首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thanks to the techniques of recombinant DNA, there is now abundant sequence information on several endotoxin genes of Bacillus thuringiensis. The task of correlating this sequence information with the economically important aspects of the toxins such as insect specificity, LD(50) and speed of kill is now under worldwide investigation. Progress has also been made on understanding the mechanism of action of the toxins and on identifying the parts of the protoxin which are important in toxicity. Taken together, the mechanistic data and the sequence information allow the first attempts at rational design of mutant endotoxin genes and greatly facilitate the transfer of those genes to other organisms such as plants. More information is still needed, however, as to the nature of the binding site of the toxin and on the three-dimensional structure of the activated toxins.  相似文献   

2.
Bacillus thuringiensis var. aizawai HD-249 produces more than one protein of 130-135 kD in its insecticidal crystal delta-endotoxin. We describe an indirect method of assessing the relative contribution to toxicity of two of these protoxins using monospecific antibodies directed against their active proteolytic products. Our results show that one toxin is active against Spodoptera frugiperda but not Choristoneura fumiferana cells in vitro, while the other lyses C. fumiferana but not S. frugiperda cells. There is no indication of synergism between these toxins in vitro.  相似文献   

3.
Evolution of Bacillus thuringiensis Cry toxins insecticidal activity   总被引:2,自引:0,他引:2  
Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate‐limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures.  相似文献   

4.
昆虫中肠液性质对苏云金芽孢杆菌伴孢晶体毒力的影响   总被引:8,自引:0,他引:8  
邵宗泽  喻子牛 《昆虫学报》2002,45(3):384-390
综述了昆虫中肠液性质对苏云金芽孢杆菌Bacillus thuringiensis伴孢晶体毒力的影响。中肠液的酸碱度和蛋白酶是影响伴孢晶体溶解与原毒素活化的两大因素。中肠液的酸碱度不仅影响到伴孢晶体的溶解速度,还影响到各种蛋白酶的活性表现;而蛋白酶则直接参与了原毒素的活化,其组成与活性影响着原毒素的活化速度和杀虫专一性。因中肠液蛋白水解能力过高而导致原毒素的过度降解是某些昆虫对苏云金芽孢杆菌低度敏感的主要原因,而中肠液对原毒素活化能力的降低则与昆虫抗性的形成有关。此外,中肠液的沉淀作用及其它生理生化特性也影响着原毒素毒力的正常发挥。  相似文献   

5.
Bacillus thuringiensis Cry toxins have been widely used in the control of insect pests either as spray products or expressed in transgenic crops. These proteins are pore-forming toxins with a complex mechanism of action that involves the sequential interaction with several toxin-receptors. Cry toxins are specific against susceptible larvae and although they are often highly effective, some insect pests are not affected by them or show low susceptibility. In addition, the development of resistance threatens their effectiveness, so strategies to cope with all these problems are necessary. In this review we will discuss and compare the different strategies that have been used to improve insecticidal activity of Cry toxins. The activity of Cry toxins can be enhanced by using additional proteins in the bioassay like serine protease inhibitors, chitinases, Cyt toxins, or a fragment of cadherin receptor containing a toxin-binding site. On the other hand, different modifications performed in the toxin gene such as site-directed mutagenesis, introduction of cleavage sites in specific regions of the protein, and deletion of small fragments from the amino-terminal region lead to improved toxicity or overcome resistance, representing interesting alternatives for insect pest control.  相似文献   

6.
苏云金芽孢杆菌杀虫晶体蛋白超量表达的机制   总被引:4,自引:0,他引:4  
邵宗泽  喻子牛 《生命科学》2000,12(4):173-176
杀虫晶体蛋白是苏云金芽孢杆菌主要杀虫成分,进一步提高杀虫晶体蛋白的表达量是苏云金芽杆菌高效工程菌构建的主要途径。本文讨论了cry基因启动子活性、mRNA稳定性、不同cry基因间的协同表达发及伴了孢晶体的形成等几个方面在转录水平或转录后水平上对杀虫晶体蛋白表达的影响。  相似文献   

7.
The Bacillus thuringiensis cryIA(a) and cryIA(c) gene specificity regions were probed by creating and testing hybrid toxins both in vivo and in vitro against cultured insect cells or dissociated midgut epithelial cells. Toxin threshold dose determinations revealed that CryIA(c) is highly active against cultured Choristoneure fumiterana cells (CF-1) whereas CryIA(a) is nontoxic. In live insect bioassays, a reversed order of toxicity was observed. Hybrid analysis reversed that the CryIA(c) toxicity-determining region is located between codons 258 and 510. Two smaller subsections of this region (residues 258–358 and 450–510) were able to confer toxicity, although at lower levels, and one region (358–450) was present where progressive substitutions of CryIA(a) with cryIA(c) sequences had no effect. Exchanging the non-homologous N-terminal regions of CryIA(c) with CryIE suggested that the W-terminus does not play a role in specificity. One hybrid clone, MP80, displays a 99.3% homology to CryIA(b) but shows an 800-fold increase in toxicity to CF–1 cells relative to that shown by CryIA(b). Direct comparison between live Bombyx mori bioassays and a newly developed in vitro lawn assay using dissociated midgut epithelial cells from the same insect revealed striking differences in toxicity. The toxicity-determining region for B. mori larvae was determined to be between codons 283 and 450, although the 450–620 codon region may exert an influence on toxicity. In general, native or hybrid toxins showing little or no insect intoxication were very active against the epithelial cells, suggesting that factors other than toxin amino acid sequence play an important role in determining toxin specificity.  相似文献   

8.
9.
Interactions among the three structural domains of Bacillus thuringiensis Cry1 toxins were investigated by functional analysis of chimeric proteins. Hybrid genes were prepared by exchanging the regions coding for either domain I or domain III among Cry1Ab, Cry1Ac, Cry1C, and Cry1E. The activity of the purified trypsin-activated chimeric toxins was evaluated by testing their effects on the viability and plasma membrane permeability of Sf9 cells. Among the parental toxins, only Cry1C was active against these cells and only chimeras possessing domain II from Cry1C were functional. Combination of domain I from Cry1E with domains II and III from Cry1C, however, resulted in an inactive toxin, indicating that domain II from an active toxin is necessary, but not sufficient, for activity. Pores formed by chimeric toxins in which domain I was from Cry1Ab or Cry1Ac were slightly smaller than those formed by toxins in which domain I was from Cry1C. The properties of the pores formed by the chimeras are therefore likely to result from an interaction between domain I and domain II or III. Domain III appears to modulate the activity of the chimeric toxins: combination of domain III from Cry1Ab with domains I and II of Cry1C gave a protein which was more strongly active than Cry1C.  相似文献   

10.
The role played by alpha-helix 4 of the Bacillus thuringiensis toxin Cry1Aa in pore formation was investigated by individually replacing each of its charged residues with either a neutral or an oppositely charged amino acid by using site-directed mutagenesis. The majority of the resulting mutant proteins were considerably less toxic to Manduca sexta larvae than Cry1Aa. Most mutants also had a considerably reduced ability to form pores in midgut brush border membrane vesicles isolated from this insect, with the notable exception of those with alterations at amino acid position 127 (R127N and R127E), located near the N-terminal end of the helix. Introducing a negatively charged amino acid near the C-terminal end of the helix (T142D and T143D), a region normally devoid of charged residues, completely abolished pore formation. For each mutant that retained detectable pore-forming activity, reduced membrane permeability to KCl was accompanied by an approximately equivalent reduction in permeability to N-methyl-D-glucamine hydrochloride, potassium gluconate, sucrose, and raffinose and by a reduced rate of pore formation. These results indicate that the main effect of the mutations was to decrease the toxin's ability to form pores. They provide further evidence that alpha-helix 4 plays a crucial role in the mechanism of pore formation.  相似文献   

11.
The insecticidal crystal protein (ICP) gene, icp, from a 68-kb plasmid derived from Bacillus thuringiensis subsp. sotto was cloned in Escherichia coli. The icp expression in E. coli cells was confirmed by both immunological and insect-toxicity assays of the cell extract. The entire icp gene resides in the 6.6-kb PstI fragment, which codes for a 144-kDal peptide identical to the intact ICP, as determined by its size and reaction with anti-ICP antibody. Deletion analysis further revealed that the 2.8-kb region within the 6.6-kb PstI fragment codes for ICP. Analysis of the nucleotide sequence indicated that a peptide of 934 amino acid residues truncated at the C-terminal end is encoded by this 2.8-kb fragment. A unique feature of this truncated ICP is the abundance of cysteine and lysine residues within its C-terminal region.  相似文献   

12.
Bacillus thuringiensis is a Gram‐positive aerobic bacterium that produces insecticidal crystalline inclusions during sporulation phases of the mother cell. The virulence factor, known as parasporal crystals, is composed of Cry and Cyt toxins. Most Cry toxins display a common 3‐domain topology. Cry toxins exert intoxication through toxin activation, receptor binding and pore formation in a suitable larval gut environment. The mosquitocidal toxins of Bt subsp. israelensis (Bti) were found to be highly active against mosquito larvae and are widely used for vector control. Bt subsp. jegathesan is another strain which possesses high potency against broad range of mosquito larvae. The present review summarizes characterized receptors for Cry toxins in mosquito larvae, and will also discuss the diversity and effects of 3‐D mosquitocidal Cry toxin and the ongoing research for Cry toxin mechanisms generated from investigations of lepidopteran and dipteran larvae.  相似文献   

13.
A method allowing rapid and accurate identification of different subgroups within the insecticidal crystal CryI protein-producing family of Bacillus thuringiensis strains was established by using PCR technology. Thirteen highly homologous primers specific to regions within genes encoding seven different subgroups of B. thuringiensis CryI proteins were described. Differentiation among these strains was determined on the basis of the electrophoretic patterns of PCR products. B. thuringiensis strains, isolated from soil samples, were analyzed by PCR technology. Small amounts of bacterial lysates were assayed in two reaction mixtures containing six to eight primers. This method can be applied to rapidly detect the subgroups of CryI proteins that correspond with toxicity to various lepidopteran insects.  相似文献   

14.
The nucleotide (nt) sequence of a DNA segment containing the majority of a gene cloned from Bacillus thuringiensis DSIR517 encoding a 130 kDa insecticidal crystal protein has been determined. Sequence analysis reveals an open reading frame (ORF) of 3453 nt. The ATG initiation codon, which is preceded by a potential ribosome-binding site sequence, was confirmed by N-terminal amino acid sequencing. The ORF extends beyond the 3' terminus of the cloned fragment; however, the high degree of homology between the deduced amino acid sequence of this ORF and other Cry proteins suggests the clone lacks only five C-terminal amino acids. Making this assumption, the ORF of 3468 nt encodes a protein of 1156 amino acids with an estimated molecular mass of 129700 Da. Analysis of the deduced amino acid sequence reveals a number of features characteristic of Cry proteins. Alignment of the Cry 517 protein sequence with other Cry proteins suggests it is most closely related to the cryIA-E genes but sufficiently different to form a new cryI gene subclass.  相似文献   

15.
苏云金芽孢杆菌及其杀虫晶体蛋白 作用机制的研究进展   总被引:7,自引:0,他引:7  
刘子铎  喻子牛 《昆虫学报》2000,43(2):207-213
综合叙述了苏云金芽胞杆菌Bacillus thuringiensis和杀虫晶体蛋白的作用机制及在不同水平上解释这些机制的一些流行模型和有关亚分子结构的作用。  相似文献   

16.
Cry1Ab is one of the most studied insecticidal proteins produced by Bacillus thuringiensis during sporulation. Structurally, this protoxin has been divided in two domains: the N-terminal toxin core and the C-terminal portion. Although many studies have addressed the biochemical characteristics of the active toxin that corresponds to the N-terminal portion, there are just few reports studying the importance of the C-terminal part of the protoxin. Herein, we show that Cry1Ab protoxin has a unique natural cryptic endotoxic property that is evident when their halves are expressed individually. This toxic effect of the separate protoxin domains was found against its original host B. thuringiensis, as well as to two other bacteria, Escherichia coli and Agrobacterium tumefaciens. Interestingly, either the fusion of the C-terminal portion with the insecticidal domain-III or the whole N-terminal region reduced or neutralized such a toxic effect, while a non-Cry1A peptide such as maltose binding protein did not neutralize the toxic effect. Furthermore, the C-terminal domain, in addition to being essential for crystal formation and solubility, plays a crucial role in neutralizing the toxicity caused by a separate expression of the insecticidal domain much like a dot/anti-dot system.  相似文献   

17.
Insecticidal toxins of Bacillus thuringiensis   总被引:3,自引:0,他引:3  
  相似文献   

18.
Abstract Current knowledge of biochemical mechanisms of insect resistance to Bacillus thuringiensis is reviewed. Available information on resistance inheritance and on patterns of cross-resistance is included. Modification of the binding sites for B. thuringiensis insecticidal crystal proteins has been found in different populations of three insect species. This resistance mechanism seems to be inherited as a single recessive or partially recessive major gene, and the resistance levels reached are high. Altered proteolytic processing of B. thuringiensis crystal proteins has been suggested to be involved in one case of resistance. From the available data it seems that binding site modification is the most significant resistance mechanism under field conditions.  相似文献   

19.
A gene from Bacillus thuringiensis subsp. kurstaki that codes for a Lepidoptera-specific insecticidal toxin (delta-endotoxin) was engineered for expression in Bacillus subtilis. A low-copy-number plasmid vector that replicates in Escherichia coli and B. subtilis was constructed to transform B. subtilis with gene fusions first isolated and characterized in E. coli. Naturally occurring promoter sequences from B. subtilis (43, veg, ctc, and spoVG) were inserted upstream from the plasmid-borne structural gene. In the most prolific case, when the sporulation-specific spoVG promoter was fused to the heterologous toxin gene, the toxin product accumulated during postexponential growth to greater than 25% of the total cell protein. However, the resulting specific activity of the insecticidal toxin product was not commensurate with the abundance of the protein.  相似文献   

20.
苏云金杆菌是生物防治中应用最为广泛的一种杀虫剂,其杀虫蛋白具有广泛的多样性。本文就苏云金杆菌杀虫蛋白的基因、基因分布、杀虫蛋白结构以及作用机制的多样性进行了概述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号