuously observed for approximately 7 h/day on 2 successive days for 18 adult femaleLeptinotarsa decemlineata. Additional behaviors were also recorded including resting, walking, biting, local movements, grooming, defecating, and regurgitating. These data were used to calculate a time budget for the various behaviors. The feeding data were analyzed to describe the structure of feeding for young adult females on their normal host plant. The criterion for a meal (minimum intermeal interval) was determined to be 286 s. This criterion was used to distinguish between intra- and intermeal interruptions in feeding for all subsequent analyses. Meals taken from leaves that were young, medium aged, or old did not differ, but on average beetles took 60% of their meals from young leaves. Meal size and meal duration were equally good predictors of when a meal would end. Feeding from stems was a prominent feature for most beetles. The stem meals had much longer durations than leaf meals, but stem feeding did not affect subsequent leaf feeding. The structure of feeding by these beetles is compared with that found in other insects, especiallyLocusta migratoria.  相似文献   

2.
The aim of this study was to relate nutritional and allelochemical variables in a living host plant to the feeding behavior of herbivorous insects in a field setting. We chose to study the foraging behavior of individual folivorous weevils ( Exophthalmus jekelianus ) while they were feeding on Central American mahogany ( Cedrela odorata) in plantation in Costa Rica. All leaves contacted by the weevils during each observation were subjected to chemical analysis, and the weevils' choice of leaves and their meal durations on those leaves were examined with respect to leaf chemical composition. Leaves that contained limonoids (allelochemicals present in the leaves) had fewer meals taken on them than did leaves without limonoids. Regression analysis and factor analysis were employed to investigate associations between leaf chemistry and meal duration. Univariate regressions indicated significant associations between meal duration and sucrose concentration, and between meal duration and nitrogen concentration. Factor analysis indicated that soluble sugars, nitrogen and limonoids were important variables that accounted for variation in meal duration. Sucrose and nitrogen concentrations were incorporated into a mathematical model that predicts the phagostimulatory power of foods in the context of the regulation of multiple nutrients. The model is shown to provide an effective framework for understanding the complex interactions among the chemical constituents of plants in determining foraging behaviour under field conditions.  相似文献   

3.
Analysis of the feeding behavior of animals using such a high temporal resolution that meals can be defined may improve our understanding of the mechanisms regulating feeding. Meals can be distinguished in an ethologically meaningful manner by using the ‘meal criterion’, the shortest non‐feeding interval between feeding bouts recognized as meals. However, such a criterion has only been determined for a few insect species. Applying a recent method developed for assessing meal criteria for vertebrates, we determined the meal criterion for Hylobius abietis (L.) (Coleoptera: Curculionidae) based on data from video recordings of single individuals feeding on seedlings of Norway spruce, Picea abies (L.) Karst. (Pinaceae). The pine weevil is an economically important pest insect, because it feeds on the stem bark of planted conifer seedlings. Weevils had 4–5 meals per day. Each meal lasted about 24 min during which about 13 mm2 of bark per meal were removed. Females had longer total meal durations and longer non‐feeding intervals within meals than males. Girdling seedlings did not affect the weevils' feeding properties. The size of meals was significantly correlated with the duration of non‐feeding intervals before and after them. This study is one of few describing the feeding behavior of an insect at a temporal resolution that allows individual meals to be distinguished. With more meal‐related data from insects available, differences in meal properties may be interpreted based on phylogeny, ecology, and physiology. Our results may also assist in the setup and interpretation of studies of plant‐insect interactions, and facilitate the evaluation and development of methods to protect plants against herbivores.  相似文献   

4.
The mechanism of anticipating long-intervals (16-21 h) was investigated. Rats earned food by interrupting a photobeam in a food trough during 3- or 4-h meals. Intermeal intervals were 16, 21, and 24 h (offset to offset) for independent groups of rats (n=8 per group). After approximately a month of experience with the intermeal intervals, the meals were discontinued. The rate of visiting the food trough increased as a function of time before the meal. When meals were discontinued, visits continued to be periodic. The periodicity was approximately 21 h after 16- and 21-h intermeal intervals and approximately 28 h after 24-h intermeal intervals. These data suggest that long-interval timing is based on a self-sustaining, endogenous oscillator.  相似文献   

5.
Attempts to understand ingestion have sought to understand the control of meals. The present study evaluated a meal definition that included prandial drinking (drinking-explicit meals). The spontaneous nocturnal intake of male Wistar rats was studied. The meal breakpoint was defined as the interval between feeding or drinking events providing the most stable estimate of meal structure. Alternative breakpoints derived from prevailing methodology, log-survivorship, or frequency histogram analysis of interfeeding intervals without respect to drinking were compared (drinking-naive meals). Threshold interfeeding intervals that accounted for drinking indirectly were evaluated as surrogate breakpoints (drinking-implicit meals). Definitions were compared by determining which criterion better conformed to predictions of satiety. Microstructural differences resulting from the definitions were also studied. Under the drinking-explicit definition, rats averaged nine or ten 13-min meals/night, during which they consumed food and water equally in duration (5-6 min) and quantity (2.3 g). Individual differences were observed in microstructure measures. Meals defined by drinking-informed, but not drinking-naive, methods were followed by the behavioral satiety sequence and by an initially low likelihood of resuming feeding that monotonically increased with time. The drinking-explicit definition uniquely revealed preprandial and postprandial correlations of similar magnitude. Under drinking-informed definitions, food restriction increased meal size, whereas drinking-naive definitions increased meal frequency. Drinking-implicit definitions provided workable approximations of meal frequency and size but inferior estimates of feeding duration, eating rate, and the preprandial correlation. Thus log-survivorship analysis is not appropriate for identifying meal breakpoints, and the consideration of drinking in meal definitions can provide a better estimate of meal structure.  相似文献   

6.
Circadian rhythms and patterns of feeding and drinking behavior of 8 male and 8 female Long-Evans rats were followed from 3 months of age (mo) to 21 mo at 3 month intervals. Meal number, draft number and feeding events/min/meal of female rats were greater than those of male rats of the same age, while intermeal intervals, interdraft intervals and licking events/min/draft of male rats were greater than those of female rats. Sex differences of meal number, intermeal intervals and feeding events/min/meal as a group disappeared by 21 mo. Light/dark differences of meal number of both sexes, intermeal intervals of females and licking events/min/draft of males as a group also disappeared by 21 mo and difference of feeding events/min/meal disappeared by 15 and 18 mo in males and females, respectively. Occurrence of age-related change varied from 6 to 21 mo depending upon the parameter of the behavior and period (light or dark). Meal number and feeding events/min/meal showed the most clear-cut age-related changes and the decline occurred earlier and was more remarkable in males than in females. The age-related decline of patterns and the power spectrum of drinking behavior was less prominent than that of feeding behavior. These results indicate that feeding behavior is more affected by the aging process than is the drinking behavior of rats, and that male rats show more prominent aging changes than females.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Conclusions We have attempted to illustrate the importance of nutrient transfer functions and their key quantitative parameters, power and efficiency. While this brief account has focused on one aspect of nutritional behaviour, the duration of intermeal intervals, the models are equally useful for understanding other components of feeding behaviour such as meal size and food switching. Like-wise, they provide a framework for formulating quantitative predictions about the dynamics of the physiological processes involved in digestion, absorption and the utilisation of food. These aspects are dealt with more fully elsewhere.  相似文献   

8.
The variation in spontaneous meal patterning was studied in three genotypes (tau +/+, tau +/?and tau ?/?) of the Syrian hamster with an altered circadian period. Feeding activity was monitored continuously in 13 individuals from each genotype in constant dim light conditions. All three genotypes had on average six feeding episodes during the circadian cycle (about 20h in homozygous tau mutants and 22h in heterozygotes compared with 24h in wild-type hamsters). Thus, homozygous tau mutant hamsters had significantly more feeding episodes per 24h than wild types, and heterozygotes were intermediate. The average duration of feeding bouts (FBs) was indistinguishable (around 30 minutes) among the three genotypes, whereas the intermeal (IM) intervals were significantly shorter for homozygote tau mutant hamsters (99 minutes), intermediate for heterozygotes (116 minutes), and the longest for wild-type hamsters (148 minutes). Thus, the meal-to-meal duration was on average 25% shorter in homozygous tau mutants (16% in heterozygous) than in wild-type hamsters. The reduction of the circadian period has a pronounced effect on short-term feeding rhythms and meal frequency in hamsters carrying the tau mutation. (Chronobiology International, 18(4), 657–664, 2001)  相似文献   

9.
K. C. HAMER  D. R. THOMPSON 《Ibis》1997,139(1):31-39
The pattern of chick feeding in the Fulmar Fulmarus glacialis at St Kilda, Scotland, was examined by repeated weighing of chicks throughout 14 consecutive days during the first half of the chick-rearing period in 1994. After correcting for metabolic weight losses, the sizes of positive mass increments between weighings were used to assess meal sizes and feeding frequency for each chick. Individual meals fed to chicks averaged 80.8 g (s.d. ± 21.0 g), or approximately 10% of adult mass. Each chick received 0 to 4 meals per day, with an average of 1.9 meals per chick per day, giving an average interval of around 25 h between meals delivered by each parent. The distribution of time intervals between feeds for each chick (whether single or double meals) followed a negative exponential function with a maximum value of 80 h. These results are not compatible with the idea that the purpose of large fat deposits in procellariiform chicks is to guarantee survival over long intervals between feeds. Over 14 days, the chicks' mean daily food requirements for zero-growth increased from 98 g to 160 g. This corresponded with an increase in feeding frequency but not meal size. Chicks with lower scores for body condition after feeding by both parents received more meals during the subsequent 16 h and had shorter intervals to the next feed, indicating that adults regulated feeding frequency in accordance with chick condition at the previous feed. This does not agree with the hypothesis that lipid accumulation by nestling Procellariiformes is a response to stochastic variation in food delivery associated with an absence of regulation. In view of the diversity of growth and feeding patterns present among the Procellariiformes, it is possible that lipid accumulation in this group does not have a unitary explanation.  相似文献   

10.
The pattern of feeding of Eastern spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera, Tortricidae) is compared on foliage from white spruce Picea glauca (Moench) Voss. (Pinaceae) trees previously determined to be susceptible and resistant to defoliation by budworm. No differences are observed in electrophysiological responses from taste sensilla to aqueous extracts of the two foliage types, nor is there a preference for either extract type in a choice test. Acetone extracts from the two foliage types are both preferred to a control sucrose solution, although neither elicits a preference relative to the other. These results suggest that there is no difference in phagostimulatory power of internal leaf contents of the two foliage types. Longer‐term observation of feeding behaviour in a no‐choice situation shows no difference in meal duration, confirming the lack of difference in phagostimulatory power. However, on average, intermeal intervals are twice as long on the resistant foliage, leading to an overall lower food consumption during the assay. This result suggests an anti‐digestive or toxic effect of the resistant foliage that slows behaviour and limits food intake. Previous research has shown that waxes of the resistant foliage deter initiation of feeding by the spruce budworm and that this foliage contains higher levels of tannins and monoterpenes. The data suggest that the resistant foliage contains a post‐ingestive second line of defence against the spruce budworm.  相似文献   

11.
Overwintering conditions affect the physiological state of ectotherms, and therefore, their cold hardiness and survival. A measure of the lethal and sublethal impacts of overwintering conditions on pest populations is crucial to predict population dynamics and to manage pests the following spring. The impact of winter conditions can be most intense for invasive insects undergoing range expansion. Insect herbivores can display plastic host use behaviours that depend on their body condition following winter. The pea leaf weevil, Sitona lineatus L. (Coleoptera: Curculionidae), is an invasive pest of field peas, Pisum sativum L., and faba bean, Vicia faba L. (Fabaceae). Pea leaf weevil has expanded its range in North America to include the Prairie Provinces of Canada. This study investigated the effects of temperature and microhabitat on overwintering survival and cold hardiness of pea leaf weevil in its expanded range. Further, we investigated the sublethal effect of overwintering temperature and duration on post-overwintering survival, feeding, and oviposition of pea leaf weevil. We also investigated the role of juvenile hormone in modulating body condition of overwintering weevils. The overwintering survival of pea leaf weevil adults increased with soil temperature and varied with region and microhabitat. More weevils survived winters when positioned near tree shelterbelts compared to open alfalfa fields. The supercooling point of pea leaf weevil varied throughout its expanding range but did not differ for weevils held in the two microhabitats. The average threshold lethal temperature of pea leaf weevil at all three sites was −9.4 °C. Weevils that overwintered for a longer duration and at a higher temperature subsequently fed more on faba bean foliage and laid more eggs compared to those which overwintered for a shorter duration at a lower temperature. Our findings highlight that warm winters would increase overwintering survival and post-overwintering fitness, facilitating further pea leaf weevil invasion northward in the Prairie Provinces of Canada.  相似文献   

12.
This study evaluated how water temperature (26, 28, and 30°C), number of meals per day (one or two meals), and protein percent in diet (20, 25 and 30%) impact growth performance, biometric indices, and feeding behavior of Nile tilapia, Oreochromis niloticus. Fish were randomly allocated into 18 equal replicate groups. Higher final body weight was observed in fish reared at 30°C and fed one meal per day containing 30% crude protein. Better weight gain, weight gain %, feed conversion ratio, specific growth rate, and condition factor were recorded in fish reared at 26°C and fed one meal per day containing 30% protein. The best length weight relationship was obtained in fish reared at 26°C and fed one meal per day containing 30% crude protein. Shorter feeding duration and duration of appetite inhibition latency were recorded in fish reared at 30°C, fed one meal per day, and given a diet containing 30% protein. The highest proactivity was recorded in fish reared at 30°C, received one meal per day, and with 25% crude protein in their diet. Conclusively, rearing Nile tilapia at 26–30°C with a lower feeding frequency (one meal/day) and a 30% crude protein diet achieved better performance and feeding behavior.  相似文献   

13.
Parents of albatross and shearwater species employ a dual foraging strategy, feeding their chicks quickly in repeated short trips and then restoring their own fuel reserves during longer trips. A decline in parental body condition is believed to trigger longer trips, but chick body condition and age may also play a role. To investigate these factors in the little-studied streaked shearwater Calonectris leucomelas, we monitored the nest attendance of 17 pairs on Mikura Island in 2005 using an automated identification system. We also monitored body mass changes and meal masses of 5 of the 17 pairs using an automated weighing system. Although the birds did not show a clear dual foraging pattern, trip duration varied widely from 1 to 15 days. On average, the birds fed chicks 67.6 g during nighttime meals at 2.74-day intervals. Since meal mass did not depend on trip duration, feeding efficiency (meal mass delivered per unit trip duration) decreased as trip duration increased. Parents accumulated more energy reserves when they took longer trips. Parents appeared likely to initiate longer trips when their body condition declined or chick body condition recovered.  相似文献   

14.
Ghrelin is reportedly a meal-initiation signal based on observations that concentrations increase before meals coincident with rising hunger. However, evidence that ghrelin peaks vary with feeding schedules suggests that it rises in anticipation of an expected meal, rather than eliciting feeding. To explore the entrainment of ghrelin profiles, this study investigated the association between varying habitual meal patterns and plasma ghrelin concentrations. Lean and obese adults following either a short intermeal interval (SII) pattern, with 2.5-3.5 h between their habitual breakfast and lunch times, or a long intermeal interval (LII) pattern, with 5.5-6.5 h between these eating occasions, participated. Food intake and appetite were recorded for 2 baseline days. On the subsequent test day, blood samples were collected over 8 h while participants ate a breakfast and lunch matched to their customary meals and pattern. Appetite ratings were obtained and ghrelin, insulin, glucose, and leptin concentrations were measured. Peak ghrelin concentrations differed significantly by group and occurred prior to each group's respective lunch time. Ghrelin concentrations directly correlated with subjective hunger. This association was stronger when hunger preceded ghrelin, a pattern inconsistent with ghrelin causing the hunger rise. Ghrelin concentrations were inversely correlated with insulin, and peak insulin concentrations preceded nadir ghrelin concentrations postprandially. Ghrelin concentrations periprandially, and over the entire test session, did not differ by meal group, likely because of similar intakes between groups. These data demonstrate that the timing of ghrelin peaks is related to habitual meal patterns and may rise in anticipation of eating rather than eliciting feeding.  相似文献   

15.
An automated device was used to examine, in detail, feeding on disks of wheat germ medium by fifth-instar Manduca sextacaterpillars. Comparisons were made between some animals which had ad libitum access to food at all times and others which were deprived of food for 1–5 h before being tested. Feeding patterns of both groups indicated regulation of feeding both between and within meals. Deprived animals ate more during their first meal than did nondeprived animals chiefly by increasing (a) the number of chewing bouts (and thus the meal duration) and (b) the bite frequency. Calculations indicated that the deficit caused by deprivation was made up during the first meal. However, deprived animals continued to eat more than nondeprived ones in subsequent feeding also. Passage of food through the gut was examined by dissecting out the contents of each region of the gut at various times after a colored test meal. Food passed through the foregut directly into the anterior part of the midgut. It stayed in the middle third of the midgut longer than in the anterior and posterior thirds, and the first pellet resulting from the test meal appeared 4 h after the meal. The following mechanisms of feeding regulation are proposed: (a) volumetric feedback mediated by stretch receptors of the foregut and anterior third of the midgut which terminates meals; (b) the development and subsequent reduction of satietyspecific behaviors mediated either by stretch receptors or by some other means which, e.g., allow the next meal to begin; and (c) metabolites whose levels drop during deprivation, triggering a series of events which lead to the excess feeding observed.  相似文献   

16.
Although high protein and low glycemic index (GI) foods are thought to promote satiety, little is known about the effects of GI, protein, and their interaction on hunger and energy intake several hours following a mixed meal. This study investigated the long term effects of GI, protein, and their combined effects on glucose, insulin, hunger, and energy intake in healthy, sedentary, overweight, and obese adults (BMI of 30.9 ± 3.7 kg/m2). Sixteen individuals participated separately in four testing sessions after an overnight fast. The majority (75%) were non‐Hispanic Blacks. Each consumed one of four breakfast meals (high GI/low protein, high GI/high protein, low GI/low protein, low GI/high protein) in random order. Visual analog scales (VAS) and blood samples were taken at baseline, 15 min, and at 30 min intervals over 4 h following the meal. After 4 h, participants were given the opportunity to consume food ad libitum from a buffet style lunch. Meals containing low GI foods produced a smaller glucose (P < 0.002) and insulin (P = 0.0001) response than meals containing high GI foods. No main effects for protein or interactions between GI and protein were observed in glucose or insulin responses, respectively. The four meals had no differential effect on observed energy intake or self‐reported hunger, satiety, and prospective energy intake. Low GI meals produced the smallest postprandial increases in glucose and insulin. There were no effects for GI, protein, or their interaction on appetite or energy intake 4 h after breakfast.  相似文献   

17.
The stomach, cholecystokinin, and satiety   总被引:1,自引:0,他引:1  
The stomach of the rhesus monkey empties liquids in a fashion that varies with the character of the solutions. Physiological saline empties exponentially. Glucose solutions empty biphasically--rapidly for the first minutes, then slowly and proportionately to glucose concentration to deliver glucose calories through the pylorus at a regulated rate (0.4 kcal/min). This prolonged and regulated second phase of gastric emptying depends on intestinal inhibition of the stomach. Cholecystokinin (CCK), a hormone released by food in the intestine, is an inhibitor of gastric emptying. In vitro receptor autoradiography demonstrates CCK receptors to be clustered on the circular muscle of the pylorus. Exogenous CCK, in doses that inhibit gastric emptying, will reduce food intake only if combined with an infusion of saline in the stomach. These observations indicate how gastric distension can be a means for provoking satiety. The variably sustained distension produced by the stomach's slow, calorically regulated emptying could prolong intermeal intervals and thus permit high-calorie meals to inhibit further caloric intake over time. CCK, by directly inhibiting gastric emptying during a meal, could promote gastric distension and so restrict the duration and size of individual meals.  相似文献   

18.
Meals have long been considered relevant units of feeding behavior. Large data sets of feeding behavior of cattle, pigs, chickens, ducks, turkeys, dolphins, and rats were analyzed with the aims of 1) describing the temporal structure of feeding behavior and 2) developing appropriate methods for estimating meal criteria. Longer (between-meal) intervals were never distributed as the negative exponential assumed by traditional methods, such as log-survivorship analysis, but as a skewed Gaussian, which can be (almost) normalized by log-transformation of interval lengths. Log-transformation can also normalize frequency distributions of within-meal intervals. Meal criteria, i.e., the longest interval considered to occur within meals, can be estimated after fitting models consisting of Gaussian functions alone or of one Weibull and one or more Gaussian functions to the distribution of log-transformed interval lengths. Nonuniform data sets may require disaggregation before this can be achieved. Observations from all species were in conflict with assumptions of random behavior that underlie traditional methods for criteria estimation. Instead, the observed structure of feeding behavior is consistent with 1) a decrease in satiety associated with an increase in the probability of animals starting a meal with time since the last meal and 2) an increase in satiation associated with an increase in the probability of animals ending a meal with the amount of food already consumed. The novel methodology proposed here will avoid biased conclusions from analyses of feeding behavior associated with previous methods and, as demonstrated, can be applied across a range of species to address questions relevant to the control of food intake.  相似文献   

19.
We measured oxygen consumption in juvenile Chinese striped-necked turtles (Ocadia sinensis) after they ingested food, either as a single meal or as double meals, to examine the influence of meal type and feeding frequency on specific dynamic action (SDA). Temporal variation in oxygen consumption after feeding was evident in the ingesting turtles but not in the unfed control turtles. In the single-meal experiment, the peak metabolic rate and the integrated SDA response (the whole energetic cost for the processes of digestion) both did not differ between turtles ingesting mealworms and shrimps when the influence of variation in ingested energy was removed, and the time to reach peak metabolic rate was not affected by meal type and the amount of food ingested. Turtles in the double-meal experiment ingested more energy and hence had a prolonged duration of SDA response than did those in the single-meal experiment, but the integrated SDA response did not differ between both experimental treatments when the influence of variation in ingested energy was removed. Our results show that meal type and feeding frequency have important consequences on the SDA response of juvenile O. sinensis. As the integrated SDA response remained remarkably constant either between turtles ingesting different food or between turtles ingesting the same food but at different frequencies when the influence of variation in ingested energy was removed, we therefore conclude that the energetic cost associated with ingestion is primarily determined by energy content of food ingested in juvenile O. sinensis.  相似文献   

20.
ABSTRACT The influence of simultaneously varying the levels in artificial diets of protein, digestible carbohydrate (14% or 28%) and tannic acid (absent or 10%) on the feeding behaviour of the oligophagous Locusta migratoria (L.) and the polyphagous Schistocerca gregaria (Forskal) (Acrididae) was investigated. Total consumption and detailed feeding behaviour were recorded over a 12 h period in choice and no-choice experiments. In addition, amounts eaten by Schistocerca of the 14% protein, 14% carbohydrate diet with and without tannic acid were measured at regular intervals throughout the fifth stadium, and insect growth over this period was recorded. There were no interactive effects of nutrient levels and tannic acid, despite the fact that both species compensated for dilution of dietary protein by increasing consumption. Only male Locusta compensated for dilution of dietary carbohydrates, and this compensation was much less marked than for protein. Tannic acid did influence feeding as a main effect, however. It caused an increase in amounts eaten by Schistocerca in both choice and no-choice experiments. This increased consumption was due to an increase in the number of meals taken. A shorter latency period before and a longer duration of the first meal by naive insects suggested a phagostimulatory rather than a post-ingestive effect of tannic acid. The stimulatory effect was only apparent for the first 24 h of continuous exposure, but this temporary enhancement none the less resulted in the insects being heavier at adult ecdysis. Stadium duration was also somewhat reduced. In a no-choice situation, no effect of tannic acid on the feeding behaviour of Locusta was observed. When given a choice, however, this species took significantly more meals on the tannic acid-free diet, these being of similar average size to meals taken on the tannic acid diet. Significantly more insects took their first meals on the tannic acid-free diet in the choice test, indicating a deterrent effect of tannic acid in Locusta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号