首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mn2+ and Zn2+ exhibit a striking ability to block the induction by Sn2+ and Ni2+ of haem oxygenase (EC 1.14.99.3) in kidney. The blocking effects of Mn2+ and Zn2+ were found to be greatest on simultaneous administration, time-dependent when administered up to 8 h before the inducing metal ions, and ineffective when administered as little as 10 min after the inducing metal ions. The decreases in cytochrome P-450 and haem contents and the sequential changes in delta-aminolaevulinate synthase (EC 2.3.1.37) activity that occur concomitant with haem oxygenase induction were largely eliminated with simultaneous or prior treatment with Mn2+ or Zn2+, but not when Mn2+ or Zn2+ was administered after Sn2+ or Ni2+. Mn2+ and Zn2+ did not increase the catabolism of the enzyme in vivo. Zn2+ on simultaneous administration was also able substantially to block the induction of haem oxygenase by Co2+, Cd2+ and Ni2+ in liver. The Zn2+ blockade of Cd2+ induction was examined in detail, and prior or simultaneous administration of Zn2+ was found to be effective in blocking the induction of haem oxygenase and the concomitant decreases in cytochrome P-450 and haem contents, ethylmorphine demethylase activity and the sequential changes in delta-aminolaevulinate synthase activity. Zn2+ administration 10 min or more after Cd2+ was ineffective in preventing the occurrence of these perturbations in haem metabolism. These findings describe a new and striking biological property of Mn2+ and Zn2+, and indicate the existence of significant metal ion interactions in the control of haem metabolism.  相似文献   

2.
We previously showed that Cd2+ is able to induce hepatic and renal ornithine decarboxylase (ODC). In addition to Cd2+, the administration of Co2+ and other metal ions such as Se2+, Zn2+ and Cr2+ produced a significant increase of hepatic and/or renal ODC activity. Of the metal ions used in this study, Co2+ produced the greatest increase of ODC activity. The maximum increases in hepatic and renal ODC activity, to respectively 70 and 14 times the control values in male rats, were observed 6 h after the administration of Co2+. A similar response was seen in the liver, but not in the kidney, of female rats. Thereafter, ODC activity gradually returned to control values in the liver, but it was profoundly decreased to 7% of the control value at 24 h in the kidney. The pretreatment of animals with either actinomycin D or cycloheximide almost completely blocked the Co2+-mediated increase of ODC activity. Co2+ complexed with either cysteine or glutathione (GSH) failed to induce ODC. Depletion of hepatic GSH content by treatment of rats with diethyl maleate greatly enhanced the inducing effect of Co2+ on ODC. The inhibitors of ODC, 1,3-diaminopropane and alpha-difluoromethylornithine, were able to inhibit the induction of the enzyme, without affecting the induction of haem oxygenase by Co2+. Methylglyoxal bis(guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase, significantly inhibited the Co2+-mediated induction of both ODC and haem oxygenase. It is suggested that the inducing effects of Co2+ on ODC and haem oxygenase are brought about in a similar manner.  相似文献   

3.
Degradation of cytochrome P-450 was studied in adult rat liver parenchymal cells in primary monolayer culture. In cells incubated in standard culture medium, the amount of cytochrome P-450 decreased at an accelerated rate relative to either the rate of degradation of total protein in the cells or the turnover of cytochrome P-450 in vivo. This change was succeeded by a spontaneous increase in the activity of haem oxygenase, an enzyme system that converts haem into bilirubin in vitro, measured in extracts from the cultured cells. This finding suggests that the rate of cytochrome P-450 breakdown may be controlled by factor(s) other than the activity of haem oxygenase. The decline in cytochrome P-450 and the subsequent increase in haem oxygenase activity was prevented by incubation of hepatocytes in medium containing an inhibitor of protein synthesis such as cycloheximide, puromycin, actinomycin D, or azaserine. The effect of cycloheximide appeared to be due to decreased breakdown of microsomal (14)C-labelled haem. By contrast, cycloheximide was without effect on the degradation of total protein, measured either in homogenates or in microsomal fractions prepared from the cultured cells. These results suggest that the conditions of cell culture stimulate selective degradation of cytochrome P-450 by a process that is inhibited by cycloheximide and hence may require protein synthesis. The findings in culture were verified in parallel studies of cytochrome P-450 degradation in vivo. After administration of bromobenzene, the degradation of the haem moiety of cytochrome P-450 was accelerated in vivo in a manner resembling that observed in cultured hepatocytes. Administration of cycloheximide to either bromobenzene-treated rats or to untreated rats decreased the degradation of the haem moiety of cytochrome P-450. However, the drug failed to affect degradation of haem not associated with cytochrome P-450, suggesting that cycloheximide is not a general inhibitor of haem oxidation in the liver. These findings confirm that the catabolism of hepatic cytochrome P-450 haem is controlled by similar cycloheximide-sensitive processes in the basal steady state in vivo, as stimulated by bromobenzene in vivo, or in hepatocytes under the conditions of cell culture. We conclude that the rate-limiting step in this process appears to require protein synthesis and precedes cleavage of the haem ring.  相似文献   

4.
The induction of hepatic haem oxygenase (EC 1.14.99.3) by a series of metals, organometals and metalloporphyrins was examined in vivo in the presence of compound SKF 525A, which is known to complex with the prosthetic group of cytochrome P-450. Concurrent administration of SKF 525A and an inducing metal did not affect the extent and time course of haem oxygenase induction. The decrease in cytochrome P-450 content normally associated with metal administration was, however, prevented, indicating that haem oxygenase induction by metals can proceed without the significant labilization of the haem moiety of cytochrome P-450. In addition, the integrity of this haem protein can be maintained by chemical means in the presence of sustained high activities of haem oxygenase.  相似文献   

5.
The response of the microsomal heme oxygenase in the testis to metal ions distinctly differed from that of the ovarian source. The activity of the ovarian enzyme in rats treated with Co2+ (250 mumol/kg, 24 h) responded in consonance with that of the liver and the kidney, i.e., heme oxygenase activity was elevated. In contrast, similar treatments did not increase the activity of testicular heme oxygenase. In addition, other metal ions, such as Cu2+, Sn2+, Pb2+, and Hg2+, known for their potency to increase heme oxygenase activity, were ineffective in increasing the enzyme activity in the testis. The unprecedented response of heme oxygenase in the testis to metal ions did not reflect an unusual nature of the enzyme protein insofar as it displayed a similar cofactor requirement and inhibition by known inhibitors of the enzyme activity, such as KCN and NaN3. Moreover, the apparent Km's for oxidation of hematoheme by the testicular and ovarian microsomal fractions were comparable and measured 2.3 and 1.4 microM, respectively. In the testis of Co2+-treated rats, the concentration of cytochrome P-450 in the rough and smooth endoplasmic reticular fractions was significantly decreased. The decrease in the hemoprotein level, however, did not reciprocate the activity of heme oxygenase in the fractions. The inability of metal ions to induce heme oxygenase activity in the testis did not represent the general refractory nature of the enzymes of heme metabolism to metal ions in this organ, since in rats treated with Co2+ the activity of delta-aminolevulinate synthetase was significantly decreased 24 h after treatment. However, the activities of uroporphyrinogen-I synthetase, delta-aminolevulinate dehydratase, and ferrochelatase and the content of porphyrins were not altered in the testis of rats treated with Co2+. The response of delta-aminolevulinate synthetase in the ovarian tissue to Co2+ treatment contrasted that of the testis. In the ovary, the enzyme activity significantly decreased 6 h after treatment. This decrease was followed by a rebound increase at 24 h after administration of Co2+. The presently described inability of metal ions to induce testicular heme oxygenase activity suggests that the activity of the enzyme in the testis is controlled by factor(s) which differ from those regulating the enzyme activity in other organs, including another steroidogenic organ, the ovary.  相似文献   

6.
Degradation of intrinsic hepatic [(14)C]haem was analysed as (14)CO formation in living rats and in hepatic microsomal fractions prepared from these animals 16h after pulse-labelling with 5-amino[5-(14)C]laevulinic acid, a precursor that labels bridge carbons of haem in non-erythroid tissues. NADPH-catalysed peroxidation of microsomal lipids in vitro (measured as malondialdehyde) was accompanied by loss of cytochrome P-450 and microsome-associated [(14)C]haem (largely cytochrome P-450 haem), but little (14)CO formation. No additional (14)CO was formed when carbon tetrachloride and 2-allyl-2-isopropylacetamide were added to stimulate lipid peroxidation and increase loss of cytochrome P-450 [(14)C]haem. Because the latter effect persisted despite inhibition of lipid peroxidation with MnCl(2) or phenyl-t-butylnitrone(a spin-trapping agent for free radicals), it was concluded that carbon tetrachloride, as reported for 2-allyl-2-isopropylacetamide, may promote loss of cytochrome P-450 haem through a non-CO-forming mechanism independent of lipid peroxidation. By comparison with breakdown of intrinsic haem, catabolism of [(14)C]methaemalbumin by microsomal haem oxygenase in vitro produced equimolar quantities of (14)CO and bilirubin, although these catabolites reflected only 18% of the degraded [(14)C]haem. This value was increased to 100% by addition of MnCl(2), which suggests that lipid peroxidation may be involved in degradation of exogenous haem to products other than CO. Phenyl-t-butylnitrone completely blocked haem oxygenase activity, which suggests that hydroxy free radicals may represent a species of active oxygen used by this enzyme system. After administration of carbon tetrachloride or 2-allyl-2-isopropylacetamide to labelled rats, hepatic [(14)C]haem was decreased and haem oxygenase activity was unchanged; however, (14)CO excretion was either unchanged (carbon tetrachloride) or decreased (2-allyl-2-isopropylacetamide). These changes were unaffected by cycloheximide pretreatment. From the lack of parallel losses of cytochrome P-450 [(14)C]haem and (14)CO excretion, one may infer that an important fraction of hepatic [(14)C]haem in normal rats is degraded by endogenous pathways not involving CO. We conclude that carbon tetrachloride and 2-allyl-2-isopropylacetamide accelerate catabolism of cytochrome P-450 haem through mechanisms that do not yield CO as an end product, and that are insensitive to cycloheximide and independent of haem oxygenase activity.  相似文献   

7.
The hepatic porphyrias are inborn errors of porphyrin and haem biosynthesis characterized biochemically by excessive excretion of delta-aminolaevulinate (ALA), porphobilinogen and other intermediates in haem synthesis. Clinical evidence has implicated iron in the pathogenesis of several types of genetically transmitted diseases. We investigated the role of iron in haem metabolism as well as its relationship to drug-mediated induction of ALA synthase and haem oxygenase in acute and chronic iron overload. Acute iron overload in rats resulted in a marked increase in hepatic haem oxygenase that was associated with a decrease in cytochrome P-450 and an increase in ALA synthase activity. Aminopyrine N-demethylase and aniline hydroxylase activities, which are dependent on the concentration of cytochrome P-450, were also decreased. In contrast, in chronic-iron-overloaded rats, there was an adaptive increase in haem oxygenase activity and an increase in ALA synthase that was associated with normal concentrations of microsomal haem and cytochrome P-450. The induction of ALA synthase in chronic iron overload was enhanced by phenobarbital and allylisopropylacetamide, in spite of the fact that these agents did not increase haem oxygenase activity. Small doses of Co2+ were potent inducers of the haem oxygenase in chronic-iron-overloaded, but not in control, animals. We conclude that increased hepatic cellular iron may predispose certain enzymes of haem synthesis to induction by exogenous agents and thereby affect drug-metabolizing enzyme activities.  相似文献   

8.
Phenylhydrazine was found to be a potent inducer of microsomal haem oxygenase activity in rat liver and kidney, but not in spleen. The phenylhydrazine-mediated increase in haem oxygenase activity was time-dependent. Maximum activity was attained 12h after treatment in the liver, and 24h after treatment in the kidney. The increases in the activity of haem oxygenase in the liver and the kidney could be inhibited by cycloheximide. Furthermore, the increases could not be elicited by the treatment of microsomal preparations in vitro with phenylhydrazine. In consonance with the increased haem oxygenase activity, a marked increase (16-fold) was observed in the serum total bilirubin concentration in phenylhydrazine-treated rats. The mechanism of haem degradation promoted by phenylhydrazine in vivo appears to differ from that in vitro; only in the former case is bilirubin formed as the end-product of haem degradation. When rats were given zinc-protoporphyrin (40 mumol/kg) 12h before and after phenylhydrazine treatment, the phenylhydrazine-mediated increases in haem oxygenase activity in the liver and the kidney were effectively blocked. Treatment of rats in vivo with the metalloporphyrin also inhibited the activity of splenic haem oxygenase, and promoted a major decrease in the serum bilirubin levels. In phenylhydrazine-treated animals, the microsomal content of cytochrome P-450 was significantly decreased in the absence of a decrease in the microsomal haem concentration. The decrease in cytochrome P-450 content was accompanied by an increased absorption in the 420nm region of the reduced CO-difference spectrum, suggesting the conversion of the cytochrome to an inactive form. The marked depletion of cellular glutathione levels suggests that this conversion may be related to the action of active intermediates and free radicals formed in the course of the interaction of phenylhydrazine with the haem moiety of cytochrome P-450.  相似文献   

9.
Accelerated hepatic haem catabolism in the selenium-deficient rat.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Hepatic microsomal cytochrome P-450 concentrations are lower in selenium-deficient rats treated with phenobarbital for 4 days than in similarly treated control rats. 2. No defect in haem synthesis was found on the basis of measurements of delta-aminolaevulinate synthase (EC 2.3.1.37), delta-aminolaevulinate dehydratase (EC 4.2.1.24) and ferrochelatase (EC 4.99.1.1) activities, and urinary excretion of delta-aminolaevulinate, porphobilinogen, uroporphyrin and coproporphyrin. 3. No defect in apo-(cytochrome P-450) separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 4. An increase in haem catabolism was found. An 8-fold increase in hepatic microsomal haem oxygenase (EC 1.14.99.3) activity occurred in selenium-deficient rats after phenobarbital treatment, compared with a less than 2-fold increase in control rats. Also excretion of 14CO in the breath after administration of delta-amino[5-14C]laevulinate was greater by phenobarbital-treated selenium-deficient rats than by similarly treated controls. 5. These studies demonstrate that the defective induction of cytochrome P-450 by phenobarbital in selenium-deficient rats is accompanied by increased haem catabolism. This could be due to increased breakdown of cytochrome P-450 or to catabolism of haem before it attaches to the apo-cytochrome. The role of selenium in stabilizing cytochrome P-450 and/or in protecting haem from breakdown remains to be determined.  相似文献   

10.
We studied drug- and metal-mediated increases in activity of haem oxygenase, the rate-controlling enzyme for haem breakdown, in chick-embryo hepatocytes in ovo and in primary culture. Phenobarbitone and phenobarbitone-like drugs (glutethimide, mephenytoin), which are known to increase concentrations of an isoform of cytochrome P-450 in chick-embryo hepatocytes, were found to increase activities of haem oxygenase as well. In contrast, 20-methylcholanthrene, which increases the concentration of a different isoform of cytochrome P-450, had no effect on activity of haem oxygenase. Inhibitors of haem synthesis, 4,6-dioxoheptanoic acid or desferrioxamine, prevented drug-mediated induction of both cytochrome P-450 and haem oxygenase in embryo hepatocytes in ovo or in culture. Addition of haem restored induction of both enzymes. These results are interpreted to indicate that phenobarbitone and its congeners induce haem oxygenase by increasing hepatic haem formation. In contrast, increases in haem oxygenase activity by metals such as cobalt, cadmium and iron were not dependent on increased haem synthesis and were not inhibited by 4,6-dioxoheptanoic acid. We conclude that (1) induction of hepatic haem oxygenase activity by phenobarbitone-type drugs is due to increased haem formation, and (2) induction of haem oxygenase by drugs and metals occurs by different mechanisms.  相似文献   

11.
Acute fluroxene treatment of male Wistar rats decreases the amounts of hepatic microsomal cytochrome P-450 and haem, increases the activities of hepatic delta-aminolaevulinate synthase and haem oxygenase, and increases the amounts of haem precursors (delta-aminolaevulinate and porphobilinogen) in the urine. All of the above effects of fluroxene are enhanced by pretreatment of the experimental animals with 3-methylcholanthrene and phenobarbital. The amounts of porphyrins in the urine and faeces were generally unaffected by acute fluroxene treatment of uninduced or 3-methylcholanthrene- or phenobarbital-induced Wistar rats. 2,2,2-Trifluoroethyl ethyl ether, the saturated analogue of fluroxene, did not affect the amounts of hepatic cytochrome P-450 and haem, the amounts of any of the haem precursors in the urine or faeces, or the activity of hepatic haem oxygenase in phenobarbital-induced male Wistar rats. The amounts of hepatic cytochrome P-450 and haem and of the haem precursors in urine and faeces, and the activity of delta-aminolaevulinate synthase, were generally not altered by acute fluroxene treatment of uninduced male Long-Evans rats. Chronic treatment of Wistar rats with fluroxene resulted in small increases in the amounts of delta-aminolaevulinate and porphyrins in urine. The amounts of porphobilinogen in urine were elevated up to 2000%, whereas the amounts of the porphyrins in faeces were generally unaffected. After chronic fluroxene treatment, the activity of delta-aminolaevulinate synthase was increased, whereas the activity of uroporphyrinogen synthase was decreased. It is concluded that acute fluroxene treatment may affect haem biosynthesis and degradation by a mechanism similar to allylisopropylacetamide, namely by stimulating an atypical cytochrome P-450-dependent pathway for haem degradation. The effects of chronic fluroxene treatment on haem biosynthesis may be a consequence of this mechanism or a result of the inhibition by fluroxene of uroporphyrinogen synthase. Chronic fluroxene treatment of male rats affects the haem biosynthetic pathway in a manner similar to that seen in human genetic acute intermittent porphyria.  相似文献   

12.
Endotoxin was administered to rats at a dose shown previously to stimulate hepatic haem oxygenase activity and to block induction of delta-aminolaevulinate synthase, apparently by causing redistribution of haem from cytochrome P-450 to a regulatory haem pool in the liver. Within 5h of the administration of endotoxin (at a time when the effect of the compound on cytochrome P-450 is maximal) the relative saturation of tryptophan pyrrolase with intrinsic haem rose, from a basal value of 50% to 90%, indicating that 'free' haem had become available. Concurrently, the activity of delta-aminolaevulinate synthase was decreased to 25% of its basal value. Haem oxygenase reached peak activity 13h after endotoxin administration. These findings provide new evidence for the existence of an 'unassigned' hepatic haem fraction, which exchanges with cytochrome P-450 haem and regulates these three enzyme functions.  相似文献   

13.
The effects of cobaltic protoporphyrin IX (CPP) administration on hepatic microsomal drug metabolism, carbon tetrachloride activation and lipid peroxidation have been investigated using male Wistar rats. CPP (125 mumol/kg, 72 h before sacrifice) profoundly decreased the levels of hepatic microsomal heme, particularly cytochrome P-450. Consequently, the associated mixed-function oxidase systems were equally strongly depressed. An unexpected finding was that CPP administration also greatly decreased the activity of NADPH/cytochrome c reductase, a result not generally found with the administration of the more widely used cytochrome P-450 depleting agents, cobaltous chloride. Activation of carbon tetrachloride, measured as covalent binding of [14C] CCl4, spin-trapping of CCl3 and CCl4-stimulated lipid peroxidation, was much lower in liver microsomes from CPP-treated rats. Other microsomal lipid peroxidation systems, utilising cumene hydroperoxide or NADPH/ADP-Fe2+, were also depressed in parallel with the decrease in microsomal enzyme activities.  相似文献   

14.
The hypothesis that the stimulation of haem oxygenase activity in cultured adult rat liver parenchymal cells is intimately associated with the accelerated breakdown of the haemoprotein cytochrome P-450 was examined. Even though the time course of the loss of cytochrome P-450 and the stimulation of haem oxygenase activity were found to be compatible with this hypothesis, further work however showed that high levels of cytochrome P-450 could be maintained in liver cell culture in the face of high haem oxygenase activities.  相似文献   

15.
The administration of organotin compounds to rats in single doses causes a significant and prolonged induction of haem oxygenase and a sustained decrease in haemoprotein content in the liver. The extent of induction of hepatic haem oxygenase varied between 3 and 5-fold at 72h after a single injection of water-insoluble organotins of differing structure. The alterations in haem metabolism produced by tricyclohexyltin hydroxide were studied in detail. The effects were dose-dependent, with doses as low as 3.75 mg/kg body wt. resulting in significant induction of haem oxygenase and a decrease in cytochrome P-450 and cytochrome b5 contents at 72h in the liver. The effects with time of a single dose of tricyclohexyltin on various parameters of liver haem metabolism were also examined. The organotin produced a substantial and very prolonged induction of haem oxygenase accompanied by a steady decline in cytochrome P-450 content for periods up to 8 days. The long duration of action of these organotins with respect to induction of haem oxygenase and depletion of cellular haemoprotein content provides a highly sensitive metabolic system with which to define further the toxic potential of organometals as well as to study the adaptive responses in liver to long-term perturbations of haem metabolism by foreign chemicals.  相似文献   

16.
The potent porphyrogen allylisopropylacetamide and related compounds decrease hepatic concentrations of cytochrome P-450. This decrease occurs particularly in phenobarbital-induced cytochrome P-450 and is caused by suicidal breakdown of the haem of cytochrome P-450. Quantitative rocket immunoelectrophoresis showed that the protein moiety of the major phenobarbital-inducible form of hepatic cytochrome P-450 was not diminished up to 1 h, but was markedly decreased (to 43% of that of the phenobarbital-treated control) at 20 h after allylisopropylacetamide treatment. In contrast, the concentration of total cytochrome P-450, measured spectrophotometrically, decreased to 30-40% of the control at both 1 and 20 h after allylisopropylacetamide. Cytochrome P-450-dependent demethylations of ethylmorphine and benzphetamine decreased to a similar extent. When liver homogenates from rats treated with allylisopropylacetamide 1 h before being killed were incubated with haem, functional holocytochrome P-450 could be reconstituted from the apoprotein. Incubation with haem increased spectrophotometrically measurable cytochrome P-450 to 69%, ethylmorphine demethylase to 64% and benzphetamine demethylase to 93% of the activities in rats treated with phenobarbital alone. At 20 h after allylisopropylacetamide treatment, however, little or no reconstitution of cytochrome P-450 occurred after incubation with haem. When liver homogenates were incubated with cobalt and protoporphyrin, and microsomal proteins were then subjected to polyacrylamide-gel electrophoresis, cobalt-protoporphyrin was found specifically associated with proteins of Mr 50 000-53 000. When homogenates from rats given allylisopropylacetamide for 1 h or 20 h were compared, it was found that the extent of this association was higher in livers from the rats containing more apocytochrome P-450, suggesting that cobalt-protoporphyrin had associated with the apocytochrome. The data provide insight into the association of haem with the protein moiety of cytochrome P-450 and factors affecting breakdown of this protein.  相似文献   

17.
The inactivation of five dithionite reduced soluble cytochrome P-450 isoforms has been studied. The inactivation of microsomal rabbit liver isoform LM2 and bacterial linalool cytochrome P-450 is followed by its conversion into cytochrome P-420. Microsomal rabbit liver isoform LM4, bacterial camphor and p-cymene cytochromes P-450 were not inactivated under these conditions. The inactivation of linalool cytochrome P-450 and LM2 isoform is a first order reaction; the rate constants for linalool cytochrome P-450 and LM2 are 0.3 and 0.1 min-1, respectively. In the case of linalool cytochrome P-450 its carboxycomplex (Fe2+-CO) is inactivated, while in the case of LM2 the inactivation affects its oxycomplex (Fe2+-O2). The amino acid residues of linalool cytochrome P-450 are probably modified due to a direct electron transfer in its carboxycomplex. The amino acid residues of LM2 isoform are modified, presumably due to oxidation by oxygen active species which are released during the oxycomplex decay.  相似文献   

18.
1. The effect of a single dose of 2-allyl-2-isopropylacetamide on the cytochrome P-450 concentration in rat liver microsomal fraction was studied. The drug caused a rapid loss of cytochrome P-450 followed by a gradual increase to above the normal concentration. 2. The loss of cytochrome P-450 was accompanied by a loss of microsomal haem and by a brown-green discoloration of the microsomal fraction suggesting that a change in the chemical constitution of the lost haem had taken place. Direct evidence for this was obtained by prelabelling the liver haems with radioactive 5-aminolaevulate: the drug caused a loss of radioactivity from the haem with an increase of radioactivity in a fraction containing certain un-identified green pigments. 3. Evidence was obtained by a dual-isotopic procedure that rapidly turning-over haem(s) may be preferentially affected. 4. The loss of cytochrome P-450 as well as the loss of microsomal haem and the discoloration of the microsomal fraction were more intense in animals pretreated with phenobarbitone and were much less evident when compound SKF 525-A (2-diethylaminoethyl 3,3-diphenylpropylacetate) was given before 2-allyl-2-isopropylacetamide, suggesting that the activity of the drug-metabolizing enzymes may be involved in these effects. 5. The relevance of the destruction of liver haem to the increased activity of 5-aminolaevulate synthetase caused by 2-allyl-2-isopropylacetamide is discussed.  相似文献   

19.
The mechanism by which the hepatic cytochrome P-450 (Cyt. P-450) containing mixed-function oxidase system oxidizes the analgesic drug paracetamol (PAR) to a hepatotoxic metabolite was studied. Since previous studies excluded the possibility of oxygenation of PAR, three other mechanisms, namely direct 1-electron oxidation by a Cyt. P-450-ferrous-dioxygen complex under concomitant formation of H2O2 to N-acetyl-p-semiquinone imine (NAPSQI), direct 2-electron oxidation by a Cyt. P-450-ferric-oxene complex to N-acetyl-p-benzoquinone imine (NAPQI) and indirect oxidation by active oxygen species released from Cyt. P-450, were considered. Indirect oxidation by active oxygen species was not involved, as active oxygen scavengers such as superoxide dismutase, catalase and DMSO did not affect the oxidation of PAR in hepatic microsomes. No reaction products characteristic for a direct 1-electron oxidation of PAR by Cyt. P-450 were observed: neither NAPSQI radical formation was detectable by ESR, nor PAR-dimer formation, nor stimulation of the microsomal H2O2 production was found to occur. In fact, PAR inhibited the spontaneous microsomal H2O2 formation. Studies on the reactions of NAPSQI with glutathione (GSH) revealed that NAPSQI hardly conjugated with GSH to a 3-glutathionyl-paracetamol conjugate (PAR-GSH) conjugate. The reactions of the elusive reactive metabolite formed during microsomal oxidation of PAR in the presence of GSH closely resembled those of synthetic NAPQI: both PAR-GSH and oxidized glutathione (GSSG) formation occurred. Furthermore, in agreement with a 2-electron oxidation hypothesis, iodosobenzene-dependent oxidation of PAR by cyt. P-450 in the presence of GSH resulted in the formation of the PAR-GSH conjugate. It is concluded that bioactivation of PAR by the Cyt. P-450 containing mixed-function oxidase system consists of a direct 2-electron oxidation to NAPQI.  相似文献   

20.
The cytochromes in microsomal fractions of germinating mung beans.   总被引:11,自引:1,他引:10       下载免费PDF全文
Detailed studies of microsomal cytochromes from mung-bean radicles showed the presence of cytochrome P-420, particularly in dark-grown seedlings, accompanied by smaller quantities of cytochrome P-450. Similar proportions of cytochrome P-420 to cytochrome P-450 were found spectrophotometrically in vivo with whole radicles and hypocotyls. Assayed in vitro, maximum concentrations of both cytochromes were attained after 4 days of growth, before undergoing rapid degradation. Illumination of seedlings stabilized cytochrome P-450 and decreased the amount of cytochrome P-420. Three b cytochromes were present in the microsomal fraction, namely cytochromes b-562.5 (Em + 105 +/- 23 mV), b-560.5 (Em + 49 +/- 13 mV) and b5 (Em - 45 +/- 14 mV), all at pH 7.0. Of the b cytochromes, cytochrome b5 alone undergoes a rapid degradation after day 4, Changes in cytochrome b concentrations were confined to the microsomal fraction: mitochondrial b cytochrome concentrations were unaltered with age. Protohaem degradation (of exogenous methaemalbumin) was detected in microsomal fractions of mung beans. The rates of degradation were highest in extracts of young tissue and declined after day 4. The degradation mechanism and products did not resemble those of mammalian haem oxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号