首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In silico glucose docking to the transporter GLUT1 templated to the crystal structure of Escherichia coli XylE, a bacterial homolog of GLUT1–4 (4GBZ.pdb), reveals multiple docking sites. One site in the external vestibule in the exofacial linker between TM7 and -8 is adjacent to a missense T295M and a 4-mer insertion mutation. Glucose docking to the adjacent site is occluded in these mutants. These mutants cause an atypical form of glucose transport deficiency syndrome (GLUT1DS), where transport into the brain is deficient, although unusually transport into erythrocytes at 4 °C appears normal. A model in which glucose traverses the transporter via a network of saturable fixed sites simulates the temperature sensitivity of normal and mutant glucose influx and the mutation-dependent alterations of influx and efflux asymmetry when expressed in Xenopus oocytes at 37 °C. The explanation for the temperature sensitivity is that at 4 °C glucose influx between the external and internal vestibules is slow and causes glucose to accumulate in the external vestibule. This retards net glucose uptake from the external solution via two parallel sites into the external vestibule, consequently masking any transport defect at either one of these sites. At 37 °C glucose transit between the external and internal vestibules is rapid, with no significant glucose buildup in the external vestibule, and thereby unmasks any transport defect at one of the parallel input sites. Monitoring glucose transport in patients’ erythrocytes at higher temperatures may improve the diagnostic accuracy of the functional test of GLUT1DS.  相似文献   

2.
The glucose transporters (GLUT/SLC2A) are members of the major facilitator superfamily. Here, we generated a three-dimensional model for Glut1 using a two-step strategy: 1), GlpT structure as an initial homology template and 2), evolutionary homology using glucose-6-phosphate translocase as a template. The resulting structure (PDB No. 1SUK) exhibits a water-filled passageway communicating the extracellular and intracellular domains, with a funnel-like exofacial vestibule (infundibulum), followed by a 15 A-long x 8 A-wide channel, and a horn-shaped endofacial vestibule. Most residues which, by mutagenesis, are crucial for transport delimit the channel, and putative sugar recognition motifs (QLS, QLG) border both ends of the channel. On the outside of the structure there are two positively charged cavities (one exofacial, one endofacial) delimited by ATP-binding Walker motifs, and an exofacial large side cavity of yet unknown function. Docking sites were found for the glucose substrate and its inhibitors: glucose, forskolin, and phloretin at the exofacial infundibulum; forskolin, and phloretin at an endofacial site next to the channel opening; and cytochalasin B at a positively charged endofacial pocket 3 A away from the channel. Thus, 1SUK accounts for practically all biochemical and mutagenesis evidence, and provides clues for the transport process.  相似文献   

3.
The immunosuppressive and nephrotoxic agent cyclosporin binds to a renal polypeptide with an apparent molecular weight of 75,000 which has been identified as a component of the renal Na(+)-D-glucose cotransporter (Neeb, M., Kunz, U., and Koepsell, H. (1987) J. Biol. Chem. 262, 10718-10729). The same Mr 75,000 polypeptide was covalently labeled with the D-glucose analog 10-N-(bromoacetyl)amino-1-decyl-beta-D-glucopyranoside and with the cyclosporin analog N epsilon-(diazotrifluoroethyl)benzyl-D-Lys8- cyclosporin (CSDZ). CSDZ labeling was decreased when the brush-border membrane proteins were incubated with monoclonal antibodies against the Na(+)-D-glucose cotransporter. In the presence of 145 mM Na+, CSDZ labeling was decreased by D-glucose (1 microM, 1 mM, or 100 mM) and by phlorizin (100 or 500 microM). In the absence of Na+, CSDZ labeling was distinctly increased by 50 microM phlorizin and was slightly increased by 1 mM D-glucose, whereas CSDZ labeling was decreased by 50 microM phloretin and by 500 microM phlorizin. Furthermore, Na(+)-dependent high affinity phlorizin binding to the Na(+)-D-glucose cotransporter was competitively inhibited by cyclosporin A (Ki = 0.04 microM) while Na(+)-D-glucose cotransport was not influenced. The data suggest that a part of the cyclosporin binding domain on the Na(+)-D-glucose cotransporter is identical to the phloretin binding domain of the high affinity phlorizin binding site. While phloretin or the phloretin moiety of phlorizin may directly displace cyclosporin, interaction of D-glucose or of the D-glucose moiety of phlorizin with the transporter may alter the conformation of the cyclosporin binding site and this conformational change may be modulated by Na+.  相似文献   

4.
Pérez A  Ojeda P  Ojeda L  Salas M  Rivas CI  Vera JC  Reyes AM 《Biochemistry》2011,50(41):8834-8845
The facilitative hexose transporter GLUT1 activity is blocked by tyrosine kinase inhibitors that include natural products such as flavones and isoflavones and synthetic compounds such as tyrphostins, molecules that are structurally unrelated to the transported substrates [Vera, et al. (2001) Biochemistry, 40, 777-790]. Here we analyzed the interaction of GLUT1 with quercetin (a flavone), genistein (an isoflavone), and tyrphostin A47 and B46 to evaluate if they share one common or have several binding sites on the protein. Kinetic assays showed that genistein, quercetin, and tyrphostin B46 behave as competitive inhibitors of equilibrium exchange and zero-trans uptake transport and noncompetitive inhibitors of net sugar exit out of human red cells, suggesting that they interact with the external surface of the GLUT1 molecule. In contrast, tyrphostin A47 was a competitive inhibitor of equilibrium exchange and zero-trans exit transport and a noncompetitive inhibitor of net sugar entry into red cells, suggesting that it interacts with the cytoplasmic surface of the transporter. Genistein protected GLUT1 against iodide-elicited fluorescence quenching and also decreased the affinity of d-glucose for its external binding site, while quercetin and tyrphostins B46 and A47 promoted fluorescence quenching and did not affect the external d-glucose binding site. These findings are explained by a carrier that presents at least three binding sites for tyrosine kinase inhibitors, in which (i) genistein interacts with the transporter in a conformation that binds glucose on the external surface (outward-facing conformation), in a site which overlaps with the external binding site for d-glucose, (ii) quercetin and tyrphostin B46 interact with the GLUT1 conformation which binds glucose by the internal side of the membrane (inward-facing conformation), but to a site accessible from the external surface of the protein, and (iii) the binding site for tyrphostin A47 is accessible from the inner surface of GLUT1 by binding to the inward-facing conformation of the transporter. These data provide groundwork for a molecular understanding of how the tyrosine kinase inhibitors directly affect glucose transport in animal cells.  相似文献   

5.
Many N-methyl-D-aspartate receptor (NMDAR) channel blockers that have therapeutic potential can be trapped in the closed state. Using a combination of the substituted cysteine accessibility method and open channel blockers, we found that the M3 segment forms the core of the extracellular vestibule, including a deep site for trapping blockers. The M3 segment, as well as more superficial parts of the extracellular vestibule, undergo extensive remodeling during channel closure, but do not define the activation gate, which is located deeper in the pore. Rather, the pore walls lining the extracellular vestibule constrict during channel closure. This movement is essential for coupling ligand binding to activation gate opening and accounts for the different mechanisms of open channel block, including trapping.  相似文献   

6.
Summary Sodium tetrathionate reacts with the glucose carrier of human erythrocytes at a rate which is greatly altered in the presence of competitive inhibitors of glucose transport. Inhibitors bound to the carrier on the outer surface of the membrane, either at the substrate site (maltose) or at the external inhibition site (phloretin and phlorizin), more than double the reaction rate. Inhibitors bound at the internal inhibition site (cytochalasin B and androstenedione), protect the system against tetrathionate. After treatment with tetrathionate, the maximum transport rate falls to less than one-third, and the properties of the binding sites are modified in unexpected ways. The affinity of externally bound inhibitors rises: phloretin is bound up to seven times more strongly and phlorizin and maltose twice as strongly. The affinity of cytochalasin B, bound at the internal inhibition site, falls to half while that of androstenedione is little changed. The affinity of external glucose falls slightly. Androstenedione prevents both the fall in transport activity and the increase in phloretin affinity produced by tetrathionate. An inhibitor of anion transport has no effect on the reaction. The observations support the following conclusions: (1) Tetrathionate produces its effects on the glucose transport system by reacting with the carrier on the outer surface of the membrane. (2) The carrier assumes distinct inward-facing and outward-facing conformations, and tetrathionate reacts with only the outward-facing form. (3) The thiol group with which tetrathionate is presumed to react is not present in either the substrate site or the internal or external inhibitor site. (4) In binding asymmetrically to the carrier, a reversible inhibitor shifts the carrier partition between inner and outer forms and thereby raises or lowers the rate of tetrathionate reaction with the system. (5) Reaction with tetrathionate converts the carrier to an altered state in which the conformation at all three binding sites is changed and the rate of carrier reorientation is reduced.  相似文献   

7.
Biophysical evidence has placed the binding site for the naturally occurring marine toxins tetrodotoxin (TTX) and saxitoxin (STX) in the external mouth of the Na+ channel ion permeation pathway. We developed a molecular model of the binding pocket for TTX and STX, composed of antiparallel beta-hairpins formed from peptide segments of the four S5-S6 loops of the voltage-gated Na+ channel. For TTX the guanidinium moiety formed salt bridges with three carboxyls, while two toxin hydroxyls (C9-OH and C10-OH) interacted with a fourth carboxyl on repeats I and II. This alignment also resulted in a hydrophobic interaction with an aromatic ring of phenylalanine or tyrosine residues for the brainII and skeletal Na+ channel isoforms, but not with the cysteine found in the cardiac isoform. In comparison to TTX, there was an additional interaction site for STX through its second guanidinium group with a carboxyl on repeat IV. This model satisfactorily reproduced the effects of mutations in the S5-S6 regions and the differences in affinity by various toxin analogs. However, this model differed in important ways from previously published models for the outer vestibule and the selectivity region of the Na+ channel pore. Removal of the toxins from the pocket formed by the four beta-hairpins revealed a structure resembling a funnel that terminated in a narrowed region suitable as a candidate for the selectivity filter of the channel. This region contained two carboxyls (Asp384 and Glu942) that substituted for molecules of water from the hydrated Na+ ion. Simulation of mutations in this region that have produced Ca2+ permeation of the Na+ channel created a site with three carboxyls (Asp384, Glu942, and Glu1714) in proximity.  相似文献   

8.
Porins mediate the uptake of nutrients across the outer membrane of Gram-negative bacteria. For general porins like OmpF, electrophysicoloigcal experiments now establish that the charged residues within their channels primarily modulate pore selectivity, rather than voltage-gated switching between open and closed states. Recent studies on the maltoporin, LamB, solidify the importance of its 'greasy slide' aromatic residues during sugar transport, and suggest the involvement of L9, in the exterior vestibule, as the initial maltodextrin binding site. The application of biophysical methodologies to the TonB-dependent porin, FepA, ostensibly reveal the opening and closing of its channel during ligand uptake, a phenomenon that was predicted but not previously demonstrated.  相似文献   

9.
This study examines inhibitions of human erythrocyte D-glucose uptake at ice temperature produced by maltose and cytochalasin B. Maltose inhibits sugar uptake by binding at or close to the sugar influx site. Maltose is thus a competitive inhibitor of sugar uptake. Cytochalasin B inhibits sugar transport by binding at or close to the sugar efflux site and thus acts as a noncompetitive inhibitor of sugar uptake. When maltose is present in the uptake medium, Ki(app) for cytochalasin B inhibition of sugar uptake increases in a hyperbolic manner with increasing maltose. When cytochalasin B is present in the uptake medium, Ki(app) for maltose inhibition of sugar uptake increases in a hyperbolic manner with increasing cytochalasin B. High concentrations of cytochalasin B do not reverse the competitive inhibition of D-glucose uptake by maltose. These data demonstrate that maltose and cytochalasin B binding sites coexist within the glucose transporter. These results are inconsistent with the simple, alternating conformer carrier model in which maltose and cytochalasin B binding sites correspond to sugar influx and sugar efflux sites, respectively. The data are also incompatible with a modified alternating conformer carrier model in which the cytochalasin B binding site overlaps with but does not correspond to the sugar efflux site. We show that a glucose transport mechanism in which sugar influx and sugar efflux sites exist simultaneously is consistent with these observations.  相似文献   

10.
Interaction between phloretin and the red blood cell membrane   总被引:2,自引:2,他引:0       下载免费PDF全文
Phloretin binding to red blood cell components has been characterized at pH6, where binding and inhibitory potency are maximal. Binding to intact red cells and to purified hemoglobin are nonsaturated processes approximately equal in magnitude, which strongly suggests that most of the red cell binding may be ascribed to hemoglobin. This conclusion is supported by the fact that homoglobin-free red cell ghosts can bind only 10% as much phloretin as an equivalent number of red cells. The permeability of the red cell membrane to phloretin has been determined by a direct measurement at the time-course of the phloretin uptake. At a 2% hematocrit, the half time for phloretin uptake is 8.7s, corresponding to a permeability coefficient of 2 x 10(-4) cm/s. The concentration dependence of the binding to ghosts reveals two saturable components. Phloretin binds with high affinity (K diss = 1.5 muM) to about 2.5 x 10(6) sites per cell; it also binds with lower affinity (Kdiss = 54 muM) to a second (5.5 x 10(7) per cell) set of sites. In sonicated total lipid extracts of red cell ghosts, phloretin binding consists of a single, saturable component. Its affinity and total number of sites are not significantly different from those of the low affinity binding process in ghosts. No high affinity binding of phloretin is exhibited by the red cell lipid extracts. Therefore, the high affinity phloretin binding sites are related to membrane proteins, and the low affinity sites result from phloretin binding to lipid. The identification of these two types of binding sites allows phloretin effects on protein-mediated transport processes to be distinguished from effects on the lipid region of the membrane.  相似文献   

11.
Naftalin RJ 《Biophysical journal》2008,94(10):3912-3923
Carrier-mediated water cotransport is currently a favored explanation for water movement against an osmotic gradient. The vestibule within the central pore of Na+-dependent cotransporters or GLUT2 provides the necessary precondition for an osmotic mechanism, explaining this phenomenon without carriers. Simulating equilibrative glucose inflow via the narrow external orifice of GLUT2 raises vestibular tonicity relative to the external solution. Vestibular hypertonicity causes osmotic water inflow, which raises vestibular hydrostatic pressure and forces water, salt, and glucose into the outer cytosolic layer via its wide endofacial exit. Glucose uptake via GLUT2 also raises oocyte tonicity. Glucose exit from preloaded cells depletes the vestibule of glucose, making it hypotonic and thereby inducing water efflux. Inhibiting glucose exit with phloretin reestablishes vestibular hypertonicity, as it reequilibrates with the cytosolic glucose and net water inflow recommences. Simulated Na+-glucose cotransport demonstrates that active glucose accumulation within the vestibule generates water flows simultaneously with the onset of glucose flow and before any flow external to the transporter caused by hypertonicity in the outer cytosolic layers. The molar ratio of water/glucose flow is seen now to relate to the ratio of hydraulic and glucose permeability rather than to water storage capacity of putative water carriers.  相似文献   

12.
Peptide toxins with disulfide-stabilized structures have been used as molecular calipers to probe the outer vestibule structure of K channels. We want to apply this approach to the human ether-a-go-go-related gene (HERG) channel, whose outer vestibule is unique in structure and function among voltage-gated K channels. Our focus here is BeKm-1, a HERG-specific peptide toxin that can suppress HERG in the low nM concentration range. Although BeKm-1 shares the three-dimensional scaffold with the well-studied charybdotoxin, the two use different mechanisms in suppressing currents through their target K channels. BeKm-1 binds near, but not inside, the HERG pore, and it is possible that BeKm-1-bound HERG channels can conduct currents although with markedly altered voltage-dependence and kinetics of gating. BeKm-1 and ErgTx1 differ in three-dimensional scaffold, but the two share mechanism of action and have overlapping binding sites on the HERG channel. For both, residues in the middle of the S5-P linker (the putative 583-597 helix) and residues at the pore entrance are critical for binding, although specific contact points vary between the two. Toxin foot printing using BeKm-1 and ErgTx1 will likely provide complementary information about the unique outer vestibule structure of the HERG channel.  相似文献   

13.
Dwyer DS 《Proteins》2001,42(4):531-541
A molecular model of the three-dimensional (3-D) structure of the glucose transport protein, GLUT3, has been derived by homology modeling. The model was built on the basis of structural data from the MscL protein, which is a mechanosensitive ion channel, and general insights from aquaporin (a water permeation pore). Structurally conserved regions were defined by amino acid sequence comparisons, optimum interconnecting loops were selected from the protein databank, and amino (N)- and carboxy (C)-terminal ends of the protein were generated as random coil structures. The model was then subjected to energy minimization and molecular dynamics simulations in the presence of bound substrate (D-glucose). In the proposed structure of GLUT3, the 12 transmembrane (TM) helices form a right-hand barrel with a central hydrophilic pore. The pore is shaped like a funnel with dimensions of approximately 5-6 A by 8 A at its narrowest point. A network of polar and aromatic amino acids line the pore region and may facilitate the movement of glucose along the channel. A putative binding site for inhibitory ligands, such as forskolin and cytochalasin B, was identified on an intracellular aspect of the protein. Molecular dynamics studies showed that changes in the tilt and flexibility of key TM helices may modulate the opening of the pore to effect glucose transport. The proposed structure of GLUT3 may prove useful in guiding future experiments aimed at more precisely defining various functional regions of the transporter and may encourage efforts to develop models of other complex membrane proteins.  相似文献   

14.
IP3 receptors and their regulation by calmodulin and cytosolic Ca2+   总被引:1,自引:0,他引:1  
Taylor CW  Laude AJ 《Cell calcium》2002,32(5-6):321-334
Inositol 1,4,5-trisphosphate (IP(3)) receptors are tetrameric intracellular Ca(2+) channels, the opening of which is regulated by both IP(3) and Ca(2+). We suggest that all IP(3) receptors are biphasically regulated by cytosolic Ca(2+), which binds to two distinct sites. IP(3) promotes channel opening by controlling whether Ca(2+) binds to the stimulatory or inhibitory sites. The stimulatory site is probably an integral part of the receptor lying just upstream of the pore region. Inhibition of IP(3) receptors by Ca(2+) probably requires an accessory protein, which has not yet been unequivocally identified, but calmodulin is a prime candidate. We speculate that one lobe of calmodulin tethers it to the IP(3) receptor, while the other lobe can bind Ca(2+) and then interact with a second site on the receptor to cause inhibition.  相似文献   

15.
ATP regulation of the human red cell sugar transporter   总被引:4,自引:0,他引:4  
Purified human red blood cell sugar transport protein intrinsic tryptophan fluorescence is quenched by D-glucose and 4,6-ethylidene glucose (sugars that bind to the transport), phloretin and cytochalasin B (transport inhibitors), and ATP. Cytochalasin B-induced quenching is a simple saturable phenomenon with Kd app of 0.15 microM and maximum capacity of 0.85 cytochalasin B binding sites per transporter. Sugar-induced quenching consists of two saturable components characterized by low and high Kd app binding parameters. These binding sites appear to correspond to influx and efflux transport sites, respectively, and coexist within the transporter molecule. ATP-induced quenching is also a simple saturable process with Kd app of 50 microM. Indirect estimates suggest that the ratio of ATP-binding sites per transporter is 0.87:1. ATP reduces the low Kd app and increases the high Kd app for sugar-induced fluorescence quenching. This effect is half-maximal at 45 microM ATP. ATP produces a 4-fold reduction in Km and 2.4-fold reduction in Vmax for cytochalasin B-inhibitable D-glucose efflux from inside-out red cell membrane vesicles (IOVs). This effect on transport is half-maximal at 45 microM ATP. AMP, ADP, alpha, beta-methyleneadenosine 5'-triphosphate, and beta, gamma-methyleneadenosine 5'-triphosphate at 1 mM are without effect on efflux of D-glucose from IOVs. ATP modulation of Km for D-glucose efflux from IOVs is immediate in onset and recovery. ATP inhibition of Vmax for D-glucose exit is complete within 5-15 min and is only partly reversed following 30-min incubation in ATP-free medium. These findings suggest that the human red cell sugar transport protein contains a nucleotide-binding site(s) through which ATP modifies the catalytic properties of the transporter.  相似文献   

16.
The flux of phosphorylated carbohydrates, the major export products of chloroplasts, is regulated at the level of the inner and presumably also at the level of the outer membrane. This is achieved through modulation of the outer membrane Oep21 channel currents and tuning of its ion selectivity. Refined analysis of the Oep21 channel properties by biochemical and electrophysiological methods revealed a channel formed by eight beta-strands with a wider pore vestibule of dvest approximately 2.4 nm at the intermembrane site and a narrower filter pore of drestr approximately 1 nm. The Oep21 pore contains two high affinity sites for ATP, one located at a relative transmembrane electrical distance delta = 0.56 and the second close to the vestibule at the intermembrane site. The ATP-dependent current block and reduction in anion selectivity of the Oep21 channel is relieved by the competitive binding of phosphorylated metabolic intermediates like 3-phosphoglycerate and glycerinaldehyde 3-phosphate. Deletion of a C-terminal putative FX4K binding motif in Oep21 decreased the capability of the channel to tune its ion selectivity by about 50%, whereas current block remained unchanged.  相似文献   

17.
A P King  P K Tai  C Carter-Su 《Biochemistry》1991,30(49):11546-11553
To gain insight into the mechanism of facilitated sugar transport and possible mechanisms by which glucose transporter intrinsic activity might be altered, we have investigated conformational changes of the human erythrocyte glucose transporter induced by internal and external sugar binding and by the transporter inhibitor, cytochalasin B. Changes in the ability of thermolysin to digest glucose transporters present in erythrocyte ghosts were used to monitor conformational changes of the glucose transporter. The degree of protease digestion was determined by the amount of undigested glucose transporter remaining after the protease treatment, as assessed in Western blots using the glucose transporter specific monoclonal antibody 7F7.5. D-Glucose, the physiological substrate of the transporter, increased the transporter's susceptibility to cleavage by thermolysin. Nontransportable glucose analogues which bind specifically to either an internal or external glucose transporter sugar binding site also altered susceptibility of the transporter to thermolysin. Both methyl and propyl glucoside, which preferentially bind the internal sugar site, increased thermolysin susceptibility of the glucose transporter in a manner similar to that of D-glucose. In contrast, 4,6-O-ethylideneglucose, which preferentially binds the external sugar site, protected the transporter from thermolysin digestion. These results suggest that sugar binding to internal and external sugar sites induces distinct conformational changes and that the observed D-glucose effect on the susceptibility of the glucose transporter to thermolysin is due to D-glucose at equilibrium predominantly forming a complex with the internal sugar site. The protection from cleavage by thermolysin caused by external sugar binding is attenuated by the addition of an internally binding sugar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
L Kiss  S J Korn 《Biophysical journal》1998,74(4):1840-1849
With prolonged or repetitive activation, voltage-gated K+ channels undergo a slow (C-type) inactivation mechanism, which decreases current flow through the channel. Previous observations suggest that C-type inactivation results from a localized constriction in the outer mouth of the channel pore and that the rate of inactivation is controlled by the-rate at which K+ leaves an unidentified binding site in the pore. We have functionally identified two K+ binding sites in the conduction pathway of a chimeric K+ channel that conducts Na+ in the absence of K+. One site has a high affinity for K+ and contributes to the selectivity filter mechanism for K+ over Na+. Another site, external to the high-affinity site, has a lower affinity for K+ and is not involved in channel selectivity. Binding of K+ to the high-affinity binding site slowed inactivation. Binding of cations to the external low-affinity site did not slow inactivation directly but could slow it indirectly, apparently by trapping K+ at the high-affinity site. These data support a model whereby C-type inactivation involves a constriction at the selectivity filter, and the constriction cannot proceed when the selectivity filter is occupied by K+.  相似文献   

19.
When attached to specific sites near the S4 segment of the nonconducting (W434F) Shaker potassium channel, the fluorescent probe tetramethylrhodamine maleimide undergoes voltage-dependent changes in intensity that correlate with the movement of the voltage sensor (Mannuzzu, L.M., M.M. Moronne, and E.Y. Isacoff. 1996. Science. 271:213–216; Cha, A., and F. Bezanilla. 1997. Neuron. 19:1127–1140). The characteristics of this voltage-dependent fluorescence quenching are different in a conducting version of the channel with a different pore substitution (T449Y). Blocking the pore of the T449Y construct with either tetraethylammonium or agitoxin removes a fluorescence component that correlates with the voltage dependence but not the kinetics of ionic activation. This pore-mediated modulation of the fluorescence quenching near the S4 segment suggests that the fluorophore is affected by the state of the external pore. In addition, this modulation may reflect conformational changes associated with channel opening that are prevented by tetraethylammonium or agitoxin. Studies of pH titration, collisional quenchers, and anisotropy indicate that fluorophores attached to residues near the S4 segment are constrained by a nearby region of protein. The mechanism of fluorescence quenching near the S4 segment does not involve either reorientation of the fluorophore or a voltage-dependent excitation shift and is different from the quenching mechanism observed at a site near the S2 segment. Taken together, these results suggest that the extracellular portion of the S4 segment resides in an aqueous protein vestibule and is influenced by the state of the external pore.  相似文献   

20.
Based on kinetic arguments, we have recently proposed the existence of two distinct Na+/D-glucose cotransporters in brush-border membrane vesicles isolated from the human fetal jejunum (Biochim. Biophys. Acta 938 (1988) 181-188). In order to further test this hypothesis, inhibition studies of the zero-trans influx of substrate have been performed under Na(+)-gradient and voltage-clamped conditions. Initial rates of D-glucose uptake were totally abolished by D-glucose, D-galactose, alpha-methylglucose and phlorizin while 3-O-methylglucose and phloretin induced only a 65% inhibition even at the highest concentrations used. The residual activity of D-glucose uptake is thus compatible with substrate flux through a low-affinity transport system which is insensitive to phloretin and does not accept 3-O-methylglucose as substrate. This substrate specificity has been used to separate kinetically the two putative pathways for glucose transport. The data obtained are compatible with the existence of the following two systems: (i) a low-affinity, high-capacity system with a Km of 4.7 mM and a Vmax of 22 nmol/min per mg of protein, and; (ii) a high-affinity, low-capacity system with a Km of 0.57 mM and a Vmax of 10.7 nmol/min per mg of protein. These data thus demonstrate clearly the existence of two distinct Na(+)-dependent D-glucose carriers in the human jejunum during the early gestation period since these systems can be differentiated not only by their kinetic properties but also by their differences in both substrate and inhibitor specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号