首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 8.5-kb cosmid containing the KORRIGAN gene complements the cellulose-deficient rsw2-1 mutant of Arabidopsis. Three temperature-sensitive alleles of rsw2 show single amino acid mutations in the putative endo-1,4-beta-glucanase encoded by KOR. The F1 from crosses between kor-1 and rsw2 alleles shows a weak, temperature-sensitive root phenotype. The shoots of rsw2-1 seedlings produce less cellulose and accumulate a short chain, readily extractable glucan resembling that reported for rsw1 (which is defective in a putative glycosyltransferase required for cellulose synthesis). The double mutant (rsw2-1 rsw1) shows further reductions in cellulose production relative to both single mutants, constitutively slow root growth, and enhanced temperature-sensitive responses that are typically more severe than in either single mutant. Abnormal cytokinesis and severely reduced birefringent retardation in elongating root cell walls of rsw2 link the enzyme to cellulose production for primary cell walls and probably cell plates. The Rsw2(-) phenotype generally resembles the Kor(-) and cellulose-deficient Rsw1(-) phenotypes, but anther dehiscence is impaired in Rsw2-1(-). The findings link a second putative enzyme activity to cellulose synthesis in primary cell walls of Arabidopsis and further increases the parallels to cellulose synthesis in Agrobacterium tumefaciens where the celA and celC genes are required and encode a putative glycosyltransferase and an endo-1,4-beta-glucanase related to RSW1 and KOR, respectively.  相似文献   

2.
Novel mutations in the RSW1 and KNOPF genes were identified in a large-scale screen for mutations that affect cell expansion in early Arabidopsis embryos. Embryos from both types of mutants were radially swollen with greatly reduced levels of crystalline cellulose, the principal structural component of the cell wall. Because RSW1 was previously shown to encode a catalytic subunit of cellulose synthase, the similar morphology of knf and rsw1-2 embryos suggests that the radially swollen phenotype of knf mutants is largely due to their cellulose deficiency. Map-based cloning of the KNF gene and enzyme assays of knf embryos demonstrated that KNF encodes alpha-glucosidase I, the enzyme that catalyzes the first step in N-linked glycan processing. The strongly reduced cellulose content of knf mutants indicates that N-linked glycans are required for cellulose biosynthesis. Because cellulose synthase catalytic subunits do not appear to be N glycosylated, the N-glycan requirement apparently resides in other component(s) of the cellulose synthase machinery. Remarkably, cellular processes other than extracellular matrix biosynthesis and the formation of protein storage vacuoles appear unaffected in knf embryos. Thus in Arabidopsis cells, like yeast, N-glycan trimming is apparently required for the function of only a small subset of N-glycoproteins.  相似文献   

3.
Dynamin-related proteins are large GTPases that deform and cause fission of membranes. The DRP1 family of Arabidopsis thaliana has five members of which DRP1A, DRP1C, and DRP1E are widely expressed. Likely functions of DRP1A were identified by studying rsw9, a null mutant of the Columbia ecotype that grows continuously but with altered morphology. Mutant roots and hypocotyls are short and swollen, features plausibly originating in their cellulose-deficient walls. The reduction in cellulose is specific since non-cellulosic polysaccharides in rsw9 have more arabinose, xylose, and galactose than those in wild type. Cell plates in rsw9 roots lack DRP1A but still retain DRP1E. Abnormally placed and often incomplete cell walls are preceded by abnormally curved cell plates. Notwithstanding these division abnormalities, roots and stems add new cells at wild-type rates and organ elongation slows because rsw9 cells do not grow as long as wild-type cells. Absence of DRP1A reduces endocytotic uptake of FM4-64 into the cytoplasm of root cells and the hypersensitivity of elongation and radial swelling in rsw9 to the trafficking inhibitor monensin suggests that impaired endocytosis may contribute to the development of shorter fatter roots, probably by reducing cellulose synthesis.  相似文献   

4.
The Arabidopsis radial swelling mutant rsw10 showed ballooning of root trichoblasts, a lower than wild-type level of cellulose and altered levels of some monosaccharides in non-cellulosic polysaccharides. Map-based cloning showed that the mutated gene (At1g71100) encodes a ribose 5-phosphate isomerase (RPI) and that the rsw10 mutation replaces a conserved glutamic acid residue with lysine. Although RPI is intimately involved with many biochemical pathways, media supplementation experiments suggest that the visible phenotype results from a defect in the production of pyrimidine-based sugar-nucleotide compounds, most likely uridine 5'-diphosphate-glucose, the presumed substrate of cellulose synthase. Two of three RPI sequences in the nuclear genome are cytoplasmic, while the third has a putative chloroplast transit sequence. The sequence encoding both cytoplasmic enzymes could complement the mutation when expressed behind the CaMV 35S promoter, while fusion of the RSW10 promoter region to the GUS reporter gene established that the gene is expressed in many aerial tissues as well as the roots. The prominence of the rsw10 phenotype in roots probably reflects RSW10 being the only cytosolic RPI in this tissue and the gene encoding the plastid RPI being relatively weakly expressed. We could not, however, detect a decrease in total RPI activity in root extracts. The rsw10 phenotype is prominent near the root tip where cells undergo division, endoreduplication and cell expansion and so are susceptible to a restriction in de novo pyrimidine production. The two cytosolic RPIs probably arose in an ancient duplication event, their present expression patterns representing subfunctionalization of the expression of the original ancestral gene.  相似文献   

5.
The anisotropic growth of plant cells depends on cell walls having anisotropic mechanical properties, which are hypothesized to arise from aligned cellulose microfibrils. To test this hypothesis and to identify genes involved in controlling plant shape, we isolated mutants in Arabidopsis thaliana in which the degree of anisotropic expansion of the root is reduced. We report here the characterization of mutants at two new loci, RADIALLY SWOLLEN 4 (RSW4) and RSW7. The radial swelling phenotype is temperature sensitive, being moderate (rsw7) or negligible (rsw4) at the permissive temperature, 19 degrees C, and pronounced at the restrictive temperature, 30 degrees C. After transfer to 30 degrees C, the primary root's elongation rate decreases and diameter increases, with all tissues swelling radially. Swelling is accompanied by ectopic cell production but swelling is not reduced when the extra cell production is eliminated chemically. A double mutant was generated, whose roots swell constitutively and more than either parent. Based on analytical determination of acid-insoluble glucose, the amount of cellulose was normal in rsw4 and slightly elevated in rsw7. The orientation of cortical microtubules was examined with immunofluorescence in whole mounts and in semi-thin plastic sections, and the orientation of microfibrils was examined with field-emission scanning electron microscopy and quantitative polarized-light microscopy. In the swollen regions of both mutants, cortical microtubules and cellulose microfibrils are neither depleted nor disoriented. Thus, oriented microtubules and microfibrils themselves are insufficient to limit radial expansion; to build a wall with high mechanical anisotropy, additional factors are required, supplied in part by RSW4 and RSW7.  相似文献   

6.
CesA1 and CesA3 are thought to occupy noninterchangeable sites in the cellulose synthase making primary wall cellulose in Arabidopsis (Arabidopsis thaliana L. Heynh). With domain swaps and deletions, we show that sites C terminal to transmembrane domain 2 give CesAs access to their individual sites and, from dominance and recessive behavior, deduce that certain CesA alleles exclude others from accessing each site. Constructs that swapped or deleted N-terminal domains were stably transformed into the wild type and into the temperature-sensitive mutants rsw1 (Ala-549Val in CesA1) and rsw5 (Pro-1056Ser in CesA3). Dominant-positive behavior was assayed as root elongation at the restrictive temperature and dominant-negative effects were observed at the permissive temperature. A protein with the catalytic and C-terminal domains of CesA1 and the N-terminal domain of CesA3 promoted growth only in rsw1 consistent with it accessing the CesA1 site even though it contained the CesA3 N-terminal domain. A protein having the CesA3 catalytic and C-terminal domains linked to the CesA1 N-terminal domain dramatically affected growth, but only in the CesA3 mutant. This is consistent with the operation of the same access rule taking this chimeric protein to the CesA3 site. In this case, however, the transgene behaved as a genotype-specific dominant negative, causing a 60% death rate in rsw5, but giving no visible phenotype in wild type or rsw1. We therefore hypothesize that possession of CesA3(WT) protects Columbia and rsw1 from the lethal effects of this chimeric protein, whereas the mutant protein (CesA3(rsw5)) does not.  相似文献   

7.
We identified a nonpathogenic strain of Ustilago maydis by tagging mutagenesis. The affected gene, glucosidase1 (gas1), displays similarity to catalytic alpha-subunits of endoplasmic reticulum (ER) glucosidase II. We have shown that Gas1 localizes to the ER and complements the temperature-sensitive phenotype of a Saccharomyces cerevisiae mutant lacking ER glucosidase II. gas1 deletion mutants were normal in growth and mating but were more sensitive to calcofluor and tunicamycin. Mutant infection hyphae displayed significant alterations in the distribution of cell wall material and were able to form appressoria and penetrate the plant surface but arrested growth in the epidermal cell layer. Electron microscopy analysis revealed that the plant-fungal interface between mutant hyphae and the plant plasma membrane was altered compared with the interface of penetrating wild-type hyphae. This may indicate that gas1 mutants provoke a plant response.  相似文献   

8.
The products of the cellulose synthase A (CESA) gene family are thought to function as isoforms of the cellulose synthase catalytic subunit, but for most CESA genes, the exact role in plant growth is still unknown. Assessing the function of individual CESA genes will require the identification of the null-mutant phenotypes and of the gene expression profiles for each gene. Here, we report that only four of 10 CESA genes, CESA1, CESA2, CESA3, and CESA9 are significantly expressed in the Arabidopsis embryo. We further identified two new mutations in the RADIALLY SWOLLEN1 (RSW1/CESA1) gene of Arabidopsis that obstruct organized growth in both shoot and root and interfere with cell division and cell expansion already in embryogenesis. One mutation is expected to completely abolish the enzymatic activity of RSW1(CESA1) because it eliminated one of three conserved Asp residues, which are considered essential for beta-glycosyltransferase activity. In this presumed null mutant, primary cell walls are still being formed, but are thin, highly undulated, and frequently interrupted. From the heart-stage onward, cell elongation in the embryo axis is severely impaired, and cell width is disproportionally increased. In the embryo, CESA1, CESA2, CESA3, and CESA9 are expressed in largely overlapping domains and may act cooperatively in higher order complexes. The embryonic phenotype of the presumed rsw1 null mutant indicates that the RSW1(CESA1) product has a critical, nonredundant function, but is nevertheless not strictly required for primary cell wall formation.  相似文献   

9.
The irregular xylem3 (irx3) mutant of Arabidopsis has a severe deficiency in secondary cell wall cellulose deposition that leads to collapsed xylem cells. The irx3 mutation has been mapped to the top arm of chromosome V near the marker nga106. Expressed sequence tag clone 75G11, which exhibits sequence similarity to cellulose synthase, was found to be tightly linked to irx3, and genomic clones containing the gene corresponding to clone 75G11 complemented the irx3 mutation. Thus, the IRX3 gene encodes a cellulose synthase component that is specifically required for the synthesis of cellulose in the secondary cell wall. The irx3 mutant allele contains a stop codon that truncates the gene product by 168 amino acids, suggesting that this allele is null. Furthermore, in contrast to radial swelling1 (rsw1) plants, irx3 plants show no increase in the accumulation of beta-1,4-linked glucose in the noncrystalline cell wall fraction. IRX3 and RSW1 fall into a distinct subgroup (Csa) of Arabidopsis genes showing homology to bacterial cellulose synthases.  相似文献   

10.
Peng L  Hocart CH  Redmond JW  Williamson RE 《Planta》2000,211(3):406-414
 Three non-allelic radial swelling mutants (rsw1, rsw2 and rsw3) of Arabidopsisthaliana L. Heynh. were shown to be specifically impaired in cellulose production. Fractionation methods that identify, characterise and quantify some of the major cell wall polysaccharides in small quantities of seedlings demonstrated that changes in the production of cellulose are much more pronounced than changes in the production of non-cellulosic polysaccharides. A crude cell wall pellet was sequentially extracted with chloroform methanol (to recover lipids), dimethyl sulphoxide (starch), ammonium oxalate (pectins) and alkali (hemicelluloses). Crystalline cellulose remained insoluble through subsequent treatments with an acetic/nitric acid mixture and with trifluoroacetic acid. Cetyltrimethylammonium bromide precipitation resolved neutral and acidic polymers in the fractions, and precipitation behaviour, monosaccharide composition and glycosidic linkage patterns identified the major polysaccharides. The deduced composition of the walls of wild-type seedlings and the structure and solubility properties of the major polymers were broadly typical of other dicots. The three temperature-sensitive, radial swelling mutants produced less cellulose in their roots than the wild type when grown at their restrictive temperature (31 °C). There were no significant differences at 21 °C where no radial swelling occurs. The limited changes seen in the monosaccharide compositions, glycosidic linkage patterns and quantities of non-cellulosic polysaccharides support the view that the RSW1, RSW2 and RSW3 genes are specifically involved in cellulose synthesis. Reduced deposition of cellulose was accompanied by increased accumulation of starch. Received: 15 December 1999 / Accepted: 18 January 2000  相似文献   

11.
12.
In this study, we compared the effects of 2,6-dideoxy-2,6-imino-7-O-(beta-D-glucopyranosyl)-D-glycero-L-gulohep titol (MDL) to those of the glucosidase I inhibitor, castanospermine, on the purified processing enzymes glucosidases I and II. WE also compared the effects of these two inhibitors on glycoprotein processing in cell culture using influenza virus-infected Madin-Darby canine kidney cells as a model system. With the purified processing enzymes, castanospermine was a better inhibitor of glucosidase I than of glucosidase II, whereas MDL is more effective against glucosidase II than glucosidase I. In cell culture at the appropriate dose, MDL also preferentially affected glucosidase II. Thus, at 250 micrograms/ml MDL, the major [3H]glucose-labeled (or [3H]mannose-labeled) glycopeptide from the viral hemagglutinin was susceptible to endoglucosaminidase H, and the oligosaccharide liberated by this treatment was characterized as a Glc2Man7-9GlcNAc on the basis of size, resistance to digestion by glucosidase I (but sensitivity to glucosidase II), methylation analysis, and Smith degradation studies. These data indicate that at appropriate concentrations of MDL (250 micrograms/ml), one can selectively inhibit glucosidase II in Madin-Darby canine kidney cells. However, at higher concentrations of inhibitor (500 micrograms/ml), both enzymes are apparently affected. Since MDL did not greatly inhibit the synthesis of lipid-linked saccharides or the synthesis of protein or RNA, it should be a useful tool for studies on the biosynthesis and role of N-linked oligosaccharides in glycoprotein function.  相似文献   

13.
Polysaccharide analyses of mutants link several of the glycosyltransferases encoded by the 10 CesA genes of Arabidopsis to cellulose synthesis. Features of those mutant phenotypes point to particular genes depositing cellulose predominantly in either primary or secondary walls. We used transformation with antisense constructs to investigate the functions of CesA2 (AthA) and CesA3 (AthB), genes for which reduced synthesis mutants are not yet available. Plants expressing antisense CesA1 (RSW1) provided a comparison with a gene whose mutant phenotype (Rsw1(-)) points mainly to a primary wall role. The antisense phenotypes of CesA1 and CesA3 were closely similar and correlated with reduced expression of the target gene. Reductions in cell length rather than cell number underlay the shorter bolts and stamen filaments. Surprisingly, seedling roots were unaffected in both CesA1 and CesA3 antisense plants. In keeping with the mild phenotype compared with Rsw1(-), reductions in total cellulose levels in antisense CesA1 and CesA3 plants were at the borderline of significance. We conclude that CesA3, like CesA1, is required for deposition of primary wall cellulose. To test whether there were important functional differences between the two, we overexpressed CesA3 in rsw1 but were unable to complement that mutant's defect in CesA1. The function of CesA2 was less obvious, but, consistent with a role in primary wall deposition, the rate of stem elongation was reduced in antisense plants growing rapidly at 31 degrees C.  相似文献   

14.
Trombetta ES  Fleming KG  Helenius A 《Biochemistry》2001,40(35):10717-10722
Glucose trimming from newly synthesized glycoproteins regulates their interaction with the calnexin/calreticulin chaperone system. We have recently proposed that glucosidase II consisted of two different subunits, alpha and beta. The alpha subunit is the catalytic component, and deletion of its homologue in yeast obliterates glucosidase II activity. Deletion of the homologue of the noncatalytic beta subunit in Schizosaccharomices pombe drastically reduces glucosidase II activity, but the role of the beta subunit in glucosidase II activity has not been established. Furthermore, a direct interaction between alpha and beta subunits has not been demonstrated. Using chemical cross-linking and hydrodynamic analysis by analytical ultracentrifugation, we found that the two subunits form a defined complex, composed of one catalytic subunit and one accessory subunit (alpha(1)beta(1)) with a molecular mass of 161 kDa. The complex had an s value of 6.3 S, indicative of a highly nonglobular shape. The asymmetric shape of the alpha(1)beta(1) complex was confirmed by its high susceptibility to proteases. The beta subunit could be proteolytically removed from the alpha(1)beta(1) complex without affecting catalysis, demonstrating that it is not required for glucosidase II activity in vitro. Furthermore, we isolated a monomeric C-terminal fragment of the alpha subunit, which retained full glucosidase activity. We conclude that the catalytic core of glucosidase II resides in a globular domain of the alpha subunit, which can function independently of the beta subunit, while the complete alpha and beta subunits assemble in a defined heterodimeric complex with a highly extended conformation, which may favor interaction with other proteins in the endoplasmic reticulum (ER). Through its C-terminal HDEL signal, the beta subunit may retain the complete alpha(1)beta(1) complex in the ER.  相似文献   

15.
16.
A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on alpha-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus beta-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of alpha-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of beta-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying beta-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.  相似文献   

17.
18.
19.
The recessive mutation, mod A, in the Dictyostelium discoideum strain M31 results in an alteration in the post-translational modification of lysosomal enzymes. We now report studies which indicate that mod A is deficient in glucosidase II, an enzyme which is involved in the processing of asparagine-linked oligosaccharides. [2-3H]Mannose-labeled glycopeptides were prepared from three purified mod A lysosomal enzymes and compared to the equivalent glycopeptides from parental enzymes. The mod A glycopeptides were deficient in high mannose oligosaccharides containing two phosphomannosyl residues and accumulated oligosaccharides with one phosphomannosyl residue. The phosphate was present in the form of an acid-stable phosphodiester in both instances. There was also an increase in the amount of nonphosphorylated high mannose oligosaccharides mod A and these were larger than the corresponding material from the parental enzymes. In addition, the nonphosphorylated oligosaccharides were only partially degraded by alpha-mannosidase, indicating the presence of a blocking moiety. In vitro enzyme assays demonstrated that the mod A cells cannot remove the inner 1 leads to 3-linked glucose from a glucosylated high mannose oligosaccharide. The cells are also deficient in membrane-bound neutral p-nitrophenyl-alpha-D-glucosidase activity. This activity has been attributed to glucosidase II in other systems. Removal of the outer 1 leads to 2-linked glucose from Glc3Man9Glc-NAc2 is normal, demonstrating the presence of glucosidase I activity. We conclude from these data that M31 cells are deficient in glucosidase II, the enzyme which removes the two inner glucose residues from the glucosylated oligosaccharides of newly glycosylated proteins. This defect can explain the mod A phenotype and is proposed to be the primary genetic defect in these cells.  相似文献   

20.
Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号