首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication of the genetically variable lymphocytic choriomeningitis virus (LCMV) gives rise to a pool of variant viruses. Under the selection pressure exerted by a strong but narrow repertoire of antiviral cytotoxic T-cells (CTL) i.e. monoclonal or polyclonal monoepitope, variant viruses emerge that contain point mutations in the nucleotide sequence encoding antigenic CTL epitopes; these variants can be selected in both infected mice and cell cultures. These mutations permit infected cells to escape CTL recognition by altering the ability of the mutant peptides to bind MHC class-I-molecules or by interfering with the ability of T-cell receptors to interact with the mutant peptide/MHC complex. Because viral infections often trigger a polyclonal repertoire of antiviral CTL to multiple epitopes, the likelihood of selection of CTL resistant variants is probably low, but not impossible. Our empirical observations suggest that antigenic variations, even if they only occur in a part of the available CTL epitope, may exert significant effects on the subtle biological equilibrium established between virus and host immune system. This can reduce immunological control of the pathogen population, and so permit persistence of viral infection and promote disease progression.  相似文献   

2.
CD8 T cells drive the protective immune response to lymphocytic choriomeningitis virus (LCMV) infection and are thus a determining force in the selection of viral variants. To examine how escape mutations affect the presentation and recognition of overlapping T-cell epitopes, we isolated an LCMV variant that is not recognized by T-cell receptor (TCR)-transgenic H-2Db-restricted LCMV GP33-41-specific cytotoxic T lymphocytes (CTL). The variant virus carried a single-amino-acid substitution (valine to alanine) at position 35 of the viral glycoprotein. This region of the LCMV glycoprotein encodes both the Db-restricted GP33-43 epitope and a second epitope (GP34-42) presented by the Kb molecule. We determined that the V-to-A CTL escape mutant failed to induce a Db GP33-43-specific CTL response and that Db-restricted GP33-43-specific CTL induced by the wild-type LCMV strain were unable to kill target cells infected with the variant LCMV strain. In contrast, the Kb-restricted response was much less affected. We found that the V-to-A substitution severely impaired peptide binding to Db but not to Kb molecules. Strikingly, the V-to-A mutation did not change any of the anchor residues, and the dramatic effect on binding was therefore unexpected. The strong decrease in Db binding explains why the variant virus escapes the Db GP33-43-specific response but still elicits the Kb-restricted response. These findings also illustrate that mutations within regions encoding overlapping T-cell epitopes can differentially affect the presentation and recognition of individual epitopes.  相似文献   

3.
Induction of a monospecific antiviral CD8+ T cell response may pose a risk to the host due to the narrow T cell response induced. At the individual level, this may result in selection of CD8+ T cell escape variants, particularly during chronic viral infection. Second, prior immunization toward a single dominant epitope may suppress the response to other viral epitopes, and this may lead to increased susceptibility to reinfection with escape variants circulating in the host population. To address these issues, we induced a memory response consisting solely of monospecific, CD8+ T cells by use of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after acute LCMV infection, DNA vaccination did not significantly impair naturally induced immunity. Thus, the response to the other immunogenic epitopes was not dramatically suppressed in DNA-immunized mice undergoing normal immunizing infection, and the majority of mice were protected against rechallenge with escape variants. These findings underscore that a monospecific vaccine may induce efficient protective immunity given the right set of circumstances.  相似文献   

4.
CD4+ T cells play an important role in regulating the immune response; their contribution to virus clearance is variable. Mice that lack CD4+ T cells (CD4-/- mice) and are therefore unable to produce neutralizing antibodies cleared viscero-lymphotropic lymphocytic choriomeningitis virus (LCMV) strain WE when infected intravenously with a low dose (2 x 10(2) PFU) because of an effective CD8+ cytotoxic T-cell (CTL) response. In contrast, infection with a high dose (2 x 10(6) PFU) of LCMV strain WE led to expansion of antiviral CTL, which disappeared in CD4-/- mice; in contrast, CD4+ T-cell-competent mice developed antiviral memory CTL. This exhaustion of specific CTL caused viral persistence in CD4-/- mice, whereas CD4+ T-cell-competent mice eliminated the virus. After infection of CD4-/- mice with the faster-replicating LCMV strain DOCILE, abrogation of CTL response and establishment of viral persistence developed after infection with a low dose (5 x 10(2) PFU), i.e., an about 100-fold lower dose than in CD(4+)-competent control mice. These results show that absence of T help enhances establishment of an LCMV carrier state in selected situations.  相似文献   

5.
Lymphocytic choriomeningitis virus infection of H-2(b) mice generates a strong CD8(+) CTL response mainly directed toward three immunodominant epitopes, one of which, gp33, is presented by both H-2D(b) and H-2K(b) MHC class I molecules. This CTL response acts as a selective agent for the emergence of viral escape variants. These variants generate altered peptide ligands (APLs) that, when presented by class I MHC molecules, antagonize CTL recognition and ultimately allow the virus to evade the cellular immune response. The emergence of APLs of the gp33 epitope is particularly advantageous for LCMV, as it allows viral escape in the context of both H-2D(b) and H-2K(b) MHC class I molecules. We have determined crystal structures of three different APLs of gp33 in complex with both H-2D(b) and H-2K(b). Comparison between these APL/MHC structures and those of the index gp33 peptide/MHC reveals the structural basis for three different strategies used by LCMV viral escape mutations: 1) conformational changes in peptide and MHC residues that are potential TCR contacts, 2) impairment of APL binding to the MHC peptide binding cleft, and 3) introduction of subtle changes at the TCR/pMHC interface, such as the removal of a single hydroxyl group.  相似文献   

6.
Cytotoxic T lymphocytes (CTL) recognize virus peptide fragments complexed with class I major histocompatibility complex (MHC) molecules on the surface of virus-infected cells. Recognition is mediated by a membrane-bound T-cell receptor (TCR) composed of alpha and beta chains. Studies of the CTL response to lymphocytic choriomeningitis virus (LCMV) in H-2b mice have revealed that three distinct viral epitopes are recognized by CTL of the H-2b haplotype and that all of the three epitopes are restricted by the Db MHC molecule. The immunodominant Db-restricted CTL epitope, located at LCMV glycoprotein amino acids 278 to 286, was earlier noted to be recognized by TCRs that consistently contained V alpha 4 segments but had heterogeneous V beta segments. Here we show that CTL clones recognizing the other two H-2Db-restricted epitopes, LCMV glycoprotein amino acids 34 to 40 and nucleoprotein amino acids 397 to 407 (defined in this study), utilize TCR alpha chains which do not belong to the V alpha 4 subfamily. Hence, usage of V alpha and V beta in the TCRs recognizing peptide fragments from one virus restricted by a single MHC molecule is not sufficiently homogeneous to allow manipulation of the anti-viral CTL response at the level of TCRs. The diversity of anti-viral CTL likely provides the host with a wider option for attacking virus-infected cells and prevents the emergence of virus escape mutants that might arise if TCRs specific for the virus were homogeneous.  相似文献   

7.
The primary CD8(+) T cell response of C57BL/6J mice against the 28 known epitopes of lymphocytic choriomeningitis virus (LCMV) is associated with a clear immunodominance hierarchy whose mechanism has yet to be defined. To evaluate the role of epitope competition in immunodominance, we manipulated the number of CD8(+) T cell epitopes that could be recognized during LCMV infection. Decreasing epitope numbers, using a viral variant lacking dominant epitopes or C57BL/6J mice lacking H-2K(b), resulted in minor response increases for the remaining epitopes and no new epitopes being recognized. Increasing epitope numbers by using F(1) hybrid mice, delivery by recombinant vaccinia virus, or epitope delivery as a pool in IFA maintained the overall response pattern; however, changes in the hierarchy did become apparent. MHC binding affinity of these epitopes was measured and was found to not strictly predict the hierarchy since in several cases similarly high binding affinities were associated with differences in immunodominance. In these instances the naive CD8(+) T cell precursor frequency, directly measured by tetramer staining, correlated with the response hierarchy seen after LCMV infection. Finally, we investigated an escape mutant of the dominant GP33-41 epitope that elicited a weak response following LCMV variant virus infection. Strikingly, dominance loss likely reflects a substantial reduction in frequencies of naive precursors specific for this epitope. Thus, our results indicate that an intrinsic property of the epitope (MHC binding affinity) and an intrinsic property of the host (naive precursor frequency) jointly dictate the immunodominance hierarchy of CD8(+) T cell responses.  相似文献   

8.
The question of whether virus-induced immunosuppression includes the antibody response against the infecting virus itself was evaluated in a model situation. Transgenic mice expressing the T-cell receptor (TCR) specific for peptide 32-42 of lymphocytic choriomeningitis virus (LCMV) glycoprotein 1 presented by Db reacted with a strong transgenic cytotoxic T-lymphocyte (CTL) response starting on day 3 after infection with a high dose (10(6) PFU intravenously [i.v.]) of the WE strain of LCMV (LCMV-WE); LCMV-specific antibody production in the spleen was suppressed in these mice. Low-dose (10(2) PFU i.v.) infection resulted in an antiviral antibody response comparable to that of the transgene-negative littermates. The induction of suppression of LCMV-specific antibody responses was specifically mediated by CD8+ TCR transgenic CTLs, since the LCMV-8.7 variant virus (which is not recognized by transgenic TCR-expressing CTLs because of a point mutation) did not induce suppression. In addition, treatment with CD8 monoclonal antibody in vivo abrogated suppression. Once suppression had been established, it was found to be nonspecific. The abrogation of antibody responses depended on the relative kinetics of the antibody response involved and the kinetics of the anti-LCMV CTL response. Analysis of T- and B-cell subpopulations showed no significant changes, but immunohistochemical analysis of spleens revealed extensive destruction of follicular organization in lymphoid tissue by day 4 in transgenic mice infected with LCMV-WE but not in those infected with the CTL escape mutant LCMV-8.7. Impairment of antigen presentation rather than of T or B cells was also suggested by adoptive transfer experiments, showing that transferred infected macrophages may improve the anti-LCMV antibody response in LCMV-immunosuppressed transgenic recipients; also, T and B cells from suppressed transgenic mice did respond in irradiated and virus-infected nontransgenic mice with antibody formation to LCMV. Such virus-triggered, T-cell-mediated immunopathology causing the suppression of B cells and of protective antibody responses, including those against the infecting virus itself, may permit certain viruses to establish persistent infections.  相似文献   

9.
Infection of H-2b mice with lymphocytic choriomeningitis virus (LCMV) generates an H-2Db-restricted cytotoxic T-lymphocyte (CTL) response whose subdominant component is directed against the GP92-101 (CSANNSHHYI) epitope. The aim of this study was to identify the functional parameters accounting for this subdominance. We found that the two naturally occurring (genetically encoded and posttranslationally modified) forms of LCMV GP92-101 were immunogenic, did not act as T-cell antagonists, and bound efficiently to but were unable to form stable complexes with H-2Db, a crucial factor for immunodominance. Thus, the H-2Db-restricted subdominant CTL response to LCMV resulted not from altered T-cell activation but from impaired major histocompatibility complex presentation properties.  相似文献   

10.
Identification of a single viral T-cell epitope, associated with greater than 95% of the virus-specific cytotoxic T-lymphocyte (CTL) activity in BALB/c (H-2d) mice (J. L. Whitton, A. Tishon, H. Lewicki, J. Gebhard, T. Cook, M. Salvato, E. Joly, and M. B. A. Oldstone, J. Virol. 63:4303-4310, 1989), permitted us to design a CTL vaccine and test its ability to protect against a lethal virus challenge. Here we show that a single immunization with a recombinant vaccinia virus-lymphocytic choriomeningitis virus (LCMV) vaccine (VVNPaa1-201) expressing the immunodominant epitope completely protected H-2d mice from lethal infection with LCMV but did not protect H-2b mice. Furthermore, we show that the success or failure of immunization was determined entirely by the host class I major histocompatibility glycoproteins. The difference in outcome between mice of these two haplotypes was consistent with the presence or absence in the immunizing sequences of an epitope for CTL recognition and is correlated with the induction of LCMV-specific H-2-restricted CTL in H-2d mice. Protection is not conferred by a humoral immune response, since LCMV-specific antibodies were not detectable in sera from VVNPaa1-201-immunized mice. In addition, passive transfer of sera from vaccinated mice did not confer protection upon naive recipients challenged with LCMV. Hence, the molecular dissection of viral proteins can uncover immunodominant CTL epitope(s) that can be engineered into vaccines that elicit CTL. A single CTL epitope can protect against a lethal virus infection, but the efficacy of the vaccine varies in a major histocompatibility complex-dependent manner.  相似文献   

11.
DNA vaccination against persistent viral infection.   总被引:13,自引:5,他引:8       下载免费PDF全文
This study shows that DNA vaccination can confer protection against a persistent viral infection by priming CD8+ cytotoxic T lymphocytes (CTL). Adult BALB/c (H-2d) mice were injected intramuscularly with a plasmid expressing the nucleoprotein (NP) gene of lymphocytic choriomeningitis virus (LCMV) under the control of the cytomegalovirus promoter. The LCMV NP contains the immunodominant CTL epitope (amino acids 118 to 126) recognized by mice of the H-2d haplotype. After three injections with 200 micrograms of NP DNA, the vaccinated mice were challenged with LCMV variants (clones 13 and 28b) that establish persistent infection in naive adult mice. Fifty percent of the DNA-vaccinated mice were protected, as evidenced by decreased levels of infectious virus in the blood and tissues, eventual clearance of viral antigen from all organs tested, the presence of an enhanced LCMV-specific CD8+ CTL response, and maintenance of memory CTL after clearance of virus infection. However, it should be noted that protection was seen in only half of the vaccinated mice, and we were unable to directly measure virus-specific immune responses in any of the DNA-vaccinated mice prior to LCMV challenge. Thus, at least in the system that we have used, gene immunization was a suboptimal method of inducing protective immunity and was several orders of magnitude less efficient than vaccination with live virus. In conclusion, our results show that DNA immunization works against a persistent viral infection but that efforts should be directed towards improving this novel method of vaccination.  相似文献   

12.
Vaccination with a nucleopeptide (NP 118; amino acids 118 to 132) representing a cytotoxic T-cell epitope of lymphocytic choriomeningitis virus (LCMV) can modulate immunopathology. Immunization with NP 118 protected H-2d mice against intracerebral infection with the LCMV-ARMSTRONG isolate. However, when NP 118-primed H-2d mice were challenged intracerebrally with an intermediate dose (5 x 10(4) PFU) of the LCMV-DOCILE strain, all mice primed with NP 118 emulsified in incomplete Freund's adjuvant died, whereas unprimed mice survived. Correspondingly, peptide vaccination enhanced specifically the cytotoxic T-cell response, influencing the critical balance between T-cell response and virus spread.  相似文献   

13.
CD8+ T cells are crucial for the control of intracellular pathogens such as viruses and some bacteria. Using lymphocytic choriomeningitis virus (LCMV) infection of mice--the prototypic arenavirus evolutionarily closely related to human Lassa fever and South American hemorrhagic fever viruses, we have shown previously that the kinetics of Ag presentation determine immunodominance of the LCMV-specific CTL response due to progressive exhaustion of LCMV nucleoprotein (NP)-specific CTL upon increasing viral load. In this study, we provide evidence that CTL against early LCMV NP-derived epitopes are more important in virus control than those against late glycoprotein-derived epitopes. We show that mice that are tolerant to all NP-derived T cell epitopes are severely compromised in their ability to control larger inocula of LCMV, supporting our hypothesis that CD8+ T cells specific for early viral Ags play a major role in acute virus control. Thus, the kinetics with which virus-derived T cell epitopes are presented has a strong impact on the efficacy of the antiviral immunity. This aspect should be taken into consideration for the development of vaccines.  相似文献   

14.
An altered T cell repertoire in MECL-1-deficient mice   总被引:1,自引:0,他引:1  
Immunoproteasome subunits low-molecular mass polypeptide (LMP)2 and LMP7 affect Ag presentation by MHC class I molecules. In the present study, we investigated the function of the third immunosubunit LMP10/multicatalytic endopeptidase complex-like (MECL)-1 (beta2i) in MECL-1 gene-targeted mice. The number of CD8+ splenocytes in MECL-1-/- mice was 20% lower than in wild-type mice. Infection with lymphocytic choriomeningitis virus (LCMV) elicited a markedly reduced cytotoxic T cell (CTL) response to the LCMV epitopes GP276-286/Db and NP205-212/Kb in MECL-1-/- mice. The weak CTL response to GP276-286/Db was not due to an impaired generation of this epitope but was attributed to a decreased precursor frequency of GP276-286/Db-specific T cells. The expansion of TCR-Vbeta10+ T cells, which contain GP276-286/Db-specific cells, was reduced in LCMV-infected MECL-1-/- mice. Taken together, our data reveal an in vivo function of MECL-1 in codetermining the T cell repertoire for an antiviral CTL response.  相似文献   

15.
Simian virus 40 large tumor (T) antigen contains three H-2Db-restricted (I, II/III, and V) and one H-2Kb-restricted (IV) cytotoxic T lymphocyte (CTL) epitopes. We demonstrate that a hierarchy exists among these CTL epitopes, since vigorous CTL responses against epitopes I, II/III, and IV are detected following immunization of H-2b mice with syngeneic, T-antigen-expressing cells. By contrast, a weak CTL response against the H-2Db-restricted epitope V was detected only following immunization of H-2b mice with epitope loss variant B6/K-3,1,4 cells, which have lost expression of CTL epitopes I, II/III, and IV. Limiting-dilution analysis confirmed that the lack of epitope V-specific CTL activity in bulk culture splenocytes correlated with inefficient expansion and priming of epitope V-specific CTL precursors in vivo. We examined whether defined genetic alterations of T antigen might improve processing and presentation of epitope V to the epitope V-specific CTL clone Y-5 in vitro and/or overcome the recessive nature of epitope V in vivo. Deletion of the H-2Db-restricted epitopes I and II/III from T antigen did not increase target cell lysis by epitope V-specific CTL clones in vitro. The amino acid sequence SMIKNLEYM, which species an optimized H-2Db binding motif and was found to induce CTL in H-2b mice, did not further reduce epitope V presentation in vitro when inserted within T antigen. Epitope V-containing T-antigen derivatives which retained epitopes I and II/III or epitope IV did not induce epitope V-specific CTL in vivo: T-antigen derivatives in which epitope V replaced epitope I failed to induce epitope V-specific CTL. Recognition of epitope V-H-2Db complexes by multiple independently derived epitope V-specific CTL clones was rapidly and dramatically reduced by incubation of target cells in the presence of brefeldin A compared with the recognition of the other T-antigen CTL epitopes by epitope specific CTL, suggesting that the epitope V-H-2Db complexes either are labile or are present at the cell surface at reduced levels. Our results suggest that processing and presentation of epitope V is not dramatically altered (reduced) by the presence of immunodominant CTL epitopes in T antigen and that the immunorecessive nature of epitope V is not determined by amino acids which flank its native location within simian virus 40 T antigen.  相似文献   

16.
Members of the Arenaviridae family have been isolated from mammalian hosts in disparate geographic locations, leading to their grouping as Old World types (i.e., lymphocytic choriomeningitis virus [LCMV], Lassa fever virus [LFV], Mopeia virus, and Mobala virus) and New World types (i.e., Junin, Machupo, Tacaribe, and Sabia viruses) (C. J. Peters, M. J. Buchmeier, P. E. Rollin, and T. G. Ksiazek, p. 1521-1551, in B. N. Fields, D. M. Knipe, and P. M. Howley [ed.], Fields virology, 3rd ed., 1996; P. J. Southern, p. 1505-1519, in B. N. Fields, D. M. Knipe, and P. M. Howley [ed.], Fields virology, 3rd ed., 1996). Several types in both groups-LFV, Junin, Machupo, and Sabia viruses-cause severe and often lethal human diseases. By sequence comparison, we noted that eight Old World and New World arenaviruses share several amino acids with the nucleoprotein (NP) that consists of amino acids (aa) 118 to 126 (NP 118-126) (RPQASGVYM) of LCMV that comprise the immunodominant cytotoxic T-lymphocyte (CTL) epitope for H-2(d) mice (32). This L(d)-restricted epitope constituted >97% of the total bulk CTLs produced in the specific antiviral or clonal responses of H-2(d) BALB mice. NP 118-126 of the Old World arenaviruses LFV, Mopeia virus, and LCMV and the New World arenavirus Sabia virus bound at high affinity to L(d). The primary H-2(d) CTL anti-LCMV response as well as that of a CTL clone responsive to LCMV NP 118-126 recognized target cells coated with NP 118-126 peptides derived from LCMV, LFV, and Mopeia virus but not Sabia virus, indicating that a common functional NP epitope exists among Old World arenaviruses. Use of site-specific amino acid exchanges in the NP CTL epitope among these arenaviruses identified amino acids involved in major histocompatibility complex binding and CTL recognition.  相似文献   

17.
Cytotoxic T lymphocytes (CTL) were induced in C57BL/6 and (C57BL/6 X DBA/2)F1 mice after immunization with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV-Arm) and were cloned by limiting dilution in vitro. The cytotoxic activity of these clones was LCMV specific and H-2 restricted. All clones induced in C57BL/6 (H-2b) mice with LCMV-Arm lysed target cells infected with each of five distinct strains of LCMV (Arm, Traub , WE, Pasteur, and UBC ), suggesting recognition of common regions of viral proteins in association with H-2b molecules. In contrast, one clone obtained from (B6 X D2)F1 mice and restricted to the H-2d haplotype only lysed cells infected with one of three strains of virus (Arm, Traub , WE) but not two others (Pasteur, UBC ), suggesting recognition of variable regions of viral proteins in the context of H-2d molecules. To assess the fine specificity for H-2 molecules, we tested H-2Kb-restricted CTL clones for their ability to kill LCMV-infected target cells bearing mutations in their H-2Kb, and we tested clones presumed to be restricted to the H-2Db region for their ability to all LCMV targets cells bearing a mutation in the H-2Db region. Several different patterns of killing of the mutant targets were observed, indicating that a number of different epitopes on the H-2b molecules were used as restricting determinants for LCMV antigen recognition by CTL. Thus, cross-reactive viral determinants were recognized in the context of several different restricting determinants. Mutations in the N or C1 domains of the H-2 molecule affected recognition by a single LCMV specific CTL clone. One implication of this result is that CTL recognize a conformational determinant on the H-2 molecule formed by the association of virus antigen(s) with H-2. An alternate explanation is that one site on the H-2 molecule is involved in the interaction of viral antigens with H-2, whereas another may serve as a binding site for the CTL receptor.  相似文献   

18.
Cytotoxic T lymphocytes (CTL) play an important role in recovery from a number of viral infections. They are also implicated in virus-induced immunopathology as best demonstrated in lymphocytic choriomeningitis virus (LCMV) infection of adult immunocompetent mice. In the present study, the structure of the T-cell receptor (TCR) in LCMV-specific CTL in C57BL/6 (B6) mice was investigated. Spleen T cells obtained from LCMV-infected mice were cultured in vitro with virus-infected stimulator cells and then stained with anti-TCR V beta antibodies. A skewing of V beta usage was noticeable in T cells enriched for their reactivity to LCMV, suggesting that particular V segments are important for the recognition of LCMV T-cell epitopes in B6 mice. To gain more detailed information on the structure of the TCR specific for LCMV epitopes, we studied CTL clones. It has been shown that approximately 90% of LCMV-reactive CTL clones generated in H-2b mice are specific for a short peptide fragment of the LCMV glycoprotein, residues 278 to 286, recognized in the context of the class I major histocompatibility complex molecule, Db. Four CTL clones possessing the specificity were randomly selected from a collection of clones, and their TCR genes were isolated by cDNA cloning or by the anchored polymerase chain reaction. All four clones were found to use V alpha gene segments belonging to the V alpha 4 subfamily. By RNA blot analysis, two more clones with the same specificity were also shown to express the V alpha 4 mRNA. In contrast, three different V beta gene segments were used among the four clones examined. J beta 2.1 was used by three of the clones. Although amino acid sequences in the V(D)J junctional regions were dissimilar, aspartic acid was found in the V alpha J alpha and/or V beta D beta J beta junctions of all four of these clones, suggesting that this residue is involved in binding the LCMV fragment. Restricted usage of V alpha and possibly J beta segments in the CTL response to a major T-cell epitope of LCMV raises the possibility that immunopathology in LCMV infection can be treated with antibodies directed against such TCR segments. Thus, similar analysis of the TCR in other virus infections is warranted and may lead to therapeutic strategies for immunopathology due to virus infections.  相似文献   

19.
CTL escape mutations have been identified in several chronic infections, including mice infected with mouse hepatitis virus strain JHM. One outstanding question in understanding CTL escape is whether a CD8 T cell response to two or more immunodominant CTL epitopes would prevent CTL escape. Although CTL escape at multiple epitopes seems intuitively unlikely, CTL escape at multiple CD8 T cell epitopes has been documented in some chronically infected individual animals. To resolve this apparent contradiction, we engineered a recombinant variant of JHM that expressed the well-characterized gp33 epitope of lymphocytic choriomeningitis virus, an epitope with high functional avidity. The results show that the presence of a host response to this second epitope protected mice against CTL escape at the immunodominant JHM-specific CD8 T cell epitope, the persistence of infectious virus, and the development of clinical disease.  相似文献   

20.
We previously demonstrated that chimeric porcine parvovirus-like particles (PPV:VLP) carrying heterologous epitopes, when injected intraperitoneally into mice without adjuvant, activate strong CD4(+) and CD8(+) T-cell responses specific for the foreign epitopes. In the present study, we investigated the immunogenicity of PPV:VLP carrying a CD8(+) T-cell epitope from the lymphocytic choriomeningitis virus (LCMV) administered by mucosal routes. Mice immunized intranasally with recombinant PPV:VLP, in the absence of adjuvant, developed high levels of PPV-specific immunoglobulin G (IgG) and/or IgA in their serum, as well as in mucosal sites such as the bronchoalveolar and intestinal fluids. Antibodies in sera from mice immunized parenterally or intranasally with PPV:VLP were strongly neutralizing in vitro. Intranasal immunization with PPV:VLP carrying the LCMV CD8(+) T-cell epitope also elicited a strong peptide-specific cytotoxic-T-cell (CTL) response. In contrast, mice orally immunized with recombinant PPV:VLP did not develop any antibody or CTL responses. We also showed that mice primed with PPV:VLP are still able to develop strong CTL responses after subsequent immunization with chimeric PPV:VLP carrying a foreign CD8(+) T-cell epitope. These results highlight the attractive potential of PPV:VLP as a safe, nonreplicating antigen carrier to stimulate systemic and mucosal immunity after nasal administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号