首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
The 2-thiocytidine residue at position 32 of tRNA1Arg from Escherichia coli was modified specifically with three photoaffinity reagents of different lengths, and the corresponding N-acetylarginyl-tRNA1Arg derivatives were cross-linked to the P site of E. coli 70S ribosomes by irradiation. Covalent attachment was dependent upon the presence of a polynucleotide template and exposure to light of the appropriate wavelength. From 4% to 6% of the noncovalently bound tRNA became cross-linked to the ribosome as a result of photolysis, and attachment to the P site was confirmed by the reactivity of arginine in the covalent complexes toward puromycin. Analysis of the irradiated ribosomes by sucrose-gradient sedimentation at low Mg2+ concentration revealed that the tRNA was associated exclusively with the 30S subunit in all cases. Two of the N-acetylarginyl-tRNA1Arg derivatives were attached primarily to ribosomal proteins whereas the third was cross-linked mainly to 16S RNA. Partial RNase digestion of the latter complex demonstrated that the tRNA had become attached to the 3' third of the rRNA molecule. In addition, the tRNA-rRNA bond was shown to be susceptible to cleavage by hydroxylamine and mercaptoethanol.  相似文献   

3.
Topography of the E site on the Escherichia coli ribosome.   总被引:6,自引:2,他引:4       下载免费PDF全文
Three photoreactive tRNA probes have been utilized in order to identify ribosomal components that are in contact with the aminoacyl acceptor end and the anticodon loop of tRNA bound to the E site of Escherichia coli ribosomes. Two of the probes were derivatives of E. coli tRNA(Phe) in which adenosines at positions 73 and 76 were replaced by 2-azidoadenosine. The third probe was derived from yeast tRNA(Phe) by substituting wyosine at position 37 with 2-azidoadenosine. Despite the modifications, all of the photoreactive tRNA species were able to bind to the E site of E. coli ribosomes programmed with poly(A) and, upon irradiation, formed covalent adducts with the ribosomal subunits. The tRNA(Phe) probes modified at or near the 3' terminus exclusively labeled protein L33 in the 50S subunit. The tRNA(Phe) derivative containing 2-azidoadenosine within the anticodon loop became cross-linked to protein S11 as well as to a segment of the 16S rRNA encompassing the 3'-terminal 30 nucleotides. We have located the two extremities of the E site-bound tRNA on the ribosomal subunits according to the positions of L33, S11 and the 3' end of 16S rRNA defined by immune electron microscopy. Our results demonstrate conclusively that the E site is topographically distinct from either the P site or the A site, and that it is located alongside the P site as expected for the tRNA exit site.  相似文献   

4.
The organization of the 5' terminus region in the 16S rRNA was investigated using a series of RNA constructs in which the 5' terminus was extended by 5 nt or was shortened to give RNA molecules that started at positions -5, +1, +5, +8, +14, or +21. The structural and functional effects of the 5' extension/truncations were determined after the RNAs were reconstituted. 30S subunits containing 16S rRNA with 5' termini at -5, +1, +5, +8 and +14 had similar structures (judged by UV-induced crosslinking) and exhibited a gradual reduction in tRNA binding activity compared to that seen with 30S subunits reconstituted with native 16S rRNA. To create the 5' terminal site-specific photocrosslinking agent, the reagent azidophenacylbromide (APAB) was attached to the 5' terminus of 16S rRNA through a guanosine monophosphorothioate and the APA-16S rRNAs were reconstituted. Crosslinking carried out with the APA revealed sites in six regions around positions 300-340, 560, 900, 1080, the 16S rRNA decoding region, and at 1330. Differences in the pattern and efficiency of crosslinking for the different constructs allow distance estimates for the crosslinked sites from nucleotide G9. These measurements provide constraints for the arrangement of the RNA elements in the 30S subunit. Similar experiments carried out in the 70S ribosome resulted in a five- to tenfold lower frequency of crosslinking. This is most likely due to a repositioning of the 5' terminus upon subunit association.  相似文献   

5.
Ribosome binding factor A (RbfA) is a bacterial cold shock response protein, required for an efficient processing of the 5' end of the 16S ribosomal RNA (rRNA) during assembly of the small (30S) ribosomal subunit. Here we present a crystal structure of Thermus thermophilus (Tth) RbfA and a three-dimensional cryo-electron microscopic (EM) map of the Tth 30S*RbfA complex. RbfA binds to the 30S subunit in a position overlapping the binding sites of the A and P site tRNAs, and RbfA's functionally important C terminus extends toward the 5' end of the 16S rRNA. In the presence of RbfA, a portion of the 16S rRNA encompassing helix 44, which is known to be directly involved in mRNA decoding and tRNA binding, is displaced. These results shed light on the role played by RbfA during maturation of the 30S subunit, and also indicate how RbfA provides cells with a translational advantage under conditions of cold shock.  相似文献   

6.
The naturally occurring nucleotide 3-(3-amino-3-carboxy-propyl)uridine (acp3U) at position 47 of tRNA(Phe) from Escherichia coli was modified with a diazirine derivative and bound to ribosomes in the presence of suitable mRNA analogues under conditions specific for the ribosomal A, P or E sites. After photo-activation at 350 nm the cross-links to ribosomal proteins and RNA were identified by our standard procedures. In the 30S subunit protein S19 (and weakly S9 and S13) was the target of cross-linking from tRNA at the A site, S7, S9 and S13 from the P site and S7 from the E site. Similarly, in the 50S subunit L16 and L27 were cross-linked from the A site, L1, L5, L16, L27 and L33 from the P site and L1 and L33 from the E site. Corresponding cross-links to rRNA were localized by RNase H digestion to the following areas: in 16S rRNA between positions 687 and 727 from the P and E sites, positions 1318 and 1350 (P site) and 1350 and 1387 (E site); in the 23S rRNA between positions 865 and 910 from the A site, 1845 and 1892 (P site), 1892 and 1945 (A site), 2282 and 2358 (P site), 2242 and 2461 (P and E sites), 2461 and 2488 (A site), 2488 and 2539 (all three sites) and 2572 and 2603 (A and P sites). In most (but not all) cases, more precise localizations of the cross-link sites could be made by primer extension analysis.  相似文献   

7.
D Robbins  B Hardesty 《Biochemistry》1983,22(24):5675-5679
Distances were measured by nonradiative energy transfer from fluorescent probes specifically located on one of three points of yeast or Escherichia coli Phe-tRNAPhe enzymatically bound to the entry site or to the acceptor site of E. coli 70S ribosomes to energy-accepting probes on the 3' end of the 16S ribonucleic acid (RNA) of the 30S subunit. The Y base in the anticodon loop of yeast tRNAPhe was replaced by proflavin. Fluorescein isothiocyanate was attached to the X base (position 47) of E. coli tRNAPhe. E. coli tRNAPhe which had been photochemically cross-linked between positions 8 and 13 followed by chemical reduction to form a fluorescent probe was also used. Labeled tRNAs were aminoacylated and enzymatically bound to the ribosome in the presence of elongation factor Tu and guanosine 5'-triphosphate (acceptor-site binding) or a nonhydrolyzable analogue (entry-site binding). Nonradiative energy transfer measurements were made of the distances between fluorophores located on the Phe-tRNA and the fluorophore at the 3' end of 16S RNA. Calculations were based on comparison of the fluorescence lifetime of the energy donor, located on the Phe-tRNA, in the absence and presence of an energy acceptor on the 3' end of the 16S RNA. Under both sets of binding conditions, the distances to the 3' end of 16S RNA were found to be the following: cross-linked tRNA, greater than 69 A; Y base of tRNA, greater than 61 A. The distance between the 3' end of 16S RNA and the X base of tRNA was found to be 81 A under acceptor-site binding conditions but greater than 86 A under entry-site binding conditions.  相似文献   

8.
Model for the three-dimensional folding of 16 S ribosomal RNA   总被引:43,自引:0,他引:43  
  相似文献   

9.
A photo-reactive diazirine derivative was attached to the 2-thiocytidine residue at position 32 of tRNA(Arg)I from Escherichia coli. This modified tRNA was bound under suitable conditions to the A, P or E site of E.coli ribosomes. After photo-activation of the diazirine label, the sites of cross-linking to 16S rRNA were identified by our standard procedures. Each of the three tRNA binding sites showed a characteristic pattern of cross-linking. From tRNA at the A site, a major cross-link was observed to position 1378 of the 16S RNA, and a minor one to position 936. From the P site, there were major cross-links to positions 693 and to 957 and/or 966, as well as a minor cross-link to position 1338. The E site bound tRNA showed major cross-links to position 693 (identical to that from the P site) and to positions 1376/1378 (similar, but not identical, to the cross-link observed from the A site). Immunological analysis of the concomitantly cross-linked ribosomal proteins indicated that S7 was the major target of cross-linking from all three tRNA sites, with S11 as a minor product. The results are discussed in terms of the overall topography of the decoding region of the 30S ribosomal subunit.  相似文献   

10.
Muth GW  Hennelly SP  Hill WE 《Biochemistry》2000,39(14):4068-4074
Determining the detailed tertiary structure of 16S rRNA within 30S ribosomal subunits remains a challenging problem. The particular structure of the RNA which allows tRNA to effectively interact with the associated mRNA during protein synthesis remains particularly ambiguous. This study utilizes a chemical nuclease, 1, 10-o-phenanthroline-copper, to localize regions of 16S rRNA proximal to the decoding region under conditions in which tRNA does not readily associate with the 30S subunit (inactive conformation), and under conditions which optimize tRNA binding (active conformation). By covalently attaching 1,10-phenanthroline-copper to a DNA oligomer complementary to nucleotides in the decoding region (1396-1403), we have determined that nucleotides 923-929, 1391-1396, and 1190-1192 are within approximately 15 A of the nucleotide base-paired to nucleotide 1403 in inactive subunits, but in active subunits only cleavages (1404-1405) immediately proximal to the 5' end of the hybridized probe remain. These results provide evidence for dynamic movement in the 30S ribosomal subunit, reported for the first time using a targeted chemical nuclease.  相似文献   

11.
Initiation factor 3 (IF3) acts to switch the decoding preference of the small ribosomal subunit from elongator to initiator tRNA. The effects of IF3 on the 30 S ribosomal subunit and on the 30 S.mRNA. tRNA(f)(Met) complex were determined by UV-induced RNA crosslinking. Three intramolecular crosslinks in the 16 S rRNA (of the 14 that were monitored by gel electrophoresis) are affected by IF3. These are the crosslinks between C1402 and C1501 within the decoding region, between C967xC1400 joining the end loop of a helix of 16 S rRNA domain III and the decoding region, and between U793 and G1517 joining the 790 end loop of 16 S rRNA domain II and the end loop of the terminal helix. These changes occur even in the 30 S.IF3 complex, indicating they are not mediated through tRNA(f)(Met) or mRNA. UV-induced crosslinks occur between 16 S rRNA position C1400 and tRNA(f)(Met) position U34, in tRNA(f)(Met) the nucleotide adjacent to the 5' anticodon nucleotide, and between 16 S rRNA position C1397 and the mRNA at positions +9 and +10 (where A of the initiator AUG codon is +1). The presence of IF3 reduces both of these crosslinks by twofold and fourfold, respectively. The binding site for IF3 involves the 790 region, some other parts of the 16 S rRNA domain II and the terminal stem/loop region. These are located in the front bottom part of the platform structure in the 30 S subunit, a short distance from the decoding region. The changes that occur in the decoding region, even in the absence of mRNA and tRNA, may be induced by IF3 from a short distance or could be caused by the second IF3 structural domain.  相似文献   

12.
13.
14.
Photoreactive derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at their 3' termini were used to trace the movement of tRNA across the 50S subunit during its transit from the P site to the E site of the 70S ribosome. When bound to the P site of poly(U)-programmed ribosomes, deacylated tRNA(Phe), Phe-tRNA(Phe) and N-acetyl-Phe-tRNA(Phe) probes labeled protein L27 and two main sites within domain V of the 23S RNA. In contrast, deacylated tRNA(Phe) bound to the E site in the presence of poly(U) labeled protein L33 and a single site within domain V of the 23S rRNA. In the absence of poly(U), the deacylated tRNA(Phe) probe also labeled protein L1. Cross-linking experiments with vacant 70S ribosomes revealed that deacylated tRNA enters the P site through the E site, progressively labeling proteins L1, L33 and, finally, L27. In the course of this process, tRNA passes through the intermediate P/E binding state. These findings suggest that the transit of tRNA from the P site to the E site involves the same interactions, but in reverse order. Moreover, our results indicate that the final release of deacylated tRNA from the ribosome is mediated by the F site, for which protein L1 serves as a marker. The results also show that the precise placement of the acceptor end of tRNA on the 50S subunit at the P and E sites is influenced in subtle ways both by the presence of aminoacyl or peptidyl moieties and, more surprisingly, by the environment of the anticodon on the 30S subunit.  相似文献   

15.
K Nagano  H Takagi  M Harel 《Biochimie》1991,73(7-8):947-960
Lim and Spirin [25] proposed a preferable conformation of the nascent peptide during the ribosomal transpeptidation. Spirin and Lim [26] excluded the possibilities of the side-by-side model proposed by Johnson et al [13] and the three-tRNA binding model (A, P and E sites) of Rheinberger and Nierhaus [3]. However, a slight conformational change at the 3' end regions of both A and P site tRNA molecules can enable the three different tRNA binding models to converge. With a modification of the angles of the ribose rings of both anticodon and mRNA this model can also be related to the model of Sundaralingam et al [19]. In this model of E coli rRNA the 3' end sequence ACCA76 or GCCA76 of P site tRNA is base-paired to UGGU810 of 23S rRNA, while the ACC75 or GCC75 of A site tRNA are base-paired to GGU1621 23S rRNA. The conformation of the A76 of A site tRNA is necessarily different from that of P site tRNA, at least during the course of the transpeptidation. The A76 of A site tRNA overlaps the binding region of puromycin. The C1400 of 16S rRNA in this model is located at a distance of 4 A from the 5' end of the anticodon of P site tRNA [14] and 17 A from the 5' end of the anticodon of A site tRNA [15]. It is also shown that a considerable but reasonable modification in the conformation of the anticodon loops could lead to accommodation of three deacylated tRNA(Phe) molecules at a time on 70S ribosome in the presence of poly(U) as observed experimentally [6]. A sterochemical explanation for the negatively-linked allosteric interactions between the A and E sites is also shown in the present model.  相似文献   

16.
17.
Initiation Factor 1 (IF1) is required for the initiation of translation in Escherichia coli. However, the precise function of IF1 remains unknown. Current evidence suggests that IF1 is an RNA-binding protein that sits in the A site of the decoding region of 16 S rRNA. IF1 binding to 30 S subunits changes the reactivity of nucleotides in the A site to chemical probes. The N1 position of A1408 is enhanced, while the N1 positions of A1492 and A1493 are protected from reactivity with dimethyl sulfate (DMS). The N1-N2 positions of G530 are also protected from reactivity with kethoxal. Quantitative footprinting experiments show that the dissociation constant for IF1 binding to the 30 S subunit is 0.9 microM and that IF1 also alters the reactivity of a subset of Class III sites that are protected by tRNA, 50 S subunits, or aminoglycoside antibiotics. IF1 enhances the reactivity of the N1 position of A1413, A908, and A909 to DMS and the N1-N2 positions of G1487 to kethoxal. To characterize this RNA-protein interaction, several ribosomal mutants in the decoding region RNA were created, and IF1 binding to wild-type and mutant 30 S subunits was monitored by chemical modification and primer extension with allele-specific primers. The mutations C1407U, A1408G, A1492G, or A1493G disrupt IF1 binding to 30 S subunits, whereas the mutations G530A, U1406A, U1406G, G1491U, U1495A, U1495C, or U1495G had little effect on IF1 binding. Disruption of IF1 binding correlates with the deleterious phenotypic effects of certain mutations. IF1 binding to the A site of the 30 S subunit may modulate subunit association and the fidelity of tRNA selection in the P site through conformational changes in the 16 S rRNA.  相似文献   

18.
For various genes of E. coli, three regions (-55 to -1; -35 to -1; -21 to -1) 5' to AUG codon on mRNA were searched for sites of interaction with colicin fragment of 16S rRNA. The detailed sequence comparison points out that apart from Shine-Dalgarno base pairing, an additional ribosome-binding site, a subsequence of 5'-UGAUCC-3' invariably exists in mRNA for highly expressed genes. Poorly expressed genes appear to be controlled by only Shine-Dalgarno base pairing. The analysis indicates that in the initiator region, the -55 to -1 region contains the signal which decides the efficiency of the translation-initiation. The site on 16S rRNA, 5'-GGAUCA-3' at position 1529, that can base pair to the above site, has a recognition site on 23S rRNA at position 2390. In the light of the conserved nature and accessibility of these sites, it is proposed that the site on 16S rRNA plays a bifunctional role--initially it binds to mRNA from highly expressed genes to form a stable 30S initiation complex, and upon association with 50S subunit it exchanges base pairing with 23S rRNA, thus leaving the site on mRNA free.  相似文献   

19.
The 16S rRNA species in bacterial precursor rRNAs is followed by two evolutionarily conserved features: (i) a double-stranded stem formed by complementary sequences adjacent to the 5' and 3' ends of the 16S rRNA; and (ii) a 3'-transfer RNA sequence. To assess the possible role of these features, plasmid constructs with precursor-specific features deleted were tested for their capacity to form mature rRNA. Stem-forming sequences were dispensable for both 5' and 3' terminus formation; whereas an intact spacer tRNA positioned greater than 24 nucleotides downstream of the 16S RNA sequence was required for correct 3'-end maturation. These results suggest that spacer tRNA at an appropriate location helps form a conformation obligate for pre-rRNA processing, perhaps by binding to a nascent binding site in preribosomes. Thus, spacer tRNAs may be an obligate participant in ribosome formation.  相似文献   

20.
The 30S ribosomal P site: a function of 16S rRNA   总被引:1,自引:0,他引:1  
Noller HF  Hoang L  Fredrick K 《FEBS letters》2005,579(4):855-858
The 30S ribosomal P site serves several functions in translation. It must specifically bind initiator tRNA during formation of the 30S initiation complex; bind the anticodon stem-loop of peptidyl-tRNA during the elongation phase; and help to maintain the translational reading frame when the A site is unoccupied. Early experiments provided evidence that 16S rRNA was an important component of the 30S P site. Footprinting and crosslinking studies later implicated specific nucleotides in interactions with tRNA. The crystal structures of the 30S subunit and 70S ribosome-tRNA complexes confirmed the interactions between 16S rRNA and tRNA, but also revealed contacts between tRNA and the C-terminal tails of proteins S9 and S13. Deletion of these tails now shows that the 16S rRNA contacts alone are sufficient to support protein synthesis in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号