首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spermine inhibited the transport of neutral aliphatic amino acids (valine, leucine, isoleucine, alanine, and glycine) into cells of Micrococcus lysodeikticus. On the other hand, spermine did not affect the uptake of basic (arginine and histidine), acidic (glutamic acid), or aromatic (phenylalanine and tyrosine) amino acids. Inhibition of uptake of the neutral amino acids by spermine is apparently of a noncompetitive nature; the V(max) decreased, whereas the apparent K(m) remained unaltered. The inhibition is most likely due to a specific binding of spermine to the carrier(s) of these amino acids. Related polyamines, spermidine and cadaverine, also caused inhibition of valine uptake, though to a lesser extent; spermidine was less active than spermine, and cadaverine showed the weakest effect of all. Valine, leucine, and isoleucine were transported into M. lysodeikticus cells by a common carrier as evidenced from competition experiments. The uptake of these amino acids is an active process; it was temperature-dependent and inhibited by azide (10(-1)m to 2.5 x 10(-2)m) and dinitrophenol (10(-3)m). The intracellular concentration of valine was 100-fold higher than in the medium.  相似文献   

2.
Vacuolar membrane vesicles of Saccharomyces cerevisiae accumulated spermine and spermidine in the presence of ATP, not in the presence of ADP. Spermine and spermidine transport at pH 7.4 showed saturation kinetics with Km values of 0.2 mM and 0.7 mM, respectively. Spermine uptake was competitively inhibited by spermidine and putrescine, but was not affected by seven amino acids, substrates of active transport systems of vacuolar membrane. Spermine transport was inhibited by the H(+)-ATPase-specific inhibitors bafilomycin A1 and N,N'-dicyclohexylcarbodiimide, but not by vanadate. It was also sensitive to Cu2+ or Zn2+ ions, inhibitors of vacuolar H(+)-ATPase. Both 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile (SF6847) and nigericin blocked completely the spermine uptake, but valinomycin did not. [14C]Spermine accumulated in the vesicles was exchangeable with unlabeled spermine and spermidine. However, it was released by a protonophore only in the presence of a counterion such as Ca2+. These results indicate that a polyamine-specific transport system depending on a proton potential functions in the vacuolar membrane of this organism.  相似文献   

3.
We present evidence that polyamine uptake into rat liver mitochondria is mediated by a specific polyamine uniporter. Polyamine transport is not mediated by the ornithine, lysine, or Ca2+ transporters of mitochondria. Polyamine transport is a saturable process, with apparent Km values of 0.13 mM for spermine, 0.26 mM for spermidine, and 1 mM for putrescine. These substrates are mutually competitive inhibitors, indicating a common transport system. Polyamine transport is strictly dependent on membrane potential and insensitive to medium pH, showing that these polycations are transported electrophoretically. Spermine, spermidine, and putrescine are taken up by rat liver mitochondria at rates that increase with increasing valence of the transported species. The activation enthalpies for transport were 24, 32, and 59 kJ/mol for putrescine, spermidine, and spermine, respectively. These values, which amount to about 12 kJ/mol per charge transferred, may be compared to a value of 76 kJ/mol observed for monovalent tetraethylammonium cation. Flux-voltage analysis is consistent with the hypothesis that the mitochondrial polyamine transporter catalyzes transport via a channel mechanism.  相似文献   

4.
Spermidine was detected as the major polyamine of Ancylostoma ceylanicum as well as Nippostrongylus brasiliensis. Spermine was present in lower amounts whereas the level of putrescine was even less. S-Adenosylmethionine decarboxylase, a rate-limiting enzyme in the biosynthetic pathway of polyamines, was demonstrated at low levels in both parasites. Decarboxylation of lysine and arginine was absent or negligible and that of ornithine questionable, as the enzyme activity was not inhibited by alpha-difluoromethylornithine while RMI 71,645, an irreversible inhibitor of ornithine aminotransferase, strongly inhibited the liberation of CO2 from ornithine. High activity of ornithine aminotransferase was observed in both the parasites and may interfere with the assay for ornithine decarboxylase. Adults of A. ceylanicum were found to rapidly take up spermidine and spermine from incubation medium while uptake of putrescine was very low. These results indicate that hookworms depend on uptake and interconversion rather than de novo synthesis for their polyamine requirement.  相似文献   

5.
It has been reported that Gap1p on the plasma membrane of Saccharomyces cerevisiae can catalyze the uptake of many kinds of amino acids. In the present study, we found that Gap1p also catalyzed the uptake of putrescine and spermidine, but not spermine. The Km and Vmax values for putrescine and spermidine were 390 and 21 microM, and 4.6 and 0.59 nmol/min/mg protein, respectively. The uptake of putrescine was strongly inhibited by basic amino acids, lysine, arginine, and histidine, whose Ki values were 25-35 microM. Thus, it is deduced that spermidine and basic amino acids have almost the same affinity for Gap1p. When the concentrations of amino acids in the medium were reduced to one-third and 0.5 mM putrescine or 0.1 mM spermidine was added to the medium, accumulation of putrescine or spermidine by Gap1p was observed. Furthermore, when yeast was transformed with the GAP1 gene and cultured in the presence of 60 mM putrescine, cell growth was inhibited through overaccumulation of putrescine. GAP1 mRNA was found to be induced by polyamines. This is the first report of the identification, at a molecular level, of a polyamine uptake protein on the plasma membrane in eukaryotes.  相似文献   

6.
Polyamines (putrescine, spermidine, and spermine) are normal cellular constituents able to modulate cellular proliferation and differentiation in a number of developing systems. Ornithine decarboxylase (ODC), the rate-limiting enzyme in the polyamine biosynthetic pathway, has been shown to be causally related to an increase in glycosaminoglycan synthesis in murine embryonic palatal mesenchyme cells (MEPM). In order to understand other mechanisms that exist to regulate polyamine levels in cells derived from the developing craniofacial area, the present study investigated the capacity of MEPM cells to accumulate exogenous putrescine and tests the hypothesis that polyamine transport can serve as an adaptational response of MEPM cells to a change in their ability to synthesize polyamines. Transport was initiated in confluent cultures of MEPM cells by the addition of 0.1 microCi/ml of 14C-putrescine. The rate of transport, monitored for 20-120 minutes, was found to be a time-dependent saturable process. The rate of initial transport, determined by incubating MEPM cells for 15 minutes in the presence of different concentrations (1.0-20.0 microM) of 14C-putrescine, was also found to be saturable, suggesting a carrier-mediated event. Lineweaver-Burk analysis of these data revealed an apparent Km of 5.78 microM and a Vmax of 2.63 nmol/mg protein/15 minutes. Transport measured either at 4 degrees C or in the presence of 2-4 DNP was dramatically inhibited. Thus, putrescine transport is an active process, dependent upon metabolic energy. Conditions in which 1) NaCl was iso-osmotically replaced with choline chloride or 2) the Na+-electrochemical gradient was dissipated with Na+, K+-specific ionophores resulted in a decreased rate of transport indicating that putrescine transport in these cells is Na+ dependent. Noncompetitive inhibition assays utilizing sulfhydryl reagents that blocked sulfhydryl groups inhibited putrescine transport, suggesting that sulfhydryl groups are important for putrescine uptake. Competitive inhibition assays demonstrated that while spermidine and spermine inhibited putrescine uptake, ornithine did not inhibit transport. Spermidine, spermine, and putrescine thus appear to share a common transport system that is separate from that for ornithine. Putrescine transport is subject to adaptive regulation in both exponentially growing and confluent cultures of MEPM cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Spermidine biosynthesis was extremely low early in germination of Bacillus megaterium spores and the spermidine level remained constant. Rapid synthesis began after 130 min and thereafter accounted for the increase in spermidine level which began at this time. Biosynthesis was greatly (>84%) diminished by exogenous spermine or spermidine. Arginine and ornithine were both converted efficiently into spermidine, but arginine was the more immediate precursor as shown by isotope competition studies and by the absence of ornithine decarboxylase and the presence of arginine decarboxylase. Exogenous putrescine was not incorporated into spermidine, although it was taken up rapidly and degraded.  相似文献   

8.
Putrescine transport in human platelets   总被引:1,自引:0,他引:1  
Putrescine transport has been studied in human platelets. The uptake of putrescine is saturable and appears to be an energy-dependent process, since it is inhibited by the uncoupler 2,4-dinitrophenol and low temperature. The evidence presented suggests that the uptake process is complex and may be dependent upon pH gradient, membrane potential, and other unidentified factors. Putrescine transport is not inhibited by amino acids and is only slightly inhibited by spermidine and spermine. A membrane protein involved in putrescine transport has been identified and partially purified. Differential labeling with N-ethylmaleimide identified proteins with apparent molecular weights of 65000 and 23000 as determined by SDS-polyacrylamide gel electrophoresis. Column chromatographic purification on a putrescine affinity column revealed a Mr 55000 protein which copurified with the Mr 65000 protein. Additional evidence supporting the involvement of these proteins in putrescine transport was seen in putrescine protection against N-ethylmaleimide inhibition of putrescine uptake. Putrescine uptake may occur via the serotonin transport system, since imipramine inhibits transport and because of the similarities in the molecular weights of the proteins implicated in transport.  相似文献   

9.
Abstract— The clearance of the polyamines spermidine and spermine from cerebrospinal fluid was investigated in the rabbit by ventriculocisternal perfusion. Clearance involved both saturable and nonsaturable uptake processes. The saturable component was a high affinity system with an affinity constant of 21 μ m for spermidine and 24 μ m for spermine. The clearance of spermidine was reduced by the presence of spermine and vice-versa. Other polyamine congeners also reduced spermidine and spermine clearance and it is suggested that the two polyamines share the same carrier. Evidence for concentrative uptake of polyamines into choroid plexus is presented and it is suggested that an active system may also transport polyamines into brain tissue. At high perfusion concentrations simple diffusion may also take place.  相似文献   

10.
We have examined the effect of difluoromethylornithine on the ability of B16 melanoma cells to take up putrescine and the 4,4'-dipyridyl herbicide paraquat. Pretreatment with difluoromethylornithine for 24 hr enhanced putrescine uptake by inducing the maximum capacity of the transport system without affecting the Km for the substrate. Paraquat uptake was minor compared with that of putrescine and was not affected by difluoromethylornithine. Neither putrescine, spermidine or spermine at concentrations up to 100 microM inhibited the accumulation of paraquat. However, paraquat competitively inhibited putrescine transport (Ki = 54 +/- 10 microM). Exposure of the B16 melanoma cells for 24 hr to increasing concentrations of paraquat produced a dose-dependent inhibition of DNA synthesis. Difluoromethylornithine pretreatment did not affect paraquat toxicity. These data show that paraquat is not taken up into B16 melanoma cells by the uptake system responsible for transporting putrescine. Moreover, it is likely that the difluoromethylornithine inducible polyamine transport system in B16 melanoma cells is characteristically different to that previously described in normal mammalian lung since the latter is reportedly capable of transporting both putrescine and paraquat.  相似文献   

11.
Mouse mammary gland has been shown to possess a transport system for spermidine, spermine, and putrescine. The uptake system for sperimidine, as studied in detail on mammary explants in culture is a time-dependent, energy-requiring process which can be stimulated by insulin and prolactin. The stimulatory effect of insulin involves both enhancement of Vmax for spermidine influx and prevention of efflux of the polyamine, whereas prolactin, in the presence of insulin, elicits a greater increase in Vmax for spermidine. Studies are also reported on the effects of temperature, concentration, and various inhibitors on this system. The accumulated spermidine exists virtually in an unchanged form with little metabolic conversion to either spermine or putrescine or to its conjugated form. In contrast, spermine and putrescine, both of which are also taken up by mammary explants, undergo metabolic conversion to spermidine.  相似文献   

12.
Activities of aminopropyltransferases (spermidine synthase and spermine synthase) were inhibited by aurintricarboxylic acid (ATA). Spermidine synthase was slightly more sensitive to the inhibitor than spermine synthase. These inhibitions were not prevented by 0.15 M NaCl. Inhibition by ATA of spermidine synthase was ‘uncompetitive’ with respect to putrescine and that of spermine synthase was ‘non-competitive’ with respect to spermidine. When the amount of spermidine synthase or spermine synthase was varied, inhibition ratio hardly changed on either case implying no appreciable interaction between ATA and these enzymes.  相似文献   

13.
Synaptosomes isolated from rat brain accumulated cysteic acid by a high-affinity transport system (Km = 12.3 +/- 2.1 microM; Vmax = 2.5 nmol mg protein-1 min-1). This uptake was competitively inhibited by aspartate (Ki = 13.3 +/- 1.8 microM) and cysteine sulfinate (Ki = 13.3 +/- 2.3 microM). Addition of extrasynaptosomal cysteate, aspartate, or cysteine sulfinate to synaptosomes loaded with [35S]cysteate induced rapid efflux of the cysteate. This efflux occurred via stoichiometric exchange of amino acids with half-maximal rates at 5.0 +/- 1.1 microM aspartate or 8.0 +/- 1.3 microM cysteine sulfinate. Conversely, added extrasynaptosomal cysteate exchanged for endogenous aspartate and glutamate with half-maximal rates at 5.0 +/- 0.4 microM cysteate. In the steady state after maximal accumulation of cysteate, the intrasynaptosomal cysteate concentrations exceeded the extrasynaptosomal concentrations by up to 10,000-fold. The measured concentration ratios were the same, within experimental error, as those for aspartate and glutamate. Depolarization, with either high [K+] or veratridine, of the plasma membranes of synaptosomes loaded with cysteate caused parallel release of cysteate, aspartate, and glutamate. It is concluded that neurons transport cysteate, cysteine sulfinate, aspartate, and glutamate with the same transport system. This transport system catalyzes homoexchange and heteroexchange as well as net uptake and release of all these amino acids.  相似文献   

14.
The uptake of intracellular putrescine and spermidine was examined in B16 melanoma cells. It was found that difluoromethylornithine preferentially induced putrescine transport (28-fold) compared to that for spermidine (3.5-fold). Putrescine uptake was partially Na+ dependent, whereas spermidine uptake was not. Inhibition studies with the two polyamines showed that putrescine was a poor competitive inhibitor of spermidine uptake, exhibiting a Ki of 69-75 microM, whereas the estimated Km for putrescine uptake was only 5.36 microM. By contrast, spermidine inhibition of putrescine transport produced a non-linear Eadie-Scatchard plot suggesting that putrescine was taken up by a spermidine-sensitive and a spermidine-insensitive process. The estimated spermidine Ki for inhibition of the spermidine-sensitive process was 0.125 microM. Using a series of polypyridinium quaternary salts to inhibit transport, no correlation between inhibition of putrescine uptake and inhibition of spermidine uptake was seen. Finally, the photoaffinity label, 1,12-di(N5-azido-2-nitrobenzoyl)spermine selectively inactivated the putrescine transporter(s) without affecting spermidine uptake. From these observations, it was concluded that multiple polyamine transporters are present on B16 melanoma cells and that separate, distinct transporter(s) account for the uptake of putrescine and spermidine in this cell-line following induction with difluoromethylornithine. The present of different transporters for the two polyamines indicates that expression of uptake activity for putrescine and spermidine may be under separate cellular control.  相似文献   

15.
At optimum magnesium, the translation of rat heart mRNA in the nuclease treated rabbit reticulocyte lysate system was inhibited by low concentrations of spermidine or spermine but not of putrescine. Spermidine and spermine cause a general reduction in the translation of all the heart mRNAs since no differential effects were observed when the translation products were examined by gel electrophoresis. Spermine was a five times more potent inhibitor than spermidine but no inhibition was obtained with N1-acetylspermidine or N1-acetylspermine. Since analyses of endogenous polyamines demonstrate that the inhibitory concentrations of spermine could be obtained by converting a small fraction of the endogenous spermidine to spermine, these results indicate that interconversions of the polyamines might be a sensitive regulatory mechanism for protein synthesis.  相似文献   

16.
Ornithine transport and exchange in Streptococcus lactis.   总被引:2,自引:2,他引:0       下载免费PDF全文
Resting cells of Streptococcus lactis 133 appeared to accumulate [14C]ornithine to a high concentration in the absence of an exogenous energy source. However, analysis of intracellular amino acid pool constituents and results of transport experiments revealed that the accumulation of ornithine represented a homoexchange between extracellular [14C]ornithine and unlabeled ornithine in the cell. The energy-independent exchange of ornithine was not inhibited by proton-conducting uncouplers or by metabolic inhibitors. Intracellular [14C]ornithine was retained by resting cells after suspension in a buffered medium. However, addition of unlabeled ornithine to the suspension elicited rapid exit of labeled amino acid. The initial rate of exit of [14C]ornithine was dependent on the concentration of unlabeled ornithine in the medium, but this accelerative exchange diffusion process caused no net loss of amino acid. By contrast, the presence of a fermentable energy source caused a rapid expulsion of and net decrease in the concentration of intracellular ornithine. Kinetic analyses of amino acid transport demonstrated competitive inhibition between lysine and ornithine, and data obtained by two-dimensional thin-layer chromatography established the heteroexchange of these basic amino acids. The effects of amino acids and of ornithine analogs on both entry and exit of [14C]ornithine have been examined. The data suggest that a common carrier mediates the entry and exchange of lysine, arginine, and ornithine in cells of S. lactis.  相似文献   

17.
The polyamine uptake system in bovine lymphocytes was activated by concanavalin A. The system was common to putrescine, spermidine and spermine. The Kt values for uptake activities of putrescine, spermidine and spermine were 3.7 microM, 0.38 microM and 0.23 microM in that order. The uptake activity was inhibited by carbonyl cyanide m-chlorophenylhydrazone, gramicidin D or valinomycin in the presence of 20 mM K+ suggesting that polyamine uptake depends on the membrane potential. The uptake activity appeared 10 h after addition of concanavalin A, and the maximum was reached at 28 h indicating that induction of the polyamine transporter precedes the initiation of DNA synthesis. Addition of polyamine antimetabolites, such as alpha-difluoromethylornithine and ethylglyoxal bis(guanylhydrazone), to the medium enhanced at least eightfold the induction of the polyamine transporter. The induction was repressed by addition of 50 microM spermidine or spermine, but not putrescine. We propose here that the induction of the membrane-potential-dependent polyamine transporter is regulated by the intracellular level of spermidine and spermine.  相似文献   

18.
Summary Putrescine, spermine, spermidine, and agmatine in concentrations between 5–15 g/ml inhibit pollen germination. Whereas spermine reduces pollen tube length, putrecine and agmatine do not affect pollen tube growth. Spermidine effects a small increase (about 5%) of pollen tube elongation. Spermine and spermidine can be found in pollen. Addition of spermine (7 or 10 g/ml) depresses protein synthesis, whilst spermidine does not affect protein synthesis. On the basis of uridine-5-T incorporation it could be shown that both spermine and spermidine increase RNA synthesis. On tho basis of thymidine-T incorporation in the first hpurs of germination it seems that DNA synthesis is also stimulated by spermine and spermidine present in the medium. A net increase of nucleic acids was found when spermidine was added to the germination substrate.These results are interpreted as suggesting that, in the pollen tubes investigated, polyamine concentration may be a factor in the regulation of nucleic acid synthesis, resulting in a prolonged synthesis of specific proteins and in this way influencing growth and the developmental pattern of pollen tubes.  相似文献   

19.
Polyamines stimulate lysosomal cystine transport   总被引:1,自引:0,他引:1  
Lysosomal cystine transport is a carrier-dependent process that, in isolated lysosomes, is stimulated by proton gradients, membrane potential, and millimolar concentrations of divalent cations. The importance of these regulatory factors in vivo is not well established. Polyamines were found to stimulate cystine transport in Percoll gradient purified rat liver lysosomes with spermidine greater than putrescine = cadaverine greater than spermine in order of effectiveness. Maximal stimulation was achieved with 500 microM spermidine. The effects of optimal concentrations of polyamines and divalent cations on cystine transport were not additive. Spermidine stimulated cystine efflux from lysosomes of cultured human diploid fibroblasts, but had no effect on lysosomes of cystinotic fibroblasts which have defective cystine transport. Spermidine did not accumulate within lysosomes in exchange for cystine, had no effect on lysosomal pH, had only slight effects on the lysosomal membrane potential, and had little effect on either methionine or tyrosine efflux. Polyamines are cellular cytoplasmic components that, in physiologic concentrations, stimulate lysosomal cystine transport.  相似文献   

20.
1. The polyamines, putrescine, spermidine and spermine occur in free or acetylated form in a wide variety of living organisms. Putrescine is biosynthesized from ornithine or arginine; spermidine and spermine from methionine and either ornithine or arginine. 2. It is difficult to determine the intracellular distribution of polyamines since they are all very soluble in water and they are readily redistributed when cells are disrupted. Evidence suggests that a substantial proportion of the intracellular polyamines is attached to the ribosomes and that spermidine is not concentrated in the nucleus. 3. Polyamines bind strongly to both DNA and RNA. The strength of binding is:spermine > spermidine > putrescine. Polyamines stabilize the double helix of DNA, probably by forming a bridge across the narrow groove, by involving electrostatic bonding with the phosphate group. However, they do not appear to alter the overall conformation of DNA. Spermine enables single-stranded RNA to fold into a more compact configuration which is less susceptible to attack by ribonuclease. 4. Spermine and spermidine are able to stimulate the DNA primed RNA polymerase. They facilitate the removal of RNA from the DNA-RNA-enzyme complex. 5. Polyamines promote the association of ribosomal subunits and also the binding of amino acyl transfer RNA to ribosomes. They cause increased coding ambiguities in the process of translation in certain bacterial systems. 6. There is a close correlation between the intracellular concentration of spermidine and the rate of RNA synthesis both in rat liver and in Escherichia coli. Conditions which affect the rate of RNA synthesis also affect the concentration of free intracellular spermidine. 7. Bacteria usually contain putrescine and spermidine, whereas animal tissues contain spermine and spermidine. Spermidine probably fulfils the same role in both bacteria and animal tissues, but the presence of spermine, which is common to eucaryotes, is possibly associated with their more complex mechanisms for regulating RNA and protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号