首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the plagiotropic nodally rooting clonal herb, Trifolium repens,the development of branches on stems is primarily controlled by the presence of nodal roots, and apical dominance is of secondary importance; only six to ten branches form distal to the youngest nodal root on a horizontal stem. We assessed the hypothesis that this phenomenon is general for clonal herbs with prostrate nodally rooting stems, and that they all have the same physiological system regulating branching, by testing a selection of species from diverse angiosperm families that exhibit either phalanx (Leptinella (Asteraceae), Hydrocotyle (Apiaceae), Acaena (Rosaceae)) or guerilla (Vinca (Apocynaceae), Glechoma and Lamiastrum (Lamiaceae)) growth strategies. In all these species the establishment of a single nodal root on a prostrate stem, otherwise prevented from nodally rooting, induced the outgrowth of a limited number of axillary buds (the number of which was species specific) at the nodes immediately distal to the newly established root, thereby indicating a phenotypic response similar to that in T. repens. Furthermore, their branching responses to manipulative treatments were also similar to those of T. repens, indicating that their regulatory physiology of axillary bud outgrowth from their prostrate stems is similar. We conclude that, for the group of prostrate nodally rooting clonal herbs as a whole, the apical dominance phenotype arises predominantly from variation in the supply of resources from nodal roots rather than from repression of axillary buds by apical tissues (apical dominance). We suggest that evolution of such a physiological mechanism enhances the exploration for patchily distributed favourable nodal rooting sites by regulating shoot development so as to efficiently utilise the diminishing intra-plant availability of root-supplied resources. For the species examined, inter-specific variation in intensity of branching response to a nodal root is shown to be linked to a trade off in foraging strategy, with the allocation of resources primarily to explorative growth (long internodes, few branches) in guerilla species or to exploitive growth (short internodes, many branches) in phalanx species.Co-ordinating editor: J. Tuomi  相似文献   

2.
The influence of nodal rooting on branching was studied in three evolutionarily and morphologically diverse species of prostrate clonal herbs: Tradescantia fluminensis (a monocotyledonous extreme ‘phalanx’ species), Calystegia silvatica (a dicotyledonous extreme ‘guerrilla’ species) and Trifolium repens (a dicotyledonous intermediate species). In all three, branch development from axillary buds is regulated by a positive signal produced by roots together with inhibitory influences from both pre-existing branches and shoot apical buds (apical dominance). Responses to nodal roots are cumulative and increased root activity leads to more vigorous bud outgrowth. In the absence of nodal roots, a single basal root system is unable to maintain continued extension growth of the shoot. We suggest that as individual nodal roots and stem internodes are both short-lived in these nodally-rooting clonal species, the plants’ investment in them is minimal. Thus, in contrast to perennial species lacking nodal roots, individual root systems in prostrate clonal herbs are small and stems have little secondary thickening and development of long-distance transport tissues. Hence the decline in extension growth of the shoot in the absence of nodal roots could be linked to the weak development of long-distance transport tissues in their relatively thin horizontal stems and to resource sharing between primary stems and lateral branches (as suggested by the greater retardation of primary stem growth in the more profusely branched ‘phalanx’ species (Trifolium and Tradescantia) than in the weakly branched ‘guerrilla’ species, Calystegia). These findings are consistent with the view that the long-term persistence of genotypes of nodally-rooting prostrate species is dependent upon them encountering the moist conditions required to facilitate the continual development of new young nodal root systems.  相似文献   

3.
Mazzella MA  Bertero D  Casal JJ 《Planta》2000,210(3):497-501
 Vegetative plants of Arabidopsis thaliana (L.) Heynh. form a compact rosette of leaves in which internode growth is virtually arrested. Rapid extension of the internodes occurs after flower buds are present in the reproductive apex. Under natural radiation, continuous light from fluorescent lamps, or short photoperiods of light from fluorescent lamps, plants of the phyB cry1 double mutant (lacking both phytochrome B and cryptochrome 1) did not form normal rosettes because all the internodes showed some degree of elongation. Internode elongation was weak in the phyB single mutant and absent in the cry1 mutant, indicating redundancy between phytochrome B and cryptochrome 1. The absence of phytochrome A caused no effects. The failure to form normal rosettes was conditional because internode elongation was arrested at low temperatures in all the mutant combinations. In contrast, the temperature dependence of phytochrome B and cryptochrome 1 effects on hypocotyl growth was weak. The elongation of the internodes in phyB cry1 was not accompanied by early flowering as showed by the lack of effects on the final number of leaves. Apex dissection indicated that in phyB cry1 double mutants internode elongation anticipated the transition from the vegetative to the reproductive stage. Thus, stem growth in Arabidopsis thaliana is not fully dependent on the program of reproductive development. Received: 2 June 1999 / Accepted: 13 August 1999  相似文献   

4.
 We have characterized three panicle phytomer 1 (pap1) mutations from the phytomer viewpoint. In pap1 mutants, rachis phytomers were strongly affected involving a severe reduction of rachis internode length and an increase in the number of rachis internodes (number of phytomers), resulting in a large number of primary branches. In addition, bracts were frequently over-developed. By contrast, pap1 differently affected primary branch phytomers resulting in a reduction in both the number and length of internodes. Spikelets were also modified. Rudimentary and empty glumes were frequently elongated. Floral organs were mostly normal. However, a double mutation between pap1 and fon1 markedly increased the number of floral organs compared with the single fon1 mutation, suggesting that PAP1 has a distinct role in the differentiation of floral organs. The functions of PAP1 on panicle architecture are: (1) the negative regulation of the number of phytomers on the rachis but a positive regulation of the number on primary branches, (2) an elongation of internodes, and (3) the negative regulation of bract development. Received: 5 October 1997 / Accepted: 27 January 1998  相似文献   

5.
Game-theoretic models predict that plants with root systems that avoid belowground competition will be displaced by plants that overproduce roots in substrate shared with competitors. Despite this, both types of root response to neighbours have been documented. We used two co-occurring clonal species (Glechoma hederacea and Fragaria vesca) with contrasting root responses to neighbours (avoidance of competition and contesting of resources, respectively) to examine whether functional variation in other traits affected the success of each rooting strategy, leading to a different outcome from that predicted on the basis of root behaviour alone. Vegetative propagation rates, morphology and biomass allocation patterns were examined when each species was challenged with competition from physically separate ramets with either the same rooting strategy (intraclonal competition) or the contrasting rooting strategy (interspecific competition). Contrary to the predictions of game-theoretic models, the species that exhibits avoidance of root competition (Glechoma) was not competitively inferior to the species that does not (Fragaria). Glechoma achieved greater total mass in the interspecific treatment than in the intraclonal treatment. However, Fragaria did not experience more intense competition from Glechoma than it did in the intraclonal treatment. Strong interference between the two species appeared to be avoided because Glechoma invested preferentially in rapid exploitation of unoccupied space, whereas Fragaria invested in increasing the competitive ability and local persistence of established ramets. Our results suggest that interspecific trade-offs between traits related to competitive ability and resource exploitation can allow coexistence of species with contrasting rooting behaviours. Full assessment of the adaptive value of different root responses to neighbours therefore requires concurrent consideration of the combined effects of a wide array of functional traits.  相似文献   

6.
Disturbance is common in nature and disturbance-caused fragmentation of clones happens frequently in stoloniferous plants. After fragmentation storage in stolon internodes and leaves may enhance survival and growth of stoloniferous plants. We hypothesize that (1) increasing length of the internode attached to the ramet and (2) presence of leaves will increase ramet survival and growth, and that (3) internode positions (before or after the ramet or both) will also play a role. We tested these hypotheses with the stoloniferous, invasive herb Alternanthera philoxeroides. In one experiment, we measured survival and growth of the ramets either without stolon internode (0 cm in length) or attached with internodes of 2, 4, 6 and 8 cm and either with or without leaves. In the other experiment, we measured survival and growth of the ramets attached with a proximal internode (before the ramet), a distal internode (after the ramet) or both. Increasing internode length and presence of leaves significantly increased the survival rate and growth (biomass, leaf area, number of ramets, stolon length and number of leaves) of the A. philoxeroides plants. All growth measures of A. philoxeroides at harvest were larger when the ramets were attached with a distal internode than when they were attached with a proximal internode, but the survival rate was lower. These results support the hypotheses and suggest that storage in stolons and leaves may be of great significance for clonal plants in frequently disturbed habitats and may contribute greatly to the invasiveness of A. philoxeroides.  相似文献   

7.
Ming Dong 《Oecologia》1995,101(3):282-288
Morphological responses to light and effects of physiological integration on local morphological responses are examined for Hydrocotyle vulgaris and Lamiastrum galeobdolon, stoloniferous herbs from open fenlands and forest understoreys, respectively. An assessment was made of whether these clonal herbs of similar morphology but from contrasting habitats show different foraging behaviour for light. In a garden experiment, the plants wer subjected to four levels of light availability, and to a split treatment in which the primary stolons grew along the border of patches of the two intermediate light levels. In this treatment the plant parts on opposite sides of the primary stolons were in contrasting light environments. Petiole extension was more responsive to light conditions in Hydrocotyle than in Lamiastrum, while the opposite was true for leaf area. Both species showed similar responses in stolon internode length and specific leaf area (SLA). Integration did not significantly modify local responses in stolon internode length in either species. Local responses in petiole length, leaf area and SLA of Hydrocotyle ramets were not significantly affected by physiological integration, except for the SLA of ramets in high light which was evened out by integration. In contrast, in Lamiastrum, local responses in petiole length, leaf area and SLA of many ramets in the shaded and/or light patch were significantly evened out by integration. As a result, interconnected ramets in patches of different light supply developed very different morphologies in Hydrocotyle, but not in Lamiastrum. The results indicate that the species differed in ramet morphological responses to light intensity as well as in effects of integration on local morphological responses, and suggest that species from different habitats show different foraging behaviour for light.  相似文献   

8.
This study describes the successive stages of development of branches from axillary buds in fully rooted plants of Trifolium repens grown in near optimal conditions, and the way in which this developmental pathway differs when nodal root formation is prevented as plants grow out from a rooted base. Cuttings of a single genotype were established in a glasshouse with nodal root systems on the two basal phytomers and grown on so that nodal rooting was either permitted (+R) or prevented (-R). In +R plants, axillary tissues could be assigned to one of four developmental categories: unemerged buds, emerged buds, unbranched lateral branches or secondarily branched lateral branches. In -R plants, branch development was retarded, with the retardation becoming increasingly pronounced as the number of -R phytomers on the primary stolon increased. Retarded elongation of the internodes of lateral shoots on -R plants resulted in the formation of a distinct fifth developmental category: short shoots (defined as branches with two or more leaves but with mean internode length equal to, or less than, 10% of that of the immediately proximal internode on the parent stolon) which had reduced phytomer appearance rates but retained the potential to develop into lateral branches. Transfer of +R plants to -R conditions, and vice versa, after 66 d demonstrated that subsequent branch development was wholly under the control of the youngest nodal root present, regardless of the age and number of root systems proximal to it.  相似文献   

9.
The ontogeny of peroxidase activity and isoenzyme pattern wasinvestigated in the stem of dwarf pea plants. Peroxidase activityper unit soluble protein was a given internode is highest inthe youngest growth stage, drops during elongation, remainsconstant upon cessation of growth, and increase at senescence.The lower the internode on the stem the higher is its peroxidaseactivity. These developmental differences are already apparentat the youngest growth stage of the internodes adn increaseduring elongation. Several anodic and five cathodic isoperoxidasesare apparent after starch gel electrophoresis. This patternis constant for all internodes at all growth stages, but therelative importance of particular isoenzymes changes with time. Gibberellic acid (GA3) treatment causes greatly elongated internodes,decreased soluble protein, and inhibition of the rise in peroxidaseactivity within 4–8 h. Application of GA3 to young internodesleads to a persistent depression in peroxidase activity, whiletreated older internodes suffer only a temporary depression.GA3 causes no qualitative changes in the isoenzyme pattern butproduces some quantitative alterations in internodes in whichits influence on peroxidase activity is persistent. Decapitation of untreated and GA3-treated dwarfs has littleinfluence on internode elongation, causes an increase in peroxidaseactivity, especially in the upper internodes, and alters therelative activity of particular isoenzymes. By contrast, decapitationinhibits elongation of young internodes in genetically tallpea plants.  相似文献   

10.
Vegetative Xanthium plants grown under noninductive conditions were marked along the stem with India ink and photographed during three successive days. The relative elemental rates of stem elongation [d(dX/dt)/dX] were estimated for 18 plants between 15 and 18 plastochrons. On the average, only the 8.0 cm terminal part of the stem was elongating in this group of plants. Young internodes were elongating at constant relative elemental rates ([d(dX/dt)/dX] was about 0.2 days–1); nodal portions of the stem beteween two young internodes were not elongating. Internodes longer than 2 cm displayed an acropetal pattern of elongation in which the basal part of an internode stopped elongating and matured first and the apical portion last. The pattern of elongation of the stem could be best approximated to a set of cascading waterfalls with declining plateaus in the direction of the water flow. The acropetal pattern of individual internode elongation observed in Xanthium was similar to those reported for Helianthus and Phaseolus internode growth.  相似文献   

11.
Abstract Stock plants of Hedera helix cv. Pittsburgh were grown in controlled environment rooms at four different irradiances (light intensities) 10, 22, 37 or 46 W m-2 PAR (photosynthetically active radiation). The root formation on single internode cuttings from these stock plants was observed in relation to length of the internodes and the position on the vine (topophysis). The analysis indicated that the root number was primarily dependent on internode length which in turn was dependent on irradiance to stock plants and topophysis. The irradiance of 37 W m-2 PAR was optimal for internode length and root number and the basal internode was the one which produced the greatest number of roots.  相似文献   

12.
Two manipulative experiments tested hypotheses pertaining to the correlative control exerted by nodal roots on branch development of the distal non-rooted portion of Trifolium repens growing clonally under near-optimal conditions. The two experiments, differing in their pattern of excision to manipulate the number of branches formed at the first 9-10 phytomers distal to the youngest nodal root, each found that after 20 phytomers of growth the total number of lateral branches formed on the primary stolon remained between five and seven regardless of where the branches formed along the stolon. Additional treatments established that nodal roots influenced branch development via relationships among shoot sinks for the root-supplied resources rather than through variation in the supply of such resources induced by fluctuations in photosynthate supply to roots from branches. Regression analysis of data pooled from treatments of both experiments confirmed that shoot-sink relationships for root- supplied resources controlled the branching processes on the non-rooted portion of plants. A disbudding treatment, which removed all the apical and axillary buds present on basal branches, but left other branch tissues intact, increased branch development of the apical region in the same way as did complete excision of the basal lateral branches. The apical buds and the elongation processes occurring immediately proximal to the buds were thus identified as strong sinks for the root-supplied resources. Such results suggest that branch development on the non-rooted shoot portion distal to the youngest nodal root is regulated by competition among sinks for root-derived resources, of limited availability, necessary for the processes of elongation of axillary buds and the primary stolon apical bud.  相似文献   

13.
The effect of mutual shading on the root/shoot ratio and on the number of nodal roots of maize was studied. Plants of two varieties (Dea and LG2281) were grown in individual pots of 9 L, at three plant densities: 7.5, 11 and 15 plants m–2. A control experiment was carried out in order to study if root growth was affected by the small size of the pots. Maize plants (cv Dea) were grown at a low plant density (7.5 plants m–2) in pots of two different volumes (9 and 25 L respectively). In both experiments plants were watered every two hours with a nutrient solution. Some plants were sampled at five dates in the main experiment and the following data were recorded: foliar stage; root, stem and leaf dry weight; number of root primordia and number of emerged roots per phytomer. The final sampling date occurred at silking.Results of the control experiment showed that the root biomass was lower in small pots but the number of nodal roots per phytomer was not affected.Results of the main experiment showed that the total plant biomass and the root/shoot ratio were lower at high plant density. The number of emerged roots was strongly reduced on the upper phytomer (P8). This reduction was mainly due to a lower percentage of root primordia which elongated. A proposed interpretation is that the number of roots which emerge on upper phytomers is controlled by carbohydrate availability.  相似文献   

14.
Trajectories of maize nodal roots were studied to test the hypothesis that roots which appear on a common internode have similar geometrical characteristics, and to assess the effect of soil temperature on root trajectory. Treatments consisted of three sowing dates, a comparison between mulched and non-mulched soil, a replication of one sowing date for two years in two locations, and a comparison between two cultivars at one sowing date. All these sources of variation, except the cultivar, had an appreciable effect on the trajectories of roots which appeared on the first four internodes. The horizontal component of the trajectory differed significantly between treatments, ranging from 93 to 700 mm in roots which appeared on the second internode, and from 71 to 569 for those on the third internode. The original hypothesis had, therefore, to be rejected. Mean soil temperature during the 100°C.days after root appearance accounted for the differences in trajectory between location, year, sowing date and mulch treatments, and for the differences between internodes within each location. The critical period during which temperature affected root trajectory probably began at root appearance, and ended between 50 and 100°C days after root appearance, i.e. when the root was less than 100 mm long.  相似文献   

15.
Lehmann H  Stelzer R  Holzamer S  Kunz U  Gierth M 《Planta》2000,211(6):816-822
 In transmission electron microscopy studies, lanthanum ions have been used as electron-opaque tracers to delineate the apoplastic pathways for ion transport in barley (Hordeum vulgare L.) roots. To localize La3+ on the subcellular level, e.g. in cell walls and on the surface of membranes, electron-energy-loss spectroscopy and electron-spectroscopic imaging were used. Seminal and nodal roots were exposed for 30 min to 1 mM LaCl3 and 10 mM LaCl3, respectively. In seminal roots, possessing no exodermis, La3+ diffusion through the apoplast was stopped by the Casparian bands of the endodermis. In nodal roots with an exodermis, however, La3+ diffusion through the cortical apoplast had already stopped at the tight junctions of the exodermal cell walls resembling the Casparian bands of the endodermis. Therefore, we conclude that in some specialized roots such as the nodal roots of barley, the physiological role of the endodermis is largely performed by the exodermis. Received: 28 July 1999 / Accepted: 24 February 2000  相似文献   

16.
天山林区六种灌木生物量的建模及其器官分配的适应性   总被引:5,自引:0,他引:5  
仇瑶  常顺利  张毓涛  王文栋  何平  王慧杰  谢锦 《生态学报》2015,35(23):7842-7851
灌木全株生物量估算模型的构建仍存在一定困难,对灌木生物量在器官分配上所体现的适应性研究也不够充分。以天山林区6种常见灌木为研究对象,在天山的东段、中段、西段林区分别设置样地进行群落调查,由此以全株收获法取得6种常见灌木若干标准株的全株、根、枝、叶及各径级根的生物量,将D~2H(地径平方与高度的乘积)与V(冠幅面积与高度的乘积)分别选为估测模型的自变量,通过回归分析法建立了各种灌木全株生物量的最优估算模型,然后比较了此6种灌木全株生物量在营养器官上分配差异以及根系生物量在径级上的分配差异。结果表明:(1)天山林区6种常见灌木中,小檗(Berberis heteropoda Schrenk)、忍冬(Lonicera hispida Pall.ex Roem.et Schuet.)、栒子(Cotoneaster melanocarpus Lodd.)的全株生物量约为8.48—9.01 kg,蔷薇(Rosa spinosissima L.)、绣线菊(Spiraea hypericifolia L.)、方枝柏(Juniperus pseudosabina Fisch.et Mey.)的全株生物量约为2.71—3.20 kg;(2)蔷薇、绣线菊、栒子的全株生物量最优估测模型是以V为自变量的函数,小檗、忍冬、方枝柏的全株生物量最优估测模型是以D~2H为自变量的函数,各模型R~2值均在0.850以上,且在P0.05水平上达到显著,模型模拟结果达到了较高的准确度;(3)6种灌木全株生物量在根、枝上的分配比重差异不显著,仅在叶上的分配比重有差异(P0.05);根系生物量在径级上的分配均呈现随根系径级下降而减少的规律,6种灌木在径级大于2 mm根上的分配比重存在差异(P0.05,径级大于20 mm根为P0.01水平);(4)6种灌木全株生物量在营养器官上的分配差异以及根系生物量在径级上的分配差异均体现了各物种对其生境选择的适应策略。  相似文献   

17.
18.
Rattans are climbing, nonbranching palms with diverse growth forms ranging from stems that remain at the forest floor to stems that reach the canopy. We analyzed changes in architecture and biomass allocation during ontogenetic development of 13 Indonesian species in the genera Calamus, Ceratolobus, Daemonorops, Korthalsia, and Plectocomiopsis. Species included both nonclimbers (<5 m tall maximum) and climbers (10 to 50 m tall). Nonclimbers retain a rosette form—that is, thick, short internodes with length/internode diameter ratio <10 but with long petioles—throughout their lives. Leaf and internode shapes of climbers at the early stage resemble those of nonclimbers, but internodes later become longer (internode length/diameter ratio ≥10) and petioles become shorter and developed one of two kinds of climbing organs at the adult stage. These developmental changes reduce self-shading within the crown. Some climbers have dwarf blades at the early stage and skip the rosette form. Principal component analysis of biomass allocation indicated that growth strategies to attain the adult stage are diverse. These results suggest that rattans reach maturity at different phases along a series of ontogenetic development stages and generate diverse growth forms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The main stems of three young Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirbel) Franco) trees were dissected to obtain samples of secondary xylem from internodes axially along the trunk and radially within each internode. From these samples, measurements were obtained of tracheid diameter, length, the number of inter-tracheid pits per tracheid, and the diameter of the pit membranes. In addition, samples were obtained along the trunks of three old growth trees and also a small sample of roots for measurement of tracheid diameter. A gradient was apparent in all measured anatomical characters vertically along a sequence among the outer growth rings. These gradients arose not because of a gradient vertically along the internodes, but because of the strong gradients present at each internode among growth rings out from the pith. Tracheid characteristics were correlated: wider and longer tracheids had more numerous pits and wider pits, such that total pit area was about 6% of tracheid wall area independent of tracheid size. A stem model combining growth rings in parallel and internodes in series allowed for estimates of whole trunk conductance as a function of tree age. Conductance of the stem (xylem area specific conductivity) declined during the early growth of the trees, but appeared to approach a stable value as the trees aged.  相似文献   

20.
Fournier  C.; Andrieu  B. 《Annals of botany》2000,86(3):551-563
The kinetics of elongation of individual internodes of maizestems were studied under field conditions. Thermal time coursesof internode length were recorded using non-destructive methods,based on direct measurement of X-ray photographs or on indirectestimates using heights of leaf collars. These data were complementedby serial dissections of maize stems, and by precise observationof the process of sheath emergence, to specify its role in thekinetics of internode elongation. The kinetics of elongationwere found to be composed of four phases. The rate of elongationrises exponentially during phase I, and then increases sharplyduring a short period (phase II), which is followed by a majorperiod of constant growth rate (phase III) and a shorter periodin which the rate declines (phase IV). During phase I, elongationappears to be integrated at the level of the whole apical cone.From phase II onwards, elongation becomes determined at thelevel of the phytomer. The emergence of the sheath attachedto the internode appears to be a possible trigger for the transitionbetween phase I and phase II, and it may also be involved invariation in final length among phytomers. Copyright 2000 Annalsof Botany Company Zea mays L., internode, elongation, modelling, dynamics, X-rays, collar, phytomer, stem, thermal time, phasic development  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号