首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Mouse oocytes arrested in metaphase II exhibit zona hardening and a reduced fertilization rate after exposure to the cryoprotectant dimethylsulfoxide (Johnson J, In Vitro Fertil Embryo Transfer 6:168-175, 1989) but do not undergo parthenogenetic activation (Johnson and Pickering, Development 100:313-324, 1987). This paper shows that dimethylsulfoxide causes proteolytic modification of the zona pellucida glycoprotein ZP2 and inhibition of sperm binding. These effects of dimethylsulfoxide are caused by premature exocytosis of the cortical granules, a process that is initiated usually on fertilization. A model for the mechanism of action of dimethylsulfoxide is proposed based on the combined effects of cytoskeletal modification and osmotic shock. The presence of serum before and during the exposure to dimethylsulfoxide was found to reduce significantly these deleterious effects on the mouse zona pellucida without inhibiting the cortical granule release. These results highlight the suitability of dimethylsulfoxide as a tool to study the mechanisms leading to cortical granule release. Use of dimethylsulfoxide allows the separation of oocyte parthenogenetic activation from cortical granule release, and addition of serum allows separation of cortical granule release from the action of the cortical granule contents. Their use allows a dissection of the mechanisms underlying each of these three related events.  相似文献   

2.
The present study confirms that zona pellucidae of rat oocytes became resistant to chymotrypsin digestion (zona hardening) after undergoing in vitro maturation (IVM) in a serum-free medium. However, zona hardening did not occur when empty zonae without oocytes were cultured in the same IVM conditions, suggesting that oocyte-derived factor(s) is responsible for zona hardening in oocytes matured in the serum-free medium. Zona hardening occurred primarily after dictyate oocytes were cultured for 6-8 hours in the IVM medium without serum. Zona hardening could be prevented or alleviated if oocytes were cultured in the IVM medium containing bovine foetal calf serum, a soybean trypsin inhibitor, or beta-mercaptoethanol, and in vitro fertilization rates for such oocytes were normal. Possible mechanisms of the phenomenon of zona hardening in oocytes matured in serum-free conditions are discussed in relation to its possible relevance to the cortical reaction and the physiological block to polyspermy.  相似文献   

3.
Fertilization results in cortical granule exocytosis, which is thought to be involved in modifications of the zona pellucida that constitute the zona pellucida block to polyspermy. A previous report demonstrated that a decrease in the number of Lens culinaris agglutinin-staining granules, which are likely to be cortical granules, occurred during in vivo mouse oocyte maturation with arrest at metaphase II, as well as the formation of a cortical granule-free domain in the area of the metaphase II spindle (T. Ducibella, E. Anderson, D.F. Albertini, J. Aalberg, and S. Rangarajan, 1988, Dev. Biol. 130, 184-197). We extend these observations by reporting here that germinal vesicle-intact oocytes matured in vitro to metaphase II in either the absence or the presence of serum develop a cortical granule-free domain and have reduced numbers of cortical granules when compared to germinal vesicle-intact oocytes; these changes are similar to those of oocytes matured in vivo. The reduction in the number of cortical granules requires germinal vesicle breakdown, since it is prevented by dibutyryl cAMP, which inhibits germinal vesicle breakdown in vitro. The ability of oocytes to respond to the calcium ionophore A23187 with a reduction in the number of cortical granules is also associated with meiotic maturation and develops between 7 and 12 hr after initiation of maturation. The maturation-associated reduction in the number of cortical granules is likely to represent cortical granule exocytosis, since this reduction is accompanied by the formation of a cortical granule-free domain and a conversion of ZP2 to ZP2f when the oocytes are matured in vitro in serum-free medium; this zona pellucida modification occurs following fertilization and is thought to be due to cortical granule exocytosis. In contrast, the loss of cortical granules and development of the cortical granule-free domain of oocytes matured in vitro in the presence of serum is not accompanied by the modification of ZP2. The inhibitory effect of serum on the ZP2 modification may afford in vivo a physiological mechanism to prevent a precocious modification of the zona pellucida that could result in a premature block to polyspermy and hence inhibit fertilization.  相似文献   

4.
The zona pellucida of mouse oocytes becomes resistant to chymotrypsin digestion, or "hardened", when spontaneous maturation occurs in serum-free medium (De Felici and Siracusa, Gam Res 1982; 6:107). The hardened zona pellucida is refractory to sperm penetration, thus preventing fertilization. Conversion of the zona pellucida glycoprotein ZP2 to ZP2f by a protease from precociously released oocyte cortical granules appears to be a major contributory factor of zona pellucida hardening (Ducibella et al., Dev Biol 1990; 137:46). Fetal bovine serum (FBS) prevents zona hardening and the ZP2 to ZP2f conversion during oocyte maturation in vitro (Downs et al., Gam Res 1986; 15:115; Ducibella et al., Dev Biol 1990; 137:46). This study was conducted to determine whether fetuin, a major glycoprotein constituent of FBS and a protease inhibitor, could prevent zona pellucida hardening during murine oocyte maturation in serum-free medium. Commercially available preparations of fetuin purified by three different methods were all active in inhibiting zona pellucida hardening in a concentration-dependent manner. Further chromatographic purification of one of these preparations indicated that the activity preventing zona pellucida hardening was associated specifically with fetuin. Fetuin also inhibited the conversion of ZP2 to ZP2f in a concentration-dependent manner during oocyte maturation in serum-free medium. Moreover, oocytes that matured in serum-free medium containing fetuin could be fertilized and could undergo preimplantation development to the blastocyst stage. These results indicate that fetuin, a component of FBS, inhibits zona pellucida hardening during oocyte maturation, and suggest that fetuin acts by preventing the proteolytic conversion of ZP2 to ZP2f by precociously released cortical granules.  相似文献   

5.
Here, we describe an in vitro assay that has permitted further characterization of a proteinase (called "ZP2-proteinase") that is released upon activation of ovulated mouse eggs and cleaves ZP2, one of three glycoproteins present in mouse zonae pellucidae. Results presented suggest that ZP2-proteinase readily diffuses through the zona pellucida within 5 min of activation of eggs by ionophore A23187 and carries out limited proteolysis of ZP2. Appearance of ZP2-proteinase is completely dependent upon activation of eggs, consistent with it being present in cortical granule exudate. The proteinase is insensitive to a wide variety of proteinase inhibitors, but is inhibited when either an anti-ZP2 monoclonal antibody or an Fab fragment of the antibody is bound to ZP2. Proteolysis occurs near the amino- or carboxy-terminus of ZP2, producing a 23,000 Mr glycopeptide(s) that remains attached to ZP2 by intramolecular disulfide bonds. HPLC fractionation of activated egg exudate suggests that ZP2-proteinase has an apparent Mr between 21,000 and 34,000. Proteolysis of ZP2 correlates with "hardening" of the zona pellucida following egg activation and, thus, may be responsible for one aspect of the zona reaction.  相似文献   

6.
Our previous study indicated that thimerosal is one of the most effective artificial activators to mimic sperm-induced increases in the intracellular free calcium concentration ([Ca2+]i) and other activation events in pig oocytes (Macháty et al., 1997). The present study was conducted to examine the temporal relationship between intracellular calcium transients, cortical granule (CG) exocytosis and the zona reaction induced by thimerosal. When pig oocytes matured in vitro were exposed to 200 microM thimerosal the first intracellular calcium transient, with a mean peak ratio of 4.97 +/- 1.14, was observed 509.64 +/- 122.03 s after addition of thimerosal. The density of CGs fell significantly from 63.3 +/- 11.7 CGs/100 micron 2 of cortex in control oocytes to 25.7 +/- 19.2 CGs/100 micron 2 of cortex (59.4% release) at 2 min after the first intracellular calcium transient. At 5 min after the calcium transient the residual CG density had been reduced to 10.7 +/- 10.4 CGs/100 micron 2 of cortex (83.1% release). This degree of CG exocytosis was the same as that in oocytes penetrated by sperm (9.5 +/- 5.1 CGs/100 micron 2 of cortex). No further decrease in residual CG density was observed at 10 min (10.3 +/- 14.8 CGs/100 micron 2 of cortex). Whereas 77.4% (120/155) of control oocytes were penetrated by spermatozoa only 1.4% (2/144) of thimerosal-treated oocytes were penetrated. Further experimental results obtained by in vitro fertilisation of oocytes with preincubated (capacitated) spermatozoa suggested that the zona block to sperm penetration in thimerosal-treated oocytes occurred within 35 min after CG exocytosis and 40 min after the first calcium transient. These results indicate that polyspermic penetration of pig oocytes inseminated in vitro is not due to delayed or incomplete CG exocytosis but more likely to a delayed zona reaction and/or simultaneous sperm penetration.  相似文献   

7.
Monoclonal antibody (mAb) MN13 labels mouse sperm head postacrosomal perinuclear theca (PT), which is possibly involved in oocyte activation during fertilization. The antigenic site is expressed after mild sonication followed by treatment with dithiothreitol (DTT) or heat (45 degrees C), and is visible as a thick band in the postacrosomal region. The presence of protease inhibitors in the sonication medium suppresses the exposure of MN13 epitope (MN13p), suggesting the involvement of a proteolytic reaction in this process. Spermatozoa do not express MN13p after the induction of acrosome exocytosis by Ca(2+) ionophore, zona binding, or during zona penetration, a strategy that ensures safe delivery of postacrosomal PT proteins to oocytes after fusion. MN13 labeling was not detectable during fertilization by zona-free in vitro fertilization, suggesting that the antigenic site does not react with proteolytic enzymes during sperm-oocyte fusion and the antibody does not recognize the nascent epitope. Microinjection of sperm heads prepared by sonication and DTT treatment led to the activation of metaphase II oocytes. The oocyte activating function of such sperm heads was significantly diminished after labeling with MN13 prior to intracytoplasmic sperm injection (ICSI), but labeling with antiequatorin antibody MN9 activated oocytes with a frequency similar to that of unlabeled sperm heads. The sperm heads in inactive oocytes formed premature chromosome condensations (PCCs), which were invested by independent metaphase-like spindles. These observations indicate that the postacrosomal PT recognized by mAb MN13 is involved in oocyte activation. MN13p is dissociated from sperm heads during the early stages of decondensation after ICSI. In activated oocytes, MN13-labeled fine granules were redistributed in the midzone spindle region, whereas in inactive oocytes they formed a ring around the polar regions of the metaphase II and PCC spindles.  相似文献   

8.
When mouse ovulated oocytes were exposed to 1.5 M-dimethylsulphoxide (DMSO) the resultant hardening of the zona pellucida was not a direct effect but required the presence of an oocyte. The hardening of the zona pellucida when zonae used were aged in vitro was also dependent upon the presence of the oocyte. Protocols of DMSO exposure that induce zona-hardening also caused depletion of the numbers of cortical granules underlying the oocyte surface, whereas protocols without effect on the zona did not reduce significantly the cortical granule count. It is proposed that the effects of DMSO may be mediated by a release of cortical granule contents.  相似文献   

9.
《The Journal of cell biology》1993,123(6):1431-1440
The mammalian egg must be fertilized by only one sperm to prevent polyploidy. In most mammals studied to date, the primary block to polyspermy occurs at the zona pellucida, the mammalian egg coat, after exocytosis of the contents of the cortical granules into the perivitelline space. The exudate acts on the zona, causing it to lose its ability to bind sperm and to be penetrated by sperm previously bound to the zona. However, the cortical granule components responsible for the zona block have not been identified. Studies described herein demonstrate that N-acetylglucosaminidase is localized in cortical granules and is responsible for the loss in sperm-binding activity leading to the zona block to polyspermy. Before fertilization, sperm initially bind to the zona by an interaction between sperm surface GalTase and terminal N-acetylglucosamine residues on specific oligosaccharides of the zona glycoprotein ZP3 (Miller, D. J., M. B. Macek, and B. D. Shur. 1992. Nature (Lond.). 357:589-593). These GalTase-binding sites are lost from ZP3 after fertilization, an effect that can be duplicated by N-acetylglucosaminidase treatment. Therefore, N-acetylglucosaminidase, or a related glycosidase, may be present in cortical granules and be responsible for ZP3's loss of sperm-binding activity at fertilization. Of eight glycosidases assayed in exudates of ionophore-activated eggs, N-acetylglucosaminidase was 10-fold higher than any other activity. The enzyme was localized to cortical granules using immunoelectron microscopy. Approximately 70 or 90% of the enzyme was released from cortical granules after ionophore activation or in vivo fertilization, respectively. The isoform of N- acetylglucosaminidase found in cortical granules was identified as beta- hexosaminidase B, the beta, beta homodimer. Inhibition of N- acetylglucosaminidase released from activated eggs, with either competitive inhibitors or with specific antibodies, resulted in polyspermic binding to the zona pellucida. Another glycosidase inhibitor or nonimmune antibodies had no effect on sperm binding to activated eggs. Therefore, egg cortical granule N-acetylglucosaminidase is released at fertilization, where it inactivates the sperm GalTase- binding site, accounting for the block in sperm binding to the zona pellucida.  相似文献   

10.
Denuded Bufo arenarum oocytes matured in vitro by progesterone treatment exhibited abnormal segmentation due to the penetration of more than one sperm. These oocytes were able to respond to activation stimuli and exhibited the external signs characteristic of activation. However, the prevention of polyspermy was not effective in these oocytes, which exhibited numerous sperm in their cytoplasm. The aim of this work was to analyse the cortical reaction in polyspermic Bufo arenarum oocytes matured in vitro. The result indicate that the cortical reaction of these oocytes seems to occur with a chronological sequence similar to that described for ovoposited oocytes of this species. In addition, when, 1 min after pricking, cortical granule exocytosis occurred, the oocytes became refractory to sperm entry, suggesting that they are able to establish a slow block to polyspermy.  相似文献   

11.
Protease inhibitors were used to study certain physiological responses (secretion of the cortical granule protease, altered resceptively to sperm penetration, initiation of cell division and embryogenesis) of sea urchin eggs to stimulation by calcium ionophore A23187. Protease activity in the secretory product released from the eggs 5 min after insemination or parthenogenetic activation with ionophore was completely inhibited by soybean trypsin inhibitor (SBTI), antipain (Ap), and leupeptin (Lp). A barrier was established to prevent subsequently added sperm from penetrating (fertilizing) ionophore-activated eggs, co-incident with the elevation of the fertilization membrane. These processes were retarded by inhibitors of the cortical granule protease in ionophore-activated eggs, just as they are when eggs are initially stimulated by sperm at fertilization. A23187-activated eggs did not divide unless they had been secondarily fertilized by sperm, even if the ionophore was subsequently removed by extensive washing. However, ionophore-activated eggs that were penetrated by a single spermatozoan in SBTI developed into normal larvae under similar conditions. These results suggest that A23187 may be an incomplete parthenogenetic agent because it cannot stimulate eggs to assemble centrioles required to organize the mitotic apparatus. The centrioles are normally provided by the sperm during fertilization. A23187 may also be toxic to the eggs. Furthermore, since cortical granules are secretory organelles, the data suggest a possible functional relationship between calcium ions and protease activation in stimulus-secretion coupling in sea urchin eggs at fertilization.  相似文献   

12.
For the first time we have shown with appropriately labelled lectins that fucosyl- and sialyl-rich glycoconjugates are released into the perivitelline space of the mouse oocyte after activation by the fertilizing spermatozoon or artificial activation by the calcium ionophore A23187 or ethanol. The glycoconjugates show a punctate distribution over the oocyte surface except for the microvilli-free area overlying the second meiotic spindle from which they are absent. Their appearance in the perivitelline space is associated with the release of the cortical granule suggesting that they represent part of the cortical granule exudate. Soon after the glycoconjugates appear, they begin to aggregate. The process continues until the beginning of cytokinesis at first cleavage when a single large aggregate is found within the cleavage furrow. Most of the labelled glycoconjugates disappear by the late 2-cell stage and no evidence was found for their presence during the later preimplantation period. This technique is suitable for monitoring the kinetics of the cortical reaction in mammalian oocytes and investigating the importance of the glycoconjugates in early preimplantation period.  相似文献   

13.
In vitro fertilization (IVF) has had poor success in the horse, a situation related to low rates of sperm penetration through the zona pellucida (ZP). Zona pellucida hardening (ZPH) is seen in mouse and rat oocytes cultured in serum-free medium. The hardened ZP is refractory to sperm penetration. Fetuin, a component of fetal calf serum, inhibits ZPH and allows normal fertilization rates in oocytes cultured in the absence of serum. We evaluated whether fetuin is present in horse serum and follicular fluid (FF) and whether fetuin could inhibit ZPH in equine oocytes matured in vitro, thus increasing sperm penetration during IVF. The presence of fetuin in equine serum and FF was confirmed by immunoblotting. Oocytes submitted to in vitro maturation (IVM) in medium containing fetuin were used for ZPH assay or IVF. Intracytoplasmic sperm injection (ICSI) was carried out as a control procedure. The presence of fetuin during IVM did not affect the rate of maturation to metaphase II. Maturation of oocytes in the presence of fetuin reduced ZPH in a dose-dependent manner. After both IVF and ICSI, there was no significant difference in oocyte fertilization between fetuin-treated and untreated oocytes. The fertilization rate was significantly higher after ICSI than after IVF, both in fetuin-treated and in untreated oocytes. In conclusion, fetuin reduced ZPH in equine oocytes but did not improve sperm penetration during IVF. This implies that, in the horse, "spontaneous" ZPH is unlikely to be the major factor responsible for inhibiting sperm penetration in vitro.  相似文献   

14.
We investigated whether the incorporation of the sperm membrane into the oolemma contributes to the human plasma membrane block to polyspermy. We used zona pellucida–free oocytes fertilized by intracytoplasmic sperm injection (ICSI) or activated by parthenogenetic activation. Only two of the 35 pronuclear oocytes fertilized by spermatozoa (control) demonstrated one single penetrating spermatozoa. In contrast, the majority of ICSI and parthenogenetically activated pronuclear oocytes were penetrated with an average of three spermatozoa per oocyte. The number of fused and binding spermatozoa of ICSI and parthenogenetically activated oocytes were significantly higher than in control oocytes (3.5 ± 0.6 and 4.3 ± 0.6 for ICSI; 3.0 ± 0.3 and 3.8 ± 0.4 for activated and 0.2 ± 0.1 and 0.6 ± 0.2 for controls, respectively, P < 0.01). Furthermore, the cortical granules were released from the cortex of ICSI and calcium ionophore‐puromycin‐activated pronuclear oocytes to the same extent as that of pronuclear oocytes fertilized by spermatozoa. These results suggest that the establishment of the plasma membrane block to sperm penetration in the human oocyte may require a fusion process between sperm and oocyte plasma membranes. Mol. Reprod. Dev. 52:183–188, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
16.
The biology and dynamics of mammalian cortical granules   总被引:1,自引:0,他引:1  
Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals.  相似文献   

17.
A mammalian ovoperoxiadase activity has been detected in ionophore activated mouse eggs. The peroxidase activity was demonstrated at the electron microscopic level using the 3,3′-diaminobenzidine (DAB) histochemical method. A positive DAB reaction was detected in a portion of the intact cortical granules of untreated or DMSO treated control eggs. In the ionophore activated eggs, the DAB reaction product was routinely detected by electron microscopy, predominantly on the cell surface, that is on the zona pellucida, in the perivitelline space, and in association with the cortical granule exudates. Furthermore, the peroxidase inhibitors phenylhydrazine and sodium sulfite prevented DAB staining in ionophore activated oocytes. These results indicate the presence of an ovoperoxidase, possibly of cortical granule origin, on the surface of activated mammalian eggs, detectable by histochemical means.  相似文献   

18.
In vivo fertilization of sheep eggs has been studied by electron microscopy. Remnants of the acrosome reaction were present at the zona surface of every penetrated egg, indicating that the acrosome reaction in sheep occurs at the surface of the zona pellucida. To determine whether follicular oocytes could specifically bind spermatozoa, oocytes isolated from different size classes of antral follicles were transferred into the oviducts of mated ewes, recovered 4 hr 30 min later, and analyzed by electron microscopy. Oocytes from follicles up to 1 mm in diameter failed to bind spermatozoa and were not penetrated. In contrast, the zona of oocytes from follicles ? 2 mm in diameter induced the acrosome reaction. These oocytes were penetrated but failed to achieve cortical granule exocytosis and so to mount a block to polyspermy. Moreover, sperm nuclei incorporated into the ooplasm did not decondense although the sperm nuclear envelope was dispersed.  相似文献   

19.
By indirect immunofluorescence, using rabbit anti-heparin-binding placental protein (HBPP) antiserum, we studied HBPP expression by physiologically and non-physiologically (microsurgically) activated hamster gametes. Whereas mature gametes (sperm, metaphase II oocytes) were negative, in vivo conceived preimplantation embryos, from pronuclear to two- and four-cell stages, were HBPP positive. No HBPP was demonstrated in the zona pellucida, but HBPP-dependent immunofluorescence was localized in the perivitelline space. Oocytes incubated with hyaluronidase demonstrated variable responses from negative to positive. (Diluent or sperm) microinjected oocytes were all activated and HBPP positive within 4 h after stimulation. Thus neither activation by microinjection nor HBPP expression required paternal gametes. These kinetics suggest that HBPP may be a cortical granule secretogogue which can be applied to monitor oocyte responses during in vitro manipulations.  相似文献   

20.
We have previously prepared an anti-mouse sperm monoclonal antibody (A-1) which inhibited sperm penetration into the egg zona pellucida. By indirect immunofluorescence (IIF), the A-1 antibody was shown to recognize an antigen localized in the acrosomal area of sperm. This antibody bound negligibly to fresh sperm, while binding to methanol-fixed sperm was almost complete. After methanol fixation, no sperm that penetrated into the zona were immunoreactive for this antibody. In the present study we examined the localization and fate of A-1 antigen during the acrosome reaction by IIF and flow cytometry (FCM). Cauda epididymal sperm were treated with either calcium ionophore A23187 or zona solution, immunostained indirectly, and subjected to FCM. Treatment with A23187 reduced the percentage of immunoreactive sperm to 59% from the 80% obtained in the untreated sperm. The treatment also reduced the average fluorescence intensity per fluorescence-positive spermatocyte to 65 channels, while this intensity was 89 channels in the untreated sperm. A similar result was obtained from treatment with zona solution. The proportion of sperm that was immunoreactive with A-1 antibody was reduced to 55% by incubation in zona-containing media from the 80% obtained in zona-free media. On the other hand, neither A23187 nor the zona solution affected the immunoreactivity or the fluorescence intensity of caput epididymal sperm, while the A-1 antigen was present in both the immature sperm from the caput epididymis of adult mice and in the mature sperm from the cauda epididymis of the same mice. These findings suggest that the intramembrane antigen recognized by the A-1 monoclonal antibody is released from sperm as a result of the acrosome reaction. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号