首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we have demonstrated that leptin increases blood pressure (BP) in the rats through two oxidative stress-dependent mechanisms: stimulation of extracellular signal-regulated kinases (ERK) by H(2)O(2) and scavenging of nitric oxide (NO) by superoxide (O(2-.)). Herein, we examined if renal glutathione system and antioxidant enzymes determine the mechanism of prohypertensive effect of leptin. Leptin administered at 0.5 mg/kg/day for 4 or 8 days increased BP and renal Na(+),K(+)-ATPase activity and reduced fractional sodium excretion; these effects were prevented by NADPH oxidase inhibitor, apocynin. Superoxide scavenger, tempol, abolished the effect of leptin on BP and renal Na(+) pump in rats receiving leptin for 8 days, whereas ERK inhibitor, PD98059, was effective in animals treated with leptin for 4 days. Leptin administered for 4 days decreased glutathione (GSH) and increased glutathione disulfide (GSSG) in the kidney. In animals receiving leptin for 8 days GSH returned to normal level, which was accompanied by up-regulation of gamma-glutamylcysteine synthetase (gamma-GCS), a rate-limiting enzyme of the GSH biosynthetic pathway. In addition, superoxide dismutase (SOD) activity was decreased, whereas glutathione peroxidase (GPx) was increased in rats receiving leptin for 8 days. Cotreatment with gamma-GCS inhibitor, buthionine sulfoximine (BSO), accelerated, whereas GSH precursor, N-acetylcysteine (NAC), attenuated leptin-induced changes in gamma-GCS, SOD, and GPx. In addition, coadministration of BSO changed the mechanism of BP elevation from H(2)O(2)-ERK to (O(2-.))-NO dependent in animals receiving leptin for 4 days, whereas NAC had the opposite effect in rats treated with leptin for 8 days. These results suggest that initial change in GSH redox status induces decrease in SOD/GPx ratio, which results in greater amount of (O)2-.)) versus H(2)O(2) in later phase of leptin treatment, thus shifting the mechanism of BP elevation from H(2)O(2)-ERK to (O(2-.))-NO dependent.  相似文献   

2.
Recent studies suggest that adipose tissue hormone, leptin, is involved in the pathogenesis of arterial hypertension. However, the mechanism of hypertensive effect of leptin is incompletely understood. We investigated whether antioxidant treatment could prevent leptin-induced hypertension. Hyperleptinemia was induced in male Wistar rats by administration of exogenous leptin (0.25 mg/kg twice daily s.c. for 7 days) and separate groups were simultaneously treated with superoxide scavenger, tempol, or NAD(P)H oxidase inhibitor, apocynin (2 mM in the drinking water). After 7 days, systolic blood pressure was 20.6% higher in leptin-treated than in control animals. Both tempol and apocynin prevented leptin-induced increase in blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes increased in leptin-treated rats by 66.9% and 67.7%, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals (MDA+4-HNE), was 60.3% higher in the renal cortex and 48.1% higher in the renal medulla of leptin-treated animals. Aconitase activity decreased in these regions of the kidney following leptin administration by 44.8% and 45.1%, respectively. Leptin increased nitrotyrosine concentration in plasma and renal tissue. Urinary excretion of nitric oxide metabolites (NO(x)) was 57.4% lower and cyclic GMP excretion was 32.0% lower in leptin-treated than in control group. Leptin decreased absolute and fractional sodium excretion by 44.5% and 44.7%, respectively. Co-treatment with either tempol or apocynin normalized 8-isoprostanes, MDA+4-HNE, aconitase activity, nitrotyrosine, as well as urinary excretion of NO(x), cGMP and sodium in rats receiving leptin. These results indicate that oxidative stress-induced NO deficiency is involved in the pathogenesis of leptin-induced hypertension.  相似文献   

3.
Leptin, secreted by adipose tissue, is involved in the pathogenesis of arterial hypertension, however, the mechanisms through which leptin increases blood pressure are incompletely elucidated. We investigated the effect of leptin, administered for different time periods, on renal Na(+),K(+)-ATPase activity in the rat. Leptin was infused under anesthesia into the abdominal aorta proximally to the renal arteries for 0.5-3 h. Leptin administered at doses of 1 and 10 microg/min per kg for 30 min decreased the Na(+),K(+)-ATPase activity in the renal medulla. This effect disappeared when the hormone was infused for > or =1 h. Leptin infused for 3 h increased the Na(+),K(+)-ATPase activity in the renal cortex and medulla. The stimulatory effect was abolished by a specific inhibitor of Janus kinases (JAKs), tyrphostin AG490, as well as by an NAD(P)H oxidase inhibitor, apocynin. Leptin increased urinary excretion of hydrogen peroxide (H(2)O(2)) between 2 and 3 h of infusion. The effect of leptin on renal Na(+),K(+)-ATPase and urinary H(2)O(2) was augmented by a superoxide dismutase mimetic, tempol, and was abolished by catalase. In addition, infusion of H(2)O(2) for 30 min increased the Na(+),K(+)-ATPase activity. Inhibitors of extracellular signal regulated kinases (ERKs), PD98059 or U0126, prevented Na(+),K(+)-ATPase stimulation by leptin and H(2)O(2). These data indicate that leptin, by acting directly within the kidney, has a delayed stimulatory effect on Na(+),K(+)-ATPase, mediated by JAKs, H(2)O(2) and ERKs. This mechanism may contribute to the abnormal renal Na(+) handling in diseases associated with chronic hyperleptinemia such as diabetes and obesity.  相似文献   

4.
Chronic hyperleptinemia induces arterial hypertension in experimental animals and may contribute to the development of hypertension in obese humans; however, the mechanism of hypertensive effect of leptin is not completely elucidated. We investigated the effect of leptin on whole-body oxidative stress, nitric oxide production, and renal sodium handling. The study was performed on male Wistar rats divided into 3 groups: 1) control, fed standard chow ad libitum, 2) leptin-treated group, receiving leptin injections (0.25 mg/kg twice daily s.c. for 7 days), 3) pair-fed group, in which food intake was adjusted to the leptin group. Leptin caused 30.5% increase in systolic blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes in animals receiving leptin was 46.4% and 49.2% higher, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals, increased by 52.5% in the renal cortex and by 48.4% in the renal medulla following leptin treatment, whereas aconitase activity decreased in these regions of the kidney by 45.3% and 39.2%, respectively. Urinary excretion of nitric oxide metabolites (NOx) was 55.0% lower, and fractional excretion of NOx was 55.8% lower in the leptin-treated group. Urinary excretion of cGMP decreased in leptin-treated rats by 26.3%. Following leptin treatment, absolute and fractional sodium excretion decreased by 35.0% and 41.2%, respectively. These results indicate that hyperleptinemia induces systemic and intrarenal oxidative stress, decreases the amount of bioactive NO possibly due to its degradation by reactive oxygen species, and causes renal sodium retention by stimulating tubular sodium reabsorption. NO deficiency and abnormal renal Na+ handling may contribute to leptin-induced hypertension.  相似文献   

5.
Leptin, the Ob gene product, has emerged recently as a key regulator of bone mass. However, the mechanism mediating leptin effect remains controversial. Because the action of leptin is dependent on its receptors, we analyzed their expression in osteoblast-lineage primary human bone marrow stromal cells (hBMSC). Both the short and long forms of leptin receptors were detected in hBMSC. Leptin significantly decreased the viability of hBMSC. This cytotoxic effect was prevented by Z-Val-Ala-Asp-fluoromethylketone, a pan-caspase inhibitor, implicating that leptin-induced hBMSC death was caspase-dependent. Further investigation demonstrated that leptin activated caspase-3 and caspase-9, but not caspase-8, and increased the cleavage of poly-(ADP-ribose) polymerase and cytochrome c release into cytosol. Leptin activated ERK, but not p38 and JNK, and up-regulated cPLA2 activity; the latter was abolished by pre-treatment of cells with the MEK inhibitor (PD98059 or U0126) or cPLA2 inhibitor (AACOCF3). PD98059, U0126, and AACOCF3 also diminished the leptin-induced cytochrome c release into cytosol, cell death, and caspase-3 activation. These data indicated that leptin induced hBMSC apoptosis via ERK/cPLA2/cytochrome c pathway with activation of caspase-9 and caspase-3, and cleavage of poly(ADP-ribose) polymerase. To our knowledge, this is the first study demonstrating the direct detrimental effect of leptin on bone cells.  相似文献   

6.
Although leptin has been shown to increase blood pressure (BP), it is however unclear if this increase can be prevented by exercise. This study therefore investigated the effect of leptin treatment with concurrent exercise on blood pressure (BP), sodium output, and endothelin-1 (ET-1) levels in normotensive rats. Male Sprague–Dawley rats weighing 250–270 g were divided into four groups consisting of a control group (n?=?6), leptin-treated (n?=?8), non-leptin-treated exercise group (n?=?8), and a leptin-treated exercise group (n?=?8). Leptin was given subcutaneously daily for 14 days (60 μg/kg/day). Animals were exercised on a treadmill for 30 min at a speed of 0.5 m/s and at 5° incline four times per week. Measurement of systolic blood pressure (SBP) and collection of urine samples for estimation of sodium and creatinine was done once a week. Serum samples were collected at the end of the experiment for determination of sodium, creatinine and ET-1. At day 14, mean SBP and serum ET-1 level in the leptin-treated group was significantly higher than that in the control group whereas mean SBP and serum ET-1 level was significantly lower in the leptin-treated exercise group than those in leptin-treated and control groups. Creatinine clearance, urinary sodium excretion, and urine output were not different between the four groups. Regular treadmill exercise prevents leptin-induced increases in SBP in rats, which might in part result from increased urinary sodium excretion and preventing the leptin-induced increases in serum ET-1 concentration.  相似文献   

7.
Zhao T  Hou M  Xia M  Wang Q  Zhu H  Xiao Y  Tang Z  Ma J  Ling W 《Cellular immunology》2005,238(1):19-30
Several lines of evidence have supported a link between obesity and inflammation. The present study investigated the capacity of leptin and globular adiponectin to affect tumor necrosis factor alpha (TNF-alpha) production in murine peritoneal macrophages. Leptin stimulated TNF-alpha production at mRNA as well as protein levels in a dose- and time-dependent manner. Intracellular cAMP concentration was increased and protein kinase A (PKA) was activated with the treatment of leptin, subsequently downstream MAPK signal proteins, ERK1/2 and p38, were phosphorylated. Specific inhibitors for the signal proteins, Rp cAMPS, H89, PD98059, and U0126, or SB203580, suppressed the signaling pathway and TNF-alpha expression. Although gAd partially increased cAMP concentration and PKA activity, it directly reduced leptin-induced ERK1/2 and p38 MAPK phosphorylation thus inhibiting TNF-alpha production. In conclusion, leptin promotes inflammation by stimulating TNF-alpha production, which is mediated by cAMP-PKA-ERK1/2 and p38 MAPK pathways. gAd inhibited leptin-induced TNF-alpha production through suppressing phosphorylation of ERK1/2 and p38 pathways.  相似文献   

8.
9.
We examined the effect of leptin on renal function and renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase activities in the rat. Leptin was infused under general anaesthesia into the abdominal aorta proximally to the renal arteries. Leptin infused at doses of 1 and 10 microg/kg/min increased urine output by 40% and 140%, respectively. Urinary Na(+) excretion increased in rats receiving leptin at doses of 0.1, 1, and 10 microg/kg/min by 57.6%, 124.2% and 163.6%, respectively. Leptin had no effect on creatinine clearance, potassium excretion and phosphate excretion. Na(+),K(+)-ATPase activity in the renal medulla of rats treated with 1 and 10 microg/kg/min leptin was lower than in control animals by 25.5% and 33.2%, respectively. In contrast, cortical Na(+),K(+)-ATPase as well as either cortical or medullary ouabain-sensitive H(+),K(+)-ATPase activities did not differ between leptin-treated and control animals. The effect of leptin on Na(+),K(+)-ATPase activity was abolished by actin depolymerizing agents, cytochalazin D and latrunculin B, and by phosphatidylinositol 3-kinase (PI3K) inhibitors, wortmannin and LY294002. These results indicate that: 1). natriuretic effect of leptin is mediated, at least in part, by decrease in renal medullary Na(+),K(+)-ATPase activity, 2). inhibition of medullary Na(+),K(+)-ATPase by leptin is mediated by PI3K and requires integrity of actin cytoskeleton.  相似文献   

10.
This study investigated the involvement of neutrophil infiltration, disturbances in nitric oxide (NO) generation and oxidative stress in indomethacin-induced gastric ulcer, and the possible gastroprotective potentials of leptin, known for its angiogenic effect. Male Wistar albino rats (180–220 g) were allocated into a normal control group, ulcer control group (received a single dose of indomethacin 40 mg/kg p.o.) and an ulcer group pretreated with leptin (10 μg/kg i.p. 30 min before ulcer induction). The animals were killed 6 h after indomethacin administration and their gastric juice, serum and mucosal tissue were used for gastric injury evaluation. Indomethacin produced multiple lesions in glandular mucosa, evidenced by marked increase in gastric ulcer index (GUI) accompanied by significant increases in gastric juice acidity, tissue myeloperoxidase (MPO) activity, serum NO and tissue conjugated diene (CD), and marked decreases in tissue NO and glutathione (GSH) as well as glutathione reductase (GR) and superoxide dismutase (SOD) activities, while gastric juice mucin and tissue glutathione peroxidase (GPx) were not affected. Leptin exerted significant gastroprotection as evidenced by significantly decreased GUI and attenuated neutrophil infiltration. Leptin significantly increased mucin and tissue NO, restored GR and SOD activities and up-regulated GPx activity. It failed to affect acidity, serum NO, GSH and CD. These results suggest that leptin confers significant gastroprotection against indomethacin-induced injury through interfering with neutrophil infiltration, NO production and oxidative stress.  相似文献   

11.
We examined the mechanism through which leptin increases Na+, K+-ATPase activity in the rat kidney. Leptin was infused under anaesthesia into the abdominal aorta proximally to the renal arteries and then Na+, K+-ATPase activity was measured in the renal cortex and medulla. Leptin (1 μg/kg min) increased Na+, K+-ATPase activity after 3 h of infusion, which was accompanied by the increase in urinary H2O2 excretion and phosphorylation level of extracellular signal regulated kinase (ERK). The effect of leptin on ERK and Na+, K+-ATPase was abolished by catalase, specific inhibitors of epidermal growth factor (EGF) receptor, AG1478 and PD158780, as well as by ERK inhibitor, PD98059, and was mimicked by both exogenous H2O2 and EGF. The effect of leptin was also prevented by the inhibitor of Src tyrosine kinase, PP2. Leptin and H2O2 increased Src phosphorylation at Tyr418. We conclude that leptin-induced stimulation of renal Na+, K+-ATPase involves H2O2 generation, Src kinase, transactivation of the EGF receptor, and stimulation of ERK.  相似文献   

12.
目的:探讨瘦素对人卵巢癌SKOV3细胞增殖及凋亡的影响及其作用机制。方法:用不同浓度的瘦素(0、50、100、200 ng/m L)处理人卵巢癌SKOV3细胞48 h后,采用MTT法检细胞的生长;以血清饥饿诱导细胞凋亡,同时给予瘦素刺激,Annexin V/PI双染法检测细胞凋亡的变化;western blotting分析p21、cyclin D1、Bcl-2、Bax蛋白的表达水平和ERK1/2通路的活化情况。结果:瘦素以剂量依赖性的方式促进人卵巢癌SKOV3细胞的增殖,同时抑制血清饥饿诱导的细胞凋亡。瘦素处理可下调p21和上调cyclin D1的表达,抑制促凋亡分子Bax的表达和上调抗凋亡分子Bcl-2的表达。瘦素可诱导细胞中ERK1/2通路的活化,其抑制剂PD98059可明显抑制瘦素诱导的促细胞增殖和抗凋亡作用,同时伴随有cyclin D1、Bcl-2蛋白表达的下调和Bax的上调。结论:瘦素可能通过活化ERK1/2通路调节细胞有丝分裂进程,进而促进卵巢癌细胞的增殖;同时通过调节凋亡相关蛋白Bcl-2和Bax的表达抑制卵巢癌细胞的凋亡。  相似文献   

13.
Although leptin is known to induce proliferative response in gastric cancer cells, the mechanism(s) underlying this action remains poorly understood. Here, we provide evidence that leptin-induced gastric cancer cell proliferation involves activation of STAT and ERK2 signaling pathways. Leptin-induced STAT3 phosphorylation is independent of ERK2 activation. Leptin increases SHP2 phosphorylation and enhances binding of Grb2 to SHP2. Inhibition of SHP2 expression with siRNA but not SHP2 phosphatase activity abolished leptin-induced ERK2 activation. While JAK inhibition with AG490 significantly reduced leptin-induced ERK2, STAT3 phosphorylation, and cell proliferation, SHP2 inhibition only partially reduced cancer cell proliferation. Immunostaining of gastric cancer tissues displayed local overexpression of leptin and its receptor indicating that leptin might be produced and act locally in a paracrine or autocrine manner. These findings indicate that leptin promotes cancer growth by activating multiple signaling pathways and therefore blocking its action at the receptor level could be a rational therapeutic strategy.  相似文献   

14.
Leptin, a liver profibrogenic cytokine, induces oxidative stress in hepatic stellate cells (HSCs), with increased formation of the oxidant H2O2, which signals through p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, stimulating tissue inhibitor of metalloproteinase-1 production. Since oxidative stress is a pathogenic mechanism of liver fibrosis and activation of collagen gene is a marker of fibrogenesis, we evaluated the effects of leptin on collagen I expression. We report here that, in LX-2 human HSCs, leptin enhances the levels of alpha1(I) collagen mRNA, promoter activity and protein. Janus kinase (JAK)1 and JAK2 were activated. H2O2 formation was increased; this was prevented by the JAK inhibitor AG490, suggesting a JAK-mediated process. ERK1/2 and p38 were activated, and the activation was blocked by catalase, consistent with an H2O2-dependent mechanism. AG490 and catalase also prevented leptin-stimulated alpha1(I) collagen mRNA expression. PD098059, an ERK1/2 inhibitor, abrogated ERK1/2 activation and suppressed alpha1(I) collagen promoter activity, resulting in mRNA down-regulation. The p38 inhibitor SB203580 and overexpression of dominant negative p38 mutants abrogated p38 activation and down-regulated the mRNA. While SB203580 had no effect on the promoter activity, it reduced the mRNA half-life from 24 to 4 h, contributing to the decreased mRNA level. We conclude that leptin stimulates collagen production through the H2O2-dependent and ERK1/2 and p38 pathways via activated JAK1 and JAK2. ERK1/2 stimulates alpha1(I) collagen promoter activity, whereas p38 stabilizes its mRNA. Accordingly, interference with leptin-induced oxidative stress by antioxidants provides an opportunity for the prevention of liver fibrosis.  相似文献   

15.
Leptin preserves lean tissue but decreases adipose tissue by increasing lipolysis and/or inhibiting lipogenesis. The sympathetic nervous system (SNS) is a primary regulator of lipolysis, but it is not known if leptin increases norepinephrine turnover (NETO) in white adipose tissue. In this study, we examined the effect of leptin administered either as a chronic physiological dose (40 microg/day for 4 days from ip miniosmotic pumps) or as an acute injection in the third ventricle (1.5 microg injected two times daily for 2 days) on NETO and the size of brown and white fat depots in male Sprague Dawley rats. NETO was determined from the decline in tissue norepinephrine (NE) during 4 h following administration of the NE synthesis inhibitor alpha-methyl-para-tryrosine. The centrally injected leptin-treated animals demonstrated more dramatic reductions in food intake, body weight, and fat pad size and an increase in NETO compared with the peripherally infused animals. Neither route of leptin administration caused a uniform increase in NETO across all fat pads tested, and in both treatment conditions leptin decreased the size of certain fat pads independent of an increase in NETO. Similar discrepancies in white fat NETO were found for rats pair fed to leptin-treated animals. These results demonstrate that leptin acting either centrally or peripherally selectively increases sympathetic outflow to white fat depots and that a leptin-induced change in fat pad weight does not require an increase in NETO.  相似文献   

16.
17.
The death of midbrain dopaminergic neurons in sporadic Parkinson disease is of unknown etiology but may involve altered growth factor signaling. The present study showed that leptin, a centrally acting hormone secreted by adipocytes, rescued dopaminergic neurons, reversed behavioral asymmetry, and restored striatal catecholamine levels in the unilateral 6-hydroxydopamine (6-OHDA) mouse model of dopaminergic cell death. In vitro studies using the murine dopaminergic cell line MN9D showed that leptin attenuated 6-OHDA-induced apoptotic markers, including caspase-9 and caspase-3 activation, internucleosomal DNA fragmentation, and cytochrome c release. ERK1/2 phosphorylation (pERK1/2) was found to be critical for mediating leptin-induced neuroprotection, because inhibition of the MEK pathway blocked both the pERK1/2 response and the pro-survival effect of leptin in cultures. Knockdown of the downstream messengers JAK2 or GRB2 precluded leptin-induced pERK1/2 activation and neuroprotection. Leptin/pERK1/2 signaling involved phosphorylation and nuclear localization of CREB (pCREB), a well known survival factor for dopaminergic neurons. Leptin induced a marked MEK-dependent increase in pCREB that was essential for neuroprotection following 6-OHDA toxicity. Transfection of a dominant negative MEK protein abolished leptin-enhanced pCREB formation, whereas a dominant negative CREB or decoy oligonucleotide diminished both pCREB binding to its target DNA sequence and MN9D survival against 6-OHDA toxicity. Moreover, in the substantia nigra of mice, leptin treatment increased the levels of pERK1/2, pCREB, and the downstream gene product BDNF, which were reversed by the MEK inhibitor PD98059. Collectively, these data provide evidence that leptin prevents the degeneration of dopaminergic neurons by 6-OHDA and may prove useful in the treatment of Parkinson disease.  相似文献   

18.
19.
Leptin and nitric oxide (NO) are both important messengers in intra- and intercellular communication systems in vertebrates. Several studies have demonstrated an involvement of both substances in the immune response. Here we tested the effects of chronic leptin and anti-leptin treatments on the NO production and phytohaemagglutinin- (PHA) induced cutaneous inflammatory response in a wild passerine, the greenfinch (Carduelis chloris). Plasma leptin levels of individual birds were consistent in time but could be still temporarily increased by administration of recombinant chicken leptin. Increase of plasma leptin was also induced by administration of anti-leptin, which can be most likely explained by increased endogenous leptin production due to disruption of signalling pathways. Contrary to previous findings in mammals, leptin administration reduced systemic NO production. Leptin increased cutaneous swelling response to PHA. This immune-enhancing effect was observable despite the similar plasma leptin levels of leptin-treated and control birds at the time of measurement of immune responses, i.e., 9 days after start of the treatments. This provides evidence for a delayed or long-term potentiation of the cells and cytokines involved. The effects of leptin administration on NO production and immune responsiveness were age-dependent, which indicates the complexity of underlying regulatory mechanisms.  相似文献   

20.
We examined the effects of the adipose hormone leptin on the development of mouse cortical neurons. Treatment of neonatal and adult mice with intraperitoneal leptin (5 mg/kg) induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in pyriform and entorhinal cortex neurons. Stimulation of cultured embryonic cortical neurons with leptin evoked Janus kinase 2 and ERK1/2 phosphorylation and activated the downstream effector 90-kDa ribosomal protein S6 kinase. Moreover, leptin elicited the phosphorylation of the phosphatidylinositol 3-kinase effector Akt and evoked Ser-9 phosphorylation of glycogen synthase kinase-3beta (GSK3beta), an event inactivating this kinase. Leptin-mediated GSK3beta phosphorylation was prevented by the MEK/ERK inhibitor PD98059, the phosphatidylinositol 3-kinase inhibitor LY294002, or the protein kinase C inhibitor GF109203X. Exposure of cortical neurons to leptin also induced Ser-41 phosphorylation of the neuronal growth-associated protein GAP-43, an effect prevented by LY294002 and GF109203X but not by PD98059. Ser-41-GAP-43 phosphorylation is usually high in expanding axonal growth cones. Neurons exposed to 100 ng/ml leptin for 72 h displayed reduced rate of growth cone collapse, a shift of growth cone size distribution toward higher values, and a 4-fold increase in mean growth cone surface area compared with control cultures. The leptin-induced growth cone spreading was hampered in cortical neurons from Lepr(db/db) mice lacking functional leptin receptors; it was associated with localized Ser-9-GSK3beta phosphorylation and mimicked by the GSK3beta inhibitor SB216763. At concentrations preventing GSK3beta phosphorylation, PD98059, LY294002, or GF109203X reversed the leptin-induced growth cone surface enlargement. We concluded that the leptin-mediated regulation of growth cone morphogenesis in cortical neurons relies on upstream regulators of GSK3beta activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号