首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to obtain insight into host responses to grapevine downy mildew ( Plasmopara viticola ), we compared pathogen development on a panel of Vitis species from North America, Asia and Europe. Leaf discs from different host species were inoculated in parallel, and the colonisation of the mesophyll was visualised by aniline blue staining and quantified with respect to infection incidence and mycelial growth. In parallel, the morphology of guard cells was screened for the presence of an internal cuticular rim after staining with acridine orange and using low-temperature scanning electron microscopy. We observed three response patterns: (i) inhibition of pathogen development early after attachment of zoospores; (ii) successful colonisation of the mesophyll by the pathogen; and (iii) aberrant development, where the pathogen does not attach to guard cells, but produces hyphae on the leaf surface without formation of viable sporangiophores. Inhibition is observed in the North American and Siberian species, successful colonisation prevails in the European hosts, and surface hyphae are found on non-Siberian Asiatic species. We propose that the interaction between host and pathogen is under control of specific signals that have been subject to evolutionary diversification.  相似文献   

2.
Grapevine downy mildew caused by the Oomycete Plasmopara viticola is one of the most important diseases affecting Vitis spp. The current strategy of control relies on chemical fungicides. An alternative to the use of fungicides is using downy mildew resistant varieties, which is cost-effective and environmentally friendly. Knowledge about the genetic basis of the resistance to P. viticola has progressed in the recent years, but little data are available about P. viticola genetics, in particular concerning the nature of its avirulence genes. Identifying pathogen effectors as putative avirulence genes is a necessary step in order to understand the biology of the interaction. It is also important in order to select the most efficient combination of resistance genes in a strategy of pyramiding. On the basis of knowledge from other Oomycetes, P. viticola effectors can be identified by using a candidate gene strategy based on data mining of genomic resources. In this paper we describe the development of Expressed Sequence Tags (ESTs) from P. viticola by creating a cDNA library from in vitro germinated zoospores and the sequencing of 1543 clones. We present 563 putative nuclear P. viticola unigenes. Sequence analysis reveals 54 ESTs from putative secreted hydrolytic enzymes and effectors, showing the suitability of this material for the analysis of the P. viticola secretome and identification of effector genes. Next generation sequencing of cDNA from in vitro germinated zoospores should result in the identification of numerous candidate avirulence genes in the grapevine/downy mildew interaction.  相似文献   

3.
A host-free system was established to induce the early development of the obligate biotrophic pathogen Plasmopara viticola, the downy mildew of grapevine. This system was used to study cytoskeletal responses during encystation and germ tube formation. During these processes, both the actin and the tubulin cytoskeleton show a stage-specific pattern of distribution. Elimination of the cytoskeleton by the actin drug latrunculin B and the microtubule drug ethyl-N-phenyl-carbamate did not affect the release of mobile zoospores from the sporangia, nor the encystation process, but efficiently inhibited the formation of a germ tube. The data are discussed with respect to a role of both actin and microtubules for the establishment of the cell polarity guiding the emergence and the growth of the germ tube.  相似文献   

4.
The motility of zoospores is critical in the disease cycles of Peronosporomycetes that cause devastating diseases in plants, fishes, vertebrates, and microbes. In the course of screening for secondary metabolites, we found that ethyl acetate extracts of a marine Streptomyces sp. strain B5136 rapidly impaired the motility of zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 0.1 μg/ml. The active principle in the extracts was identified as staurosporine, a known broad-spectrum inhibitor of protein kinases, including protein kinase C (PKC). In the presence of staurosporine (2 nM), zoospores moved very slowly in their axis or spun in tight circles, instead of displaying straight swimming in a helical fashion. Compounds such as K-252a, K-252b, and K-252c structurally related to staurosporine also impaired the motility of zoospores in a similar manner but at varying doses. Among the 22 known kinase inhibitors tested, the PKC inhibitor chelerythrine was the most potent to arrest the motility of zoospores at concentrations starting from 5 nM. Inhibitors that targeted kinase pathways other than PKC pathways did not practically show any activity in impairing zoospore motility. Interestingly, both staurosporine (5 nM) and chelerythrine (10 nM) also inhibited the release of zoospores from the P. viticola sporangia in a dose-dependent manner. In addition, staurosporine completely suppressed downy mildew disease in grapevine leaves at 2 μM, suggesting the potential of small-molecule PKC inhibitors for the control of peronosporomycete phytopathogens. Taken together, these results suggest that PKC is likely to be a key signaling mediator associated with zoosporogenesis and the maintenance of flagellar motility in peronosporomycete zoospores.  相似文献   

5.
In grapevine, the penetration and sporulation of Plasmopara viticola occur via stomata, suggesting functional relationships between guard cells and the pathogen. This assumption was supported by our first observation that grapevine (Vitis vinifera cv. Marselan) cuttings infected by P. viticola wilted more rapidly than healthy ones when submitted to water starvation. Here, complementary approaches measuring stomatal conductance and infrared thermographic and microscopic observations were used to investigate stomatal opening/closure in response to infection. In infected leaves, stomata remained open in darkness and during water stress, leading to increased transpiration. This deregulation was restricted to the colonized area, was not systemic and occurred before the appearance of symptoms. Cytological observations indicated that stomatal lock-open was not related to mechanical forces resulting from the presence of the pathogen in the substomatal cavity. In contrast to healthy leaves, stomatal closure in excised infected leaves could not be induced by a water deficit or abscisic acid (ABA) treatment. However, ABA induced stomatal closure in epidermal peels from infected leaves, indicating that guard cells remained functional. These data indicate that the oomycete deregulates guard cell functioning, causing significant water losses. This effect could be attributed to a nonsystemic compound, produced by the oomycete or by the infected plant, which inhibits stomatal closure or induces stomatal opening; or a reduction of the back-pressure exerted by surrounding epidermal cells. Both hypotheses are under investigation.  相似文献   

6.
Grapevine (Vitis vinifera L.) is susceptible to many pathogens, such as Botrytis cinerea, Plasmopara viticola, Uncinula necator, and Eutypa lata. Phytochemicals are used intensively in vineyards to limit pathogen infections, but the appearance of pesticide-resistant pathogen strains and a desire to protect the environment require that alternative strategies be found. In the present study, the beta-1,3-glucan laminarin derived from the brown algae Laminaria digitata was shown both to be an efficient elicitor of defense responses in grapevine cells and plants and to effectively reduce B. cinerea and P. viticola development on infected grapevine plants. Defense reactions elicited by laminarin in grapevine cells include calcium influx, alkalinization of the extracellular medium, an oxidative burst, activation of two mitogen-activated protein kinases, expression of 10 defense-related genes with different kinetics and intensities, increases in chitinase and beta-1,3-glucanase activities, and the production of two phytoalexins (resveratrol and epsilon-viniferin). Several of these effects were checked and confirmed in whole plants. Laminarin did not induce cell death. When applied to grapevine plants, laminarin reduced infection by B. cinerea and P. viticola by approximately 55 and 75%, respectively. Our data describing a large set of defense reactions in grapevine indicate that the activation of defense responses using elicitors could be a valuable strategy to protect plants against pathogens.  相似文献   

7.
Transient expression of genes using Agrobacterium is a powerful tool for the analysis of gene function in plants. We have developed this method for the analysis of genes involved in disease resistance in grapevine leaves. Our research showed that the quality of the plant material, the plant genotype used for agro-infiltration and the presence of additional virulence factors (carried on plasmid pCH32) in the Agrobacterium strain are all important factors for success of the procedure. After optimising these factors, we consistently achieve sufficient acceptable levels of expression of the markers beta-glucuronidase (GUS) and green fluorescent protein (GFP) using vacuum infiltration of grapevine leaves from plants grown in vitro. We used this procedure to investigate the proposed role of stilbenes in defense against grapevine downy mildew (Plasmopara viticola) by transiently overexpressing stilbene synthase in grapevine leaves, before infection with P. viticola. We found that agro-infiltration itself induces the synthesis of stilbenes in grapevine leaves, thus preventing us to test the effect of the overexpression of stilbene synthase in defense. However, our results revealed that agro-infiltration before P. viticola inoculation had an effect on the development of the infection. Further research is required to show whether stilbenes or some other factor are the causal agent restricting pathogen development. The method described here provides and excellent tool to exploit at the many grapevine genomic resources now available, and will contribute to a better understanding of many areas of grapevine biology.  相似文献   

8.
9.
2,4-Diacetylphloroglucinol (DAPG) produced by Pseudomonas fluorescens, shows toxicity to many microorganisms including fungi, bacteria, and peronosporomycetes. Zoosporogenesis and motility of zoospores are critical for a complete disease cycle and pathogenicity of the peronosporomycete phytopathogens. The aim of this study was to test the effects of DAPG and its derivatives on zoosporogenesis and motility of zoospores of a downy mildew pathogen, Plasmopara viticola, and a damping-off pathogen, Aphanomyces cochlioides. In both cases, DAPG inhibited zoosporogenesis (5 μg/ml) and the motility of zoospores (10 μg/ml) in a dose-dependent manner. Generally, zoospores became immotile shortly after exposure to DAPG followed by lysis. However, a fraction of DAPG treated A. cochlioides zoospores formed round cystospores instead of lysis and then germinated with excessively-branched germ tubes. All derivatives of DAPG had similar inhibitory activities but at varying doses. Among them, 2,4-dipropylphloroglucinol exerted the highest inhibitory activity against both zoosporogenesis and motility of zoospores. This revealed that the degree of hydrogen atoms substitution in the benzene ring by acyl groups and the length of substituted acyl groups were related to the level of bioactivity. This is the first report of inhibitory activities of DAPG and its derivatives against zoosporogenesis and motility of zoospores of two important peronosporomycete phytopathogens.  相似文献   

10.
In our search for secondary metabolites regulating the motility behavior of zoospores of the grapevine downy mildew pathogen Plasmopara viticola, we found that extracts from an endophytic fungus Phomopsis sp. CAFT69 and its host plant Endodesmia calophylloides remarkably impaired motility of zoospores followed by lysis. The active principles in the extracts were isolated and identified as two new compounds, namely excelsional (1a) and 9-hydroxyphomopsidin (2a), together with excelsione (1b), phomopsidin (2b), alternariol (3a), alternariol-5-O-methyl ether (3b), the hitherto undescribed 5′-hydroxyalternariol (3c), altenusin (4) from the fungus, xanthochymol (5) and 1,5-dihydroxy-3-methoxyxanthone (mesuaxanthone, 6) from the plant. Bioassays revealed that compounds 1a/b, 2a/b, and 3a6 displayed motility inhibition and lytic activities against zoospores of the grapevine downy mildew pathogen P. viticola in a dose- and time-dependent manner from 1 to 10 μg/mL. Their structures were elucidated by extensive spectroscopic analyses including 2D NMR techniques. This is the first report of an endophyte and its natural products from E. calophylloides and the first isolation of compounds 5 and 6 from this plant.  相似文献   

11.
Resistance to abiotic and biotic stress is a central topic for sustainable agriculture, especially in grapevine, one of the field crops with the highest economic output per acreage. As early cellular factors for plant defense, actin microfilaments (AF) are of high relevance. We therefore generated a transgenic actin marker line for grapevine by expressing a fusion protein between green fluorescent protein and the second actin-binding domain of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. Based on this first cytoskeletal-marker line in grapevine, the response of AFs to phytopathogenic microorganisms could be followed in vivo. Upon inoculation with fluorescently labeled strains of phytopathogenic bacteria, actin responses were confined to the guard cells. In contrast, upon contact with zoospores of Plasmopara viticola, not only the guard cells, but also epidermal pavement cells, where no zoospores had attached responded with the formation of a perinuclear actin basket. Our data support the hypothesis that guard cells act as pacemakers of defense, dominating the responses of the remaining epidermal cells.  相似文献   

12.
13.
The mandelic acid amide, mandipropamid, which belongs to the carboxylic acid amide (CAA) fungicides, is active against Plasmopara viticola, the causal agent of grapevine downy mildew. The fungicide primarily inhibits the germination of encysted zoospores, thus preventing the pathogen’s penetration into the host tissues, but it also shows curative effects. In this study, the infection structures of P. viticola in both leaves and berries were investigated to detect the histological and ultrastructural alterations induced by mandipropamid when applied after inoculation. Compared to the untreated samples characterized by a diffuse colonization of the tissues and by a normal ultrastructure of the pathogen, the application of mandipropamid 24 h after inoculation with P. viticola reduced pathogen colonization in leaves and berries. In addition, detachment of the plasmalemma from the hyphal and haustorial walls was observed 72 h after inoculation. In the berries, an abnormal proliferation of the pathogen plasma membrane was observed. Collapsed hyphae and haustoria in treated leaves were surrounded by callose or encapsulated in an amorphous material inside the host cell 72 h after inoculation, while a similar effect was observed in later stages (7 days) in berries. The results confirm that mandipropamid, which acts at the interface between the pathogen plasmalemma and cell wall, has curative activity against P. viticola, appearing more rapidly in leaves than in berries.  相似文献   

14.
Leaves of Vitis vinifera L. cvs. Chasselas (susceptible) and Solaris (resistant) were inoculated with Plasmopara viticola. Samples were then examined by scanning electron microscopy, light and epifluorescence microscopy. On the resistant cv. Solaris, stomatal deposits, identified as callose, were visible around the germinating zoospores 7 h after inoculation. Twenty-four hours after inoculation, infected stomata exhibited secretions that enveloped the zoospores. At this time, infected stomata were surrounded by necrotic tissues. At 120 h after inoculation, undefined material was deposited on the cuticle in the necrotic areas. Stomata in the vicinity of the infection sites contained callose deposits in and around the stomatal openings, but no necrotic zones were observed. On the sensitive cv. Chasselas neither secretion nor callose deposits were observed. Sporangiophores emerged about 96 h after inoculation and were fully developed 24 h later. Sporulation through small stomata-like apertures present all along the primary vein was also observed on the upper leaf surface. The role of stomatal callose deposits in the defense reactions of the Solaris grapevine cultivar against P. viticola is discussed.  相似文献   

15.
The expression of PR protein encoding genes and genes involved in the phenylpropanoid metabolism was analysed on grapevine leaves of susceptible and resistant cvs. in response to inoculation with the host-pathogen Plasmopara viticola and the non-host pathogen Pseudoperonospora cubensis, the downy mildew pathogen of cucumber. These experiments were conducted to elucidate whether or not grapevine plants susceptible to downy mildew exhibit an identical defence response after inoculation with the non-host pathogen. Expression analysis of defence-related genes revealed marked differences between the susceptible cultivar "Riesling" (Vitis vinifera) and the resistant cultivar "Gloire de Montpellier" (Vitis riparia). Whereas some genes seem to be expressed constitutively in "Gloire" or induced after an inoculation with both pathogens, expression of defence-related genes in Riesling was influenced mainly after inoculation with the non-host pathogen: PR-2, PR-3, PR-4, a PGIP gene, and especially genes encoding enzymes involved in anthocyanin biosynthesis (DFR, F3H, LDOX) were affected. Therefore, the occurrence of the respective products (flavans and other phenolics) in inoculated leaves was investigated with appropriate histological staining techniques. These stainings revealed a production of catechins and related phenolic compounds within the first 48 hai (hours after inoculation) with Ps. cubensis but not with P. viticola in Riesling, whereas in Gloire no further production was seen, which may be due to the high content of polyphenolics as observed in control leaves. In addition to the staining procedures, sporulation intensity was monitored on leaf discs. Pretreatments of leaf discs with Ps. cubensis led to a reduced browning reaction (as a result of a hypersensitive reaction) in Gloire and significantly reduced the intensity of sporulation in Riesling after a subsequent inoculation with P. viticola.  相似文献   

16.
Accurate localization of phytoalexins is a key for better understanding their role. This work aims to localize stilbenes, the main phytoalexins of grapevine. The cellular localization of stilbene fluorescence induced by Plasmopara viticola, the agent of downy mildew, was determined in grapevine leaves of very susceptible, susceptible, and partially resistant genotypes during infection. Laser scanning confocal microscopy and microspectrofluorimetry were used to acquire UV-excited autofluorescence three-dimensional images and spectra of grapevine leaves 5-6 days after inoculation. This noninvasive technique of investigation in vivo was completed with in vitro spectrofluorimetric studies on pure stilbenes as their fluorescence is largely affected by the physicochemical environment in various leaf compartments. Viscosity was the major physicochemical factor influencing stilbene fluorescence intensity, modifying fluorescence yield by more than two orders of magnitude. Striking differences in the localization of stilbene fluorescence induced by P. viticola were observed between the different genotypes. All inoculated genotypes displayed stilbene fluorescence in cell walls of guard cells and periclinal cell walls of epidermal cells. Higher fluorescence intensity was observed in guard-cell walls than in any other compartment due to increased local viscosity. In addition stilbene fluorescence was found in epidermal cell vacuoles of the susceptible genotype and in the infected spongy parenchyma of the partially resistant genotype. The very susceptible genotype was devoid of fluorescence both in the epidermal vacuoles and the mesophyll. This strongly suggests that the resistance of grapevine leaves to P. viticola is correlated with the pattern of localization of induced stilbenes in host tissues.  相似文献   

17.
Pythium porphyrae (Oomycota), a pathogen causing red rot diseasein Porphyra spp., can at present only be detected when colonizationof the host thallus has already occurred and so it is often too late to takeappropriate disease control measures. The paper presents an account of an effective methdology for early detection of the disease. Since Py.porphyrae zoospores are the primary means of pathogen dispersal,polyclonal antibodies (Pabs) were raised against the surface components ofzoospores and encysted zoospores. Using these Pabs the disease initiationstages of the Pythium porphyrae were detected on the surface of Porphyra thalli by immunofluorescence assay. The specificity of theseantibodies and the efficacy of immunofluorescence assay in the detectionof red rot disease are discussed.  相似文献   

18.
ABSTRACT: BACKGROUND: Grapevine downy mildew, caused by Plasmopara viticola, is a very serious disease affectingmainly Vitis vinifera cultivated varieties around the world. Breeding for resistance throughthe crossing with less susceptible species is one of the possible means to reduce the diseaseincidence and the application of fungicides. The hybrid Bianca and some of its siblings areconsidered very promising but their resistance level can vary depending on the pathogenstrain. Moreover, virulent strains characterized by high fitness can represent a potential threatto the hybrid cultivation. RESULTS: The host response and the pathogen virulence were quantitatively assessed by artificiallyinoculating cv Chardonnay, cv Bianca and their siblings with P. viticola isolates derived fromsingle germinating oospores collected in various Italian viticultural areas. The hostphenotypes were classified as susceptible, intermediate and resistant, according to the AreaUnder the Disease Progress Curve caused by the inoculated strain. Host responses in cvBianca and its siblings significantly varied depending on the P. viticola isolates, which in turndiffered in their virulence levels. The fitness of the most virulent strain did not significantlyvary on the different hybrids including Bianca in comparison with the susceptible cvChardonnay, suggesting that no costs are associated with virulence. Among the individualfitness components, only sporangia production was significantly reduced in cv Bianca and insome hybrids. Comparative histological analysis revealed differences between susceptibleand resistant plants in the pathogen diffusion and cytology from 48 h after inoculation onwards. Defence mechanisms included callose depositions in the infected stomata, increasein peroxidase activity, synthesis of phenolic compounds and flavonoids and the necrosis ofstomata and cells immediately surrounding the point of invasion and determined alterations inthe size of the infected areas and in the number of sporangia differentiated. CONCLUSIONS: Some hybrids were able to maintain an intermediate-resistant behaviour even wheninoculated with the most virulent strain. Such hybrids should be considered for further fieldtrials.  相似文献   

19.
Although the exact mechanisms by which grapevine cells operate to reduce disease incidence caused by the downy mildew fungus Plasmopara viticola are not fully elucidated, our cytological results obtained from infected in vitro-plants confirm that enhanced disease resistance is associated with an expression of distinct reactions in a chronological order. An increased production of reactive oxygen species (superoxide radicals, 4-6 hours post infection, hpi) was followed by a hypersensitive response (6-8 hpi), an increased activity of peroxidase in cells flanking the infection area and in the vascular tissue (10-12 hpi) and an increased production, accumulation or conversion of phenolic compounds (12-15 hpi). These mechanisms seem also to be present in susceptible varieties as shown after an inoculation with non-host oomycetic pathogens on the basis of peroxidase activity, but they do not become activated after P. viticola infection. The investigation of the peroxidase activity in leaves at several time points after an infection with P. viticola indicated that there is a strong correlation between the POX activity in leaves of in vitro-plants and the resistance of grapevine plants to P. viticola in the field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号