首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— —A soluble protein (S-100) which is unique to the nervous system was measured in rabbit tibial nerve at 0, 3, 7, 14, 21, and 28 days of degeneration. Amounts of S-100 in the degenerated peripheral segment of the transected nerve fell progressively during degeneration to 2 per cent of that measured in the corresponding portion of nerve taken from control rabbits 28 days postoperatively. Total soluble proteins increased 42 per cent during this time. Levels of S-100 and total soluble proteins remained unchanged in non-degenerated nerve segments from experimental and control rabbits. Correlations of amounts of S-100 measured in the study reported here with cellular changes demonstrated by other investigators to characterize Wallerian degeneration in peripheral nerve suggest that the S-100 protein is localized primarily in axons rather than in Schwann cells or myelin.  相似文献   

2.
The levels of the S-100 and 14-3-2 proteins were determined in a number of regions of mouse brain at intervals from 1 day to 30 months of age. Both S-100 and 14-3-2 were found in measurable amounts as early as the first day of postnatal age but did not begin to accumulate rapidly in the forebrain, brain stem and cerebellum of the mouse brain until some time between the 7th and 14th days. From days 14 to 28 the levels of S-100 and 14-3-2 in each region continued to increase rapidly with the exception of the forebrain where the rate of accumulation of S-100 appeared to lag considerably behind that in the other regions. The proteins continued to accumulate at a rapid rate until approximately 6 months of age. From 6 to 30 months of age, the levels of 14-3-2 remained relatively stable in cerebellum, hippocampus and hypothalamus and appeared to decrease slightly in striatum and cerebral cortex. In the case of S-100, the level of the protein increased in all regions of brain from 6 to 30 months but the increase was most pronounced in the hippocampus, hypothalamus and striatum. The principal conclusion derived from this study is that the biochemical development and aging of the central nervous system are regionally selective processes.  相似文献   

3.
The effect of catecholamines on the levels of S-100 protein and nervous system-specific enolase (NSE) in epididymal adipose tissue of Wistar rats in vivo was examined by sensitive enzyme immunoassay methods. Soluble S-100 protein levels in the adipose tissue of 9-12-week-old rats (1.46 +/- 0.19 microgram/mg protein) were decreased to less than 50% of those of controls by serial injection (for 4-7 days) of epinephrine (0.1 mg/day) or norepinephrine (0.15 mg) with, however, little effect on the levels of membrane-bound (pentanol-extractable) S-100 protein. A significant decrease in the soluble S-100 protein levels was observed at 2 h after a single injection of epinephrine (1.04 +/- 0.13 microgram/mg protein). On the other hand, levels of NSE subunit (gamma subunit or 14-3-2 protein) in adipose tissue (0.51 +/- 0.03 gamma gamma-equivalent pmol/mg protein) were increased to 170% of control by serial injection (for 7 days) of epinephrine or norepinephrine with little change of the level of enolase alpha subunit on a mg protein basis. Isoproterenol had no apparent effect on the levels of soluble S-100 protein and NSE subunit. These results suggest that the levels of S-100 protein and NSE in adipose tissue are regulated by catecholamines.  相似文献   

4.
By means of the indirect immunohistochemical method distribution of S-100 containing cells has been studied in sections of the mediobasal hypothalamus (astrocytes) and adenohypophysis (follicular-stellate cells) in newborn, 10- and 21-day-old rats under normal development and under protein insufficiency. For this the animals are given the diet containing 6% of protein (control--25% of protein). S-100 containing cells are revealed in the hypothalamus and adenohypophysis in 10- and 21-day-old animals. In the brain of the newborn rats S-100 immunoreactive cells are not revealed. At the ultrastructural level the diaminobenzidine (DAB) reaction products in the immunoreactive cells are revealed diffusely along the whole cytoplasm of the cells, in nuclei the DAB reaction products are absent. Part of S-100 containing cells is essentially lowered, comparing with the control. In the rat adenohypophysis part of S-100 containing cells from the 10th up to the 21st day also decreases. Unlike the hypothalamus, however, content of cells, immunopositive to S-100 exceeds the analogous index in the control rats of the corresponding age groups.  相似文献   

5.
Broilers in four groups were fed a basal diet supplemented with 60 mg/kg zinc oxide (60-ZnO; control), or 20, 60, or 100 mg/kg ZnO nanoparticles (20-, 60-, and 100-nano-ZnO, respectively). Compared with the controls, after 14 days, birds in the 20- and 60-nano-ZnO groups had significantly greater weight gains and better feed conversion ratios. However, the body weight of birds in the 100-nano-ZnO group was dramatically reduced after 28 days. Relative to the control group, the total antioxidant capability (T-AOC) in serum and liver tissue was significantly higher in the 20-nano-ZnO group at all time points and also significantly higher in the 60- and 100-nano-ZnO groups in serum on days 28 and 35 and in liver tissues on days 21 and 28. Compared with the controls, the activity of copper-zinc superoxide dismutase (Cu-Zn-SOD) was significantly greater in the 60- and 100-nano-ZnO groups in serum on days 28 and 35 and in liver tissues after 21 days. Catalase activity in serum samples was significantly higher in the 20- and 60-nano-ZnO groups relative to the control and 100-nano-ZnO birds, but catalase activity in liver tissue was not affected by different nano-ZnO levels. Malondialdehyde content in serum and liver tissues was significantly reduced in the 20-, 60-, and 100-nano-ZnO groups compared with that in the control group at all time points except day 42. Taken together, our data indicate that appropriate concentration of dietary ZnO nanoparticles improves growth performance and antioxidative capabilities in broilers, and 20 mg/kg nano-ZnO is the optimal concentration.  相似文献   

6.
Abstract— Thelevel of the S-100 protein, a brain-specific antigen, wasdetermined by quantitative complement fixation in the brain stem and cerebrum of the rat during postnatal maturation. The content was minimal at birth in the brain stem and rose to its adult value by day 25. Although S-100 protein could not be detected in the cerebrum of the 2-day-old rat, adult values were also present by the 25th day of age. Neither single dose X-irradiation with 750 rd to the head at 2 days of age or single dose X-irradiation at 11 days of age affected the adult level of S-100 protein in the brain stem or cerebrum. Similarly, hypophysectomy at 20 days of age had no effect on the subsequent levels of S-100 protein.  相似文献   

7.
The functional adaptability of the digestive system to the level of feed intake was investigated in the young rabbits by comparing two groups of 12 litters each, weaned at 21 (W21) or 35 (W35) days of age. From 14 days onwards, rabbits were fed a pelleted feed (NDF: 332 g/kg, CP: 177 g/kg, starch: 98 g/kg, as-fed basis). Until 49 days of age, the profile of digestive enzymes was weekly determined in the small intestinal content and mucosa, as well as caecal fermentation traits and fibrolytic activities. In the W21 group, the solid feed intake was increased by 57% between 21 and 35 days (P < 0.01), while the daily body growth was lower from 21 till 42 days (-17%, P < 0.05) when compared with the W35 group. Activities of enzymes of pancreatic origin were only scarcely influenced by the weaning age. In the W21 group, amylase activity tended to be lower at 28 days of age (-36%, P = 0.064), and trypsin activity was decreased by 31% at 49 days of age (P < 0.01). Lipase activity was similar in both weaning groups. Duodenal and jejunal activities of maltase and aminopeptidase N (APN) were higher on day 28 in the W21 group as compared with the W35 group (×1.4 to ×2.4, respectively, P < 0.05). On day 35, duodenal APN activity was twice as higher in the W21 group than in the W35 group (P < 0.01). In caecum, major differences between both weaning groups were observed at 28 days of age with a decrease in ammonia concentration (-43%, P < 0.01) in W21 compared with W35 rabbits. Conversely, the acetate proportion was 5% higher in the W21 group (P < 0.01) on day 28. In conclusion, the digestive tract of early-weaned rabbits showed some adaptative properties in response to nutritional environment changes, but they were insufficient to maintain their growth rate.  相似文献   

8.
We had shown that adult animals, whose mothers were submitted to protein or energy restriction during lactation, differ from controls in their body weight and thyroid function. The aim of this study was to evaluate, from birth through six months of age, leptin serum concentration, body weight and food intake in animals whose mothers received protein or energy restricted-diet during lactation as follows: control (C)-23% protein; protein-restricted (PR)-8% protein; energy-restricted (ER)-23% protein, in restricted quantity, according to the mean ingestion of the PR group. After weaning (day 21) all pups had free access the control diet. Body weight of pups from PR mothers were always lower than those from controls (p < 0.05), while body weight of pups from ER mothers surpassed that of the C group significantly at 140 days of age. The food intake was lower in both offspring from PR and ER mothers, normalizing on the 32th day in pups from ER mothers and on the 52th day in pups from PR mothers. Leptin serum concentration in both offspring from PR and ER mothers were significantly decreased on the 12th day (p < 0.05) and increased on the 21st day (p < 0.05) compared to control. After weaning there was no differences among the groups. It is possible that changes in leptin concentration during lactation in the offspring of malnourished groups could permanently modify the setpoint for body weight control.  相似文献   

9.
The effect of acidic neurospecific protein S-100 on the phosphorylation of brain and liver nuclear proteins with 1 and 10 microM ATP was investigated. It was shown that protein S-100 increases the phosphorylation of brain nuclear proteins, while antigen D, another acidic neurospecific protein half-identical to 14-3-2 protein, inhibits this process. Ca2+ and cAMP at concentration of 10(-6) M do not affect the phosphorylation of brain nuclear proteins. In control assays the tracer 32P is presumably incorporated into high molecular weight nuclear protein fractions (Mr greater than 40000). After addition of protein S-100 the tracer is mainly incorporated into these proteins as well independently of ATP concentration (1 or 10 microM). The phosphorylation of nuclear proteins with molecular weights above 100000 is mostly increased in this case. At ATP concentration of 1 microM protein S-100 decreases histone phosphorylation 2.3 times but does not affect that of non-histone proteins. However, at 10 microM ATP the inhibitory action of this protein on histone phosphorylation is absent. The possible mechanisms of protein S-100 action on nuclear proteins phosphorylation are discussed.  相似文献   

10.
The effect of normal growth (hypertrophy) on myocardial nuclear activity was investigated using male Wistar rats at 21, 50, and 100 days of age. Cardiac mass increased sevenfold during this age range. The concentration of RNA (mg X g-1) was the highest at 21 days and decreased 48% by 50 days of age and 68% after 100 days of development. RNA synthesis, corrected for alterations in the specific activity of the cytoplasmic nucleotide pool, was the highest at 21 days of age. After 50 days of growth, uridine incorporation was decreased fivefold. With continual growth (100 days), RNA synthesis was still reduced compared with the 21-day animals. RNA polymerase activity in myocyte nuclei showed little change in activity from 21 to 100 days of age. However, in the nonmyocyte fraction, RNA polymerase decreased threefold after 50 days of development. Collectively, these data suggest that the large decrease in myocardial RNA synthesis cannot be accounted for by a change in nuclear RNA polymerase activity and that an alteration in chromatin template capacity may be involved during this form of cardiac growth.  相似文献   

11.
The purpose of this experiment was to determine the possible relationship between certain indices of lipid metabolism and specific gene expression in chickens fed graded levels of dietary crude protein. Male, broiler chickens growing from 7 to 28 days of age were fed diets containing 12, 21 or 30% protein ad libitum. In addition, another group of birds was fed on a regimen consisting of a daily change in the dietary protein level (12 or 30%). This latter group was further subdivided such that one-half of the birds received each level of protein on alternating days. Birds were sampled from 28 to 30 days of age. Measurements taken included in vitro lipogenesis, malic enzyme activity the expression of the genes for malic enzyme, fatty acid synthase and acetyl coenzyme carboxylase. In vitro lipogenesis and malic enzyme activity were inversely related to dietary protein levels (12-30%) and to acute changes from 12 to 30%. In contrast, expression of malic enzyme, fatty acid synthase and acetyl CoA carboxylase genes were constant over a dietary protein range of 12-21%, but decreased by feeding a 30% protein diet (acute or chronic feeding). Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. It should be pointed out, however, that metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.  相似文献   

12.
The movement and metabolism of vitamin A is dependent on a number of specific carrier proteins. The small intestine contains both cellular retinol-binding protein (type two) (CRBP(II], restricted to the villus-associated enterocytes, and cellular retinol-binding protein (CRBP), present primarily in supporting mesenchymal cells. The content of these proteins in the small intestine of prepartum and postpartum Sprague-Dawley rats was determined by radioimmunoassay. Levels of CRBP(II), but not CRBP, changed dramatically during this period. Total content of CRBP(II) in the small intestine rose precipitously in late pregnancy and continued to rise throughout lactation to a peak at day 21 postpartum more than 300% greater than in nulliparous, nonpregnant controls. In contrast, total small intestinal weight and CRBP content increased only approximately 100% from late pregnancy to day 21 of lactation. CRBP(II) concentration in the proximal and middle segments of small intestine (expressed on a g wet tissue, mg protein, or mg DNA basis) remained at control levels through day 17 of pregnancy, increased 50-100% in late pregnancy, then rose markedly at parturition to levels two- to threefold greater than controls. CRBP(II) concentration was then maintained at a relatively constant elevated level during the remainder of lactation, but decreased markedly after weaning, approaching control levels within 1 week. The concentrations of CRBP(II) in enterocytes isolated from the proximal two-thirds of the small intestine from rats on day 20 of pregnancy and days 1 and 16 of lactation, expressed on a mg DNA basis, were similar and approximately 60% greater than controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
S-100 protein expression is present in various malignant tissues, yet its prognostic relevance is debatable. The aim was to assess in non-small cell lung cancer (NSCLC) patients' prognostic value of S-100 protein considered alone or in relation with other variables. Tumour samples taken from 86 NSCLC patients during resection were assayed for S-100 protein expression with the use of polyclonal DAKO ZO311 antibody. S-100 expression was found in 32 cases (37%). Positive staining was not correlated with clinical characteristics including age, sex, pathology type of tumour, stage and cigarette smoking. There was a tendency for simultaneous expression of S-100 and P53 protein (p=0.06). A median survival rate for the entire group was 2.3 years (95% CI, 0.9-3.6 years). The median and 5-year survival of patients with positive staining for S-100 protein was 1.5 years and 25%, respectively, compared with 3.0 years and 35%, respectively, in the S-100 negative group (p=0.17). In the final model of a multivariate analysis, S-100 protein expression in tumour cells was associated with significantly decreased survival (p=0.005). S-100 protein expression in tumour cells seems to be an independent predictor of poor prognosis in NSCLC patients.  相似文献   

14.
Two experiments were conducted to evaluate duodenal gene expression of lactoferrin and effect of weaning age on mRNA expression of lactoferrin in piglets using semi-quantitative RT-PCR analysis. In experiment 1, a total of 15 female Duroc x Landrace x Yorkshire piglets of five groups, each group pigs at 1, 14, 28, 42 and 56 days of age were used to determine developmental gene expression of lactoferrin in duodenum. In experiment 2, a total of 18 female neonatal piglets were divided into three groups, which were weaned at 21, 28 and 35 days of age respectively. In each group, three piglets' duodena were sampled at 21, 28 and 35 days of age and the other three piglets' duodena were sampled 7 days after weaning in each group. The samples were collected for detecting the effect of weaning age on lactoferrin mRNA expression of piglets. The results show that lactoferrin mRNA levels decreased steadily in postnatal day 1-56. But only from day 28-42 (14 days after weaned), the levels of lactoferrin gene expression were decreased markedly (p < 0.05), and the difference of lactoferrin mRNA levels at other stages was not significant. This result suggested that weaning had an effect on gene expression of lactoferrin. The results of experiment 2 showed that when the piglets were weaned at 21-28 and 35 days of age respectively, the expression levels of lactoferrin were decreased by 77%, 53% and 59% at the seventh day after weaning. Our results showed that weaning significantly decreased lactoferrin mRNA expression of piglets.  相似文献   

15.
Selective Increase in S-100β Protein by Aging in Rat Cerebral Cortex   总被引:1,自引:0,他引:1  
Changes in the concentrations of nervous tissue-related proteins and their isoproteins, such as S-100 proteins (S-100 alpha and S-100 beta), enolase isozymes (alpha-enolase and gamma-enolase), and GTP-binding proteins (Go alpha, Gi2 alpha, and beta-subunits), were determined in the CNS of male rats of various ages (from 2 to 30 months old) by means of enzyme immunoassay. The weights of brains and the concentrations of soluble proteins in the cerebral cortex, cerebellum, and brainstem were constant during the observation period. The concentration of S-100 beta protein, which is predominantly localized in glial cells, increased gradually in the cerebral cortex with age; levels in the 25-month-old rats increased to approximately 150% of the levels in the young (2-month-old) rats. However, the S-100 beta concentrations in the cerebellum and brainstem were relatively constant, showing similar values in rats 2-30 months old. Levels of other proteins, including both neuronal (gamma-enolase and Go alpha) and glial (alpha-enolase and S-100 alpha) marker proteins, did not change significantly with age in the cerebral cortex, cerebellum, and brainstem. These results suggest that there is a close relation between the age-dependent changes of the CNS function and S-100 beta protein levels in the cerebral cortex.  相似文献   

16.
目的:观察新生儿缺氧缺血性脑病(hypoxic-ischemicencephalopathy,HIE)血清S-100B蛋白的动态变化规律,探讨其在HIE早期诊断中的价值,以及其浓度变化与病情严重程度及预后的关系。同时研究围产期高危因素以及NBNA评分在HIE发生发展与预后中的作用。方法:30例住院正常新生儿作为对照组,于出生后采血,55例HIE患儿(HIE组)分别于出生后1天、2天、7天采血,采用酶联免疫吸附试验、双抗体夹心法检测。收集并分析两组围产期相关资料。HIE组并于采血同时进行NBNA评分。结果:(1)HIE患儿生后第一天与第二天血清S-100B蛋白浓度明显高于对照组(P〈0.05),生后第七天轻度HIE与对照组比较没有统计意义,中、重度HIE与对照组比较有统计学意义。(2)生后第一天与第二天不同病情组HIE患儿NBNA评分相互比较差异具有统计学意义(P〈0.05),第七天轻、中和重度患儿NBNA评分〈35分的患儿分别占33.3%,47.1%,100%。结论:动态监测HIE患儿血清S-100B蛋白浓度和NBNA评分的变化,对HIE的早期诊断,严重程度的判断以及预后的估计有重要意义。  相似文献   

17.
The effect of different weaning ages, that is, 21 (G21), 28 (G28) or 35 (G35) days, on growth and certain parameters of the digestive tract was examined in rabbits to assess the risk of early weaning attributable to the less-developed digestive system. On days 35 and 42, G35 rabbits had 10% to 14% and 10% higher BW, respectively (P < 0.05), than those weaned at days 21 and 28. In the 4th week of life, early weaned animals had 75% higher feed intake than G28 and G35 rabbits (P < 0.05). The relative weight of the liver increased by 62% between 21 and 28 days of age, and thereafter it decreased by 76% between 35 and 42 days of age (P < 0.05), with G21 rabbits having 29% higher weight compared with G35 animals on day 35 (P < 0.05). The relative weight of the whole gastrointestinal (GI) tract increased by 49% and 22% after weaning in G21 and G28 rabbits, respectively (P < 0.05). On day 28, the relative weight of the GI tract was 19% higher in G21 than in G28 rabbits, whereas on day 35 G21 and G28 animals had a 12% heavier GI tract compared with G35 rabbits (P < 0.05). Age influenced the ratio of stomach, small intestine and caecum within the GI tract; however, no effect of different weaning age was demonstrated. The pH value of the stomach and caecum decreased from 5.7 to 1.6 and from 7.1 to 6.3, respectively, whereas that of the small intestine increased from 6.8 to 8.4 (P < 0.05); the differences between groups were not statistically significant. Strictly anaerobic culturable bacteria were present in the caecum in high amounts (108), already at 14 days of age; no significant difference attributable to weaning age was demonstrable. The concentration of total volatile fatty acids (tVFA) was higher in G21 than in G28 and G35 throughout the experimental period (P < 0.05). The proportion of acetic and butyric acid within tVFA increased, whereas that of propionic acid decreased, resulting in a C3 : C4 ratio decreasing with age. Early weaning (G21) resulted in higher butyric acid and lower propionic acid proportions on day 28 (P < 0.05). No interaction between age and treatment was found, except in relative weight of the GI tract and caecal content. In conclusion, early weaning did not cause considerable changes in the digestive physiological parameters measured, but it resulted in 10% lower growth in rabbits.  相似文献   

18.
Forskolin induction of S-100 protein in glioma and hybrid cells   总被引:4,自引:0,他引:4  
The S-100 protein level in mouse neuroblastoma (N18TG-2 and NIE-115), rat glioma (C6, C6BU-1, and C6V-1), and hybrid (NG108-15, 140-3, 141-B, NBr10A, NBr20A, NCB20, and NX3IT) cells was determined with a sensitive enzyme immunoassay system that uses a rabbit antibody to bovine brain S-100 protein. S-100 protein was detected in glioma but not in neuroblastoma cells. All seven hybrid cells derived from neuroblastoma and glioma or other types of cells were found to possess a very little or undetectable S-100 protein. The induction of S-100 protein level in prestationary phase cultures of glioma C6BU-1 cells was examined by forskolin, which was a highly specific activator of adenylate cyclase of the cells and produced morphological differentiation. After incubation with 10 microM forskolin for 48 hr, the S-100 protein level increased 2-2.5-fold in C6BU-1 glioma cells whose mean control level was 60 +/- 26 ng/mg protein (+/- SD). The forskolin induction of S-100 protein in the cells was dose dependent, and the concentration of forskolin required for 50% activation of S-100 protein was about 0.6 microM. The increase by forskolin was initiated from 10-15 hr after incubation with it and was inhibited with cycloheximide and actinomycin D. In NG108-15 hybrid cells the induction of S-100 protein was also observed by forskolin as well as prostaglandin (PG) E1 plus theophylline which are known to activate adenylate cyclase of the cells. The results indicate that S-100 protein biosynthesis is genetically controlled in these clonal cells, and that S-100 protein can be regulated in a cAMP-dependent fashion in prestationary cultures.  相似文献   

19.
S-100 protein in clonal GA-1 and C6 rat glioma cell lines was released in serum-free medium supplemented with adrenocorticotropic hormone (ACTH). The induction of S-100 protein release by ACTH was dose-dependent, showing a half-maximal release at about 5 microM, and the S-100 protein concentration in the medium increased sharply within 3 min, but slightly during further incubation. The S-100 protein release was apparently accompanied by a decrease in the membrane-bound form of S-100 protein in the cell. The S-100 protein release was induced not by the ACTH1-24 fragment, which exhibits the known effects of ACTH, but by the ACTH18-39 fragment, which is designated as corticotropin-like intermediate-lobe peptide (CLIP). These results indicate that the C-terminal half of ACTH is responsible for the S-100 protein release. The enhancement of S-100 protein release by ACTH was also observed in normal rat glioblasts. The release induced by ACTH was apparently specific to S-100 protein, because little release of the cytoplasmic enzymes, creatine kinase, and enolase was observed under the same conditions. High concentrations (5 mM) of dibutyryl cyclic AMP or dibutyryl cyclic GMP were also found to induce S-100 protein release; however, catecholamines (epinephrine, norepinephrine, isoproterenol, and dopamine), acetylcholine, and glutamic acid did not enhance the release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The purpose was to study selected structural changes associated with the deficit in maximum specific force (N/cm2) during the early development of skeletal muscle hypertrophy. Ablation of gastrocnemius and plantaris muscles was performed bilaterally in 35-day-old rats (n = 41), and the soleus muscle was studied from days 1 to 30 thereafter. Compared with control muscles from age-matched unoperated rats (n = 48), muscle mass and cross-sectional area increased in parallel from 28 to 52% over the 30-day postoperative period. Specific force of hypertrophied muscle was depressed 38% at days 1 and 3, and by 28% from days 5 to 30 after synergistic muscle ablation compared with age-matched control values. Interstitial space was 38% greater than the control value of 20.4 +/- 1 microliters/100 mg at day 1 only. Protein concentration was depressed 15% for 7 days after the ablation operation, and connective tissue protein concentration was unchanged. The relative magnitude of increased mean fiber cross-sectional area was less than that of muscle mass until day 7 after ablation. Mononuclear cell infiltration in interfascicular spaces occurred from days 3 to 30 without light microscopic evidence of muscle fiber injury. Initial functional deficits are explained in part by an enlarged interstitial space and decreased protein concentration; later deficits are likely accounted for by intracellular changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号