首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Prostacyclin (Prostaglandin I2) effects on the rat kidney adenylate cyclase-cyclic AMP system were examined. Prostaglandin I2 and prostaglandin E2, from 8 · 10?4 to 8 · ?7 M stimulated adenylate cyclase to a similar extent in cortex and outer medulla. In inner medulla, prostaglandin I2 was more effective than prostaglandin E2 at all concentrations tested. Both prostaglandin I2 and prostaglandin E2 were additive with antidiuretic hormone in outer and inner medulla. Prostaglandin I2 and prostaglandin E2 were not additive in any area of the kidney, indicating both were working by similar mechanisms. Prostaglandin I2 stimulation of adenylate cyclase correlated with its ability to increase renal slice cyclic AMP content. Prostaglandin I2 and prostaglandin E2 (1.5 · 10?4 M) elevated cyclic AMP content in cortex and outer medulla slices. In inner medulla, with Santoquin® (0.1 mM) present to suppress endogenous prostaglandin synthesis, prostaglandin I2 and prostaglandin E2 increased cyclic AMP content. 6-Ketoprostaglandin F, the stable metabolite of prostaglandin I2, did not increase adenylate cyclase activity or tissue cyclic AMP content. Thus, prostaglandin I2 activates renal adenylate cyclase. This suggests that the physiological actions of prostaglandin I2 may be mediated through the adenylate cyclase-cyclic AMP system.  相似文献   

2.
Choleragen increases cyclic AMP content of confluent human fibroblasts. Maximally effective concentrations of isoproterenol and prostaglandin E1 also induce large increases in cyclic AMP content of human fibroblasts and in confluent cultures the effect of prostaglandin E1 is much greater than that of isoproterenol. After incubation with choleragen, the increment in cyclic AMP produced by 2 μM isoproterenol is increased and approaches that produced by 5.6 μM prostaglandin E1. Although the concentration of isoproterenol which produces a maximal increase in cyclic AMP is similar in both control and choleragen-treated cells, lower concentrations of isoproterenol are more effective in the choleragen-treated cells. In choleragen-treated cells, although the response to 5.6 μM prostaglandin E1 is reduced by as much as 50%, the concentration of prostaglandin E1 required to induce a maximal increase in cyclic AMP is 110 that required in control cells. Thus the capacities of intact human fibroblasts to respond to isoproterenol and prostaglandin E1 can be altered independently during incubation of intact cells with choleragen. Differences in responsiveness to the two agonists were not demonstrable in adenylate cyclase preparations from control or choleragen-treated cells.In rat fat cells, the effects of choleragen on cyclic AMP content were much smaller than those in fibroblasts. In contrast to its effect on intact fibroblasts, choleragen treatment of rat fat cells did not alter the accumulation of cyclic AMP in response to a maximally effective concentration of isoproterenol. The responsiveness of adenylate cyclase preparations to isoproterenol was also not altered by exposure of fat cells to choleragen.  相似文献   

3.
Crude membrane fractions, obtained from superior cervical ganglia of normal and sympathectomized guinea-pigs, have been used to investigate the role of prostaglandin E2 andd-ala2-met-enkephalinamide in the modulation of ganglionic adenylate cyclase as well as their functional interrelationship. In ganglia from normal animals the enzyme activity was stimulated and inhibited, respectively, by the prostaglandin (10–4M) and by the opiate pentapeptide (10–4M), while little or no effects were observed in denervated preparations. When the two substances were tested in combination, a supra-additive stimulation of adenylate cyclase activity was obtained both in normal and denervated ganglia. In the latter preparation the opiate increased prostaglandin E2 specific binding, suggesting that the mechanism of supra-additivity could involve interactions at receptors level. Furthermore, the supra-additive stimulation of adenylate cyclase activity by the combination of the two drugs was obtained in a narrow range of concentrations since at low prostaglandin E2 doses (10–7–10–6M) or at very high doses of the opiate (10–3M), only the inhibitory effect ofd-ala2-met-enkephalinamide was evidenced.  相似文献   

4.
The effect of adenosine on the mouse thymocyte adenylate cyclase-adenosine 3′:5′-monophosphate (cyclic AMP) system was examined. Adenosine, like prostaglandin E1, can cause 5-fold or greater increases in thymocyte cyclic AMP content in the presence but not in the absence of certain cyclic phosphodiesterase inhibitors. Two non-methylxanthine inhibitors potentiated the prostaglandin E1 and adenosine responses, while methylxanthines selectively inhibited the adenosine response. Adenosine increased cyclic AMP content significantly wihtin 1 min and was maximal by 10 to 20 min with approx. 2 and 10 μM adenosine being minimal and half-maximal effective doses, respectively. Combinations of prostaglandin E1, isoproterenol and adenosine were near additive and not synergistic. Of the adenosine analogues tested, only 2-chloro- and 2-fluoroadenosine significantly increased cyclic AMP. Thymocytes prelabeled with [14C] adenine exhibited dramatic increases in cyclic [14C]AMP 10 min after addition of adenosine or prostaglandin E1 which corresponded to simultaneously determined increases in total cyclic AMP. Using [14C]adenosine, the percent of total cyclic AMP increase due to adenosine was only 16%. Adenosine was also shown to elicit a 40% increase in particulate thymocyte adenylate cyclase activity. Therefore, the increased content of cyclic AMP seen in mouse thymocytes after incubation with adenosine was due primarily to stimulation of adenylate cyclase and only partially to conversion of adenosine to cyclic AMP. The increased cellular content of cyclic AMP may be, in part, responsible for various immunosuppressive effects of adenosine.  相似文献   

5.
The effects on human platelets of two synthetic analogues of prostaglandin endoperoxides were examined in order to explore the relationship between aggregation and prostaglandin and cyclic nucleotide metabolism, and to help elucidate the role of the natural endoperoxide intermediates in regulating platelet function.Both analogues (Compound I, (15S)-hydroxy-9α,11α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid, and Compound II, (15S)-hydroxy-11α,9α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid) caused platelets to aggregate, an effect which could be inhibited by prostaglandin E1 but not by indomethacin. Compound II produced primary, reversible aggregation at concentrations which did not induce release of 5-hydroxytryptamine. Production of thromboxane B2 and malonyldialdehyde was monitored as an index of endogenous production of prostaglandin endoperoxides and thromboxane A2 and were increased after incubation of human platelets with thrombin, collagen or arachidonic acid. However, neither malonydialdehyde nor thromboxane B2 levels were significantly influenced by the endoperoxide analogues. Both analogues produced a small elevation of adenylate cyclase activity in platelet membranes and of cyclic AMP content in intact platelets, but neither had any modifying effect on the much greater stimulation of adenylate cyclase and cyclic AMP levels by prostaglandin E1. Of all the aggregating agents tested, only arachidonic acid produced any significant increase in platelet cyclic GMP levels.These results suggest that the epoxymethano analogues of prostaglandin endoperoxides induce platelet aggregation independently of thromboxane biosynthesis and without inhibiting adenylate cyclase or lowerin platelet cyclic AMP levels. They therefore differ from better known aggregating agents such as ADP, epinephrine and collagen, which increase thromboxane A2 production and reduce cyclic AMP levels, at least in platelets previously exposed to prostaglandin E1.  相似文献   

6.
Human decidua contains an active adenylate cyclase, and a number of studies indicate that adenylate cyclase is functionally linked to increased in vitro prostaglandin synthesis. Increased decidual prostaglandin synthesis is associated with parturition, and therefore activation of adenylate cyclase may be involved in the control of human parturition. In this study, third trimester human decidual cells were preincubated for no more than 24 h prior to stimulation with a number of reagents which increase cellular cyclic AMP levels. Forskolin rapidly increased intracellular and extracellular cyclic AMP levels, but there was no increase in prostaglandin E2 biosynthesis during incubations ranging from 5 min up to 24 h. Dibutyryl cyclic AMP or 8-bromo-cyclic AMP were also without effect on PGE2 production, which suggests that the adenylate cyclase was not linked to the mechanisms regulating prostaglandin production. Cholera toxin increased basal cyclic AMP and PGE2 synthesis, and was without effect on IL-1β-stimulated PGE2 levels. PGE2 synthesis was increased by 24 h culture with IL-1β in all the cell preparations, indicating that the cells were biologically active, and that the lack of effect of changes in cyclic AMP synthesis on PGE2 levels could not be attributed to a defect in the prostaglandin synthetic pathway. Our findings did not agree with earlier work which showed that changes in cyclic AMP were correlated with changes in PGE2 production by human decidual cells. It is clear that in the previous studies the decidual cells were preincubated for 4–7 days prior to stimulation, in contrast with 24 h in our investigation. We suggest that the functional link between cyclic AMP and PGE2 synthesis reported previously may develop during culture, and not be a part of normal decidual cell function, but further studies are needed to test this hypothesis.  相似文献   

7.
A potent (Ki = 0.01 mM), competitive inhibition of adenylate cyclase activity in particulate fractions of guinea pig lung by 2′O-palmitoyl cyclic AMP has been observed, in striking contrast to the inactivity of cyclic AMP and N6,2′O-dibutyryl cyclic AMP at concentrations of up to 1 mm or more. The possibility that 2′O-palmitoyl cyclic AMP or similar compounds might function as endogenous regulators of the hormonal stimulation of adenylate cyclase activity is discussed. Several 6- and 8- substituted purine 3′,5′-cyclic ribotides also inhibit, probably by direct interaction with enzymatic sulfhydryl groups. A study of the inhibition by purine bases, nucleosides, and 5′ nucleotides suggests that most of the substrate (ATP) binding determinants reside in the nucleoside. The particulate enzyme fractions were found to have lower ATPase activity relative to cyclase activity than cyclase preparations from either guinea pig heart or bronchial smooth muscle. Lung cyclase fractions were maximally stimulated by 5–15 mm Mg2+ in the presence of 1.2 mm ATP as substrate. The percentage of stimulation of cyclase activity by 0.01 mm isoproterenol is dependent on the Mg2+ concentration. Cyclase activity was significantly stimulated not only by the catecholamines (isoproterenol, epinephrine, and norepinephrine) and fluoride ion, but also by prostaglandins E1, E2, and F, histamine, and glucagon.  相似文献   

8.
The effects of prostaglandin (PG) E1, E2, A1, F, F or D2 on the rat renal cortical, outer medullary and inner medullary adenylate cyclase-cyclic AM systems were examined. While high concentrations (8X10−4M) of each prostaglandin stimulated adenylate cyclase activity in each area of the kidney, PGE1 was the only prostaglandin to stimulate at 10−7M. PGA's were the only prostaglandins tested besides PGE's which stimulated adenylate cyclase at less than 10−4M. This effect of PGA's was limited to the outer medulla. PGD2 was the least stimulatory. Observations with renal slices yielded qualitatively results. The PGE's were the most potent in each area with PGA's only stimulatory in the outer medulla. O2 deprivation (5% O2) lowered the slice cyclic AMP content in each area of the kidney. In the cortex and outer medulla, prostaglandin mediated increases in cyclic AMP content were either lower or absent at 5% O2 compared to 95% O2. However, in the inner medulla PGE stimulation was observed only at 5% O2 and not 95% O2. No other prostaglandins were found to increase inner medullary cyclic AMP content at 95% or 5% O2. These results illustrate that the adenylate cyclase-cyclic AMP system responds uniquely to prostaglandins in each area of the kidney. Consideration of these results along with correlative observations suggests that inner medullary produced PGE's may act as local modulators of inner medullary adenylate cyclase.  相似文献   

9.
The prostaglandin endoperoxide, prostaglandin G2, in platelet-rich plasma may produce reversible platelet aggregation without secretion, irreversible aggregation with secretion of platelet constituents inhibited by indomethacin, or the latter effects despite indomethacin, depending on the concentration of the endoperoxide. Irreversible aggregation and platelet secretion induced by prostaglandin G2 apparently result from the action of ADP, since these responses are inhibited by 2-n-amylthio-5′-AMP (an inhibitor of the actions of ADP on platelets) and they do not occur in heparinized platelet-rich plasma. Prostaglandin G2 lowers the platelet level of cyclic 3′,5′-AMP. Its actions are inhibited by elevation of cyclic AMP levels by prostaglandin E1 or dibutyryl cyclic AMP or adenosine. Like malondialdehyde production induced by thrombin, ADP, or arachidonic acid, prostaglandin G2-induced malondialdehyde production is reduced by dibutyryl cyclic AMP and prosraglandin E1. Platelet activation by prostaglandin G2 is enhanced by the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)-adenine.The action of prostaglandin G2 on platelets is more complex then previously reported.  相似文献   

10.
Thromboxane A2 plays and important role in arachidonic acid- and prostaglandin H2-induced platelet aggregation. Agents that stimulate platelet adenylate cyclase (prostaglandin I2, prostaglandin I1, and prostaglandin E1) and dibutyryl cyclic AMP inhibit both thromboxane A2 formation and arachidonate-induced aggregation platelet-rich plasma. Despite complete suppression of aggregation with agents that elevate cyclic AMP, considerable thromboxane A2 is still formed. Prostaglandin H2-induced aggregations which bypass the cyclooxygenase regulatory step are also inhibited by agents that elevate cyclic AMP without any measurable effect on thromboxane A2 production. These data demonstrate that cyclic AMP can inhibit platelet aggregation by a mechanism independent of its ability to suppress the cycyooxygenase enzyme. Parallel experiments with washed platelet preparations suggest that they may be an inadequate mode for studying relationship between the platelet cyclooxygenase and platelet function.  相似文献   

11.
The accumulation of cyclic AMP due to adenosine deaminase plus theophylline and either isoproterenol or ACTH in the presence of adenosine deaminase plus theophylline, was inhibited by clonidine, N6-(phenylisopropyl)-adenosine and prostaglandin E2. The inhibition was nearly identical in medium containing sodium ions or in medium in which sodium and its accompanying anion were substituted by an isosmotic amount of sucrose. Consistent with this, lipolysis induced by adenosine deaminase and theophylline was significantly inhibited by clonidine, N6-(phenylisopropyl)-adenosine and prostaglandin E2 regardless of the presence or absence of Na+ in the medium. The results do not support the suggestion that extracellular Na+ is required for the regulation of cyclic AMP levels by hormones and neurotransmitters that inhibit adenylate cyclase.  相似文献   

12.
Intact LM cells, a line of cultured mouse fibroblasts, exhibited and adenylate cyclase (APT pyrophosphate-lyase (cyclizing), EC 4.6.1.1) activity in the presence exogenous [α-32]ATP which was 20–30% of that observed with comparable preparations of lysed cells. The extent of NaF and prostaglandin E1 stimulation was comparable in intact cells and lysed cells. 96% of the added ATP and 92% of the cyclic AMP produced by intact cells could be isolated extracellularly in the incubation medium. Cellular integrity under assay conditions was monitored by trypan blue exclusion. These data suggest that LM cells contain an endenylate cyclase activity whic is accessible to extracellular ATP.  相似文献   

13.
5-Hydroxytrptamine increased the rate of Ca2+ efflux and the concentration of endogenous cyclic AMP in abalone gill in both 10 mM and 50 mM CaCl2 concentrations externally. Dopamine decreased the rate of Ca2+ efflux in 50 mM CaCl2 but slightly increased the efflux rate in 10 mM CaCl2. At both external Ca2+ concentrations, dopamine increased the endogenous cyclic AMP concentration in the gill. 5-Hydroxytryptamine but not dopamine was found to activate adenylate cyclase in broken cell preparations of abalone gill. Cyclic AMP-dependent protein kinase activity was also demonstrated in homogenate fractions of abalone gill. It is suggested that both Ca2+ and cyclic AMP act as second messengers in the response of abalone gill to 5-hydroxytryptamine and dopamine.  相似文献   

14.
In order to elucidate the mechanism of denervation supersensitivity, the effects of 6-hydroxydopamine lesion, placed in the substantia nigra, were examined on rat brain caudate adenylate cyclase and 3H-haloperidol binding to membrane dopamine receptors. In addition, the effects of chronic administration of L-DOPA, bromocriptine and piribedil were also investigated on 3H-haloperidol binding and dopamine, K+ isoproterenol (IPNE) and 2-Cl-adenosine stimulated formation of cyclic AMP in caudate slices. 6-Hydroxydopamine lesions resulted in significantly greater stimulation of adenylate cyclase by dopamine at various concentrations tested. The haloperidol binding sites were increased by 28% on lesioned side caudate without changes in dissociation constants (KD). Three weeks after treatment with L-DOPA, bromocriptine or piribedil, the 3H-haloperidol binding sites were decreased by 40% with no change in KD. The stimulatory effect of dopamine on cyclic AMP formation was also abolished, although there was no change in IPNE, K+, or 2-Cl-adenosine stimulated cyclic AMP formation in caudate slices, suggesting a specific effect of dopamine agonists on dopamine receptors. The results of these studies suggest a close relationship between at least some populations of dopamine receptors and adenylate cyclase in the caudate nucleus.  相似文献   

15.
The stimulatory and inhibitory effects of adenosien of the adenylate cyclases of human and pig platelets were studied. Stimulation occurred at lower concentrations than did inhibition, and stimulatory effect was prevented by methylxanthines. Stimulation by adenosine was immediate in onset and was reversible, under conditions when cyclic AMP formation was linear with respect to time and protein concentration.The stimulatory and inhibitory effects could be distinguished further by the use of various analogues of adenosine and could be prevented by adenosine deaminase. The data suggest that both stimulation and inhibition were due to adenosine itself and not one of its degradation products and that in the platelet preparation, neither formation nor degradation of adenosine during the adenylate cyclase incubation appreciably influenced measured activity.Stimulation by adenosine was additive with the effects of GMP-P(NH)P, and α- or β-adrenergic stimulation, but was abolished by prostaglandin E1 or by NaF. Prostaglandin E1 and NaF increased the sensitivity of adenylate cyclase to inhibition by adenosine. The data suggests that guanly-5′-yl(β-γ imino)diphosphate and/or adrenergic stimulation and adenosine exert their effects on adenylate cyclase by distinct mechanisms, but that prostaglandin E1 or F? and adenosine increase enzyme activity by mechanisms which may involve common intermediates in the coupling to adenylate cyclase.  相似文献   

16.
Histamine activated adenylate cyclase in pig skin (epidermal) slices, resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of cyclic AMP-phosphodiesterase inhibitors (theophylline, papaverine). A specific H2 receptor inhibitor (metiamide) inhibited the effect of histamine completely, while other antihistamines (diphenhydramine, acetophenazine, perphenazine, fluphenazine, promethazine) inhibited the effect of histamine to various lesser degrees. It has been shown that both epinephrine and prostaglandin E stimulate epidermal adenylate cyclase. Our data using specific blocking agents indicate that histamine, epinephrine and prostaglandin E2 act independently on the epidermal adenylate cyclase system.  相似文献   

17.
The effects of Mn2+ and calmodulin were studied on the basal and agonist-modulated adenylate cyclase activity of the guinea pig superior cervical ganglion. The divalent cation strongly stimulates the basal and agonist-modulated enzyme in a concentration-dependent manner. Moreover, in the presence of Mn2+ the inhibitory effects of high GTP concentrations and of D-Ala2-Met-enkephalinamide on adenylate cyclase are eliminated, while the stimulation exerted by prostaglandin E2 and the supra-additive activation of the enzyme by the combination of the two drugs are unaffected. In EGTA-washed, calmodulin-depleted membrane preparations, Mn2+ still activates the cyclase but the enkephalin inhibition and the superactivation of the enzyme induced by the combination of opiate and prostaglandin are lost, both in the absence and in the presence of the cation. Reconstituting the depleted membranes with exogenous Ca2+/calmodulin fully restored the enzyme responsivity to the combination and, partially, to the enkephalin. The findings suggest the existence in the guinea pig superior cervical ganglion of both the calmodulin-sensitive and differently regulated calmodulin-insensitive adenylate cyclase.  相似文献   

18.
Allyn C. Howlett 《Life sciences》1984,35(17):1803-1810
This study was undertaken to ascertain the effects of cannabinoid drugs on prostanoid-stimulated adenylate cyclase in neuroblastoma cells. This report demonstrates that Δ9-tetrahydrocannabinol (THC) and levonantradol could decrease initial rate cyclic AMP accumulation in response to prostacyclin in intact cells. Basal accumulation was also diminished. Prostanoid-stimulated adenylate cyclase in a membrane preparation from these cells was inhibited by cannabinoid and nantradol compounds. However, this inhibition was not competitive with prostaglandin E1 or prostacyclin. Further, inhibition was also observed when the enzyme was stimulated by peptide hormones at the secretin receptor. In contrast, enzyme activated by NaF was not inhibited by cannabinoid compounds. Cyclic AMP phosphodiesterase activity in subcellular fractions was unaltered by these agents. These data demonstrate that cannabinoid and nantradol compounds decrease cyclic AMP accumulation in neuronally derived cells, and that this results from an inhibition of basal and hormone-stimulated adenylate cyclase activity.  相似文献   

19.
[3H]Prostaglandin D2 binding to rabbit platelets was increased by about 150% in the presence of β-adrenoceptor agonist, isoproterenol. The isoproterenol-induced potentiation of the [3H]prostaglandin D2 binding gave a bell-shaped dose-response relationship (maximum response at 3·10−8 M) in a stereospecific manner. Similar and moderate potentiation was obtained with terbutaline. On the other hand, β-adrenoceptor antagonists such as alprenolol, propranolol and butoxamine (β2-specific) had no potentiating effect on [3H]prostaglandin D2 binding; rather, they abolished the isoproterenol-induced increase of [3H]prostaglandin D2 binding. The β1-specific antagonist, metoprolol, did not have any effect. Rabbit platelets were found to possess one [3H]prostaglandin D2 binding site (Kd = 6·10−7 M, Bmax = 787 fmol/mg protein). In the presence of isoproterenol at 3·10−8 M, Bmax was increased with unaltering Kd value. Isoproterenol did not increase [3H]prostaglandin E1, [3H]prostaglandin E2 and [3H]prostaglandin F bindings to platelets. The potential effect of isoproterenol was mimicked by forskolin, theophylline, dibutyryl cyclic AMP, prostaglandin E1 and prostaglandin I2, but it was abolished by 2′, 5′-dideoxyadenosine, an inhibitor of adenylate cyclase, indicating that elevated level of cyclic AMP may be available for the induction of the increase of [3H]prostaglandin D2 binding. Prostaglandin D2-induced cyclic AMP synthesis and antiaggregation activity were also augmented in the presence of isoproterenol. These results suggest a β2-adrenoceptor-mediated cyclic AMP-dependent mechanism for the regulation of prostaglandin D2 receptor binding in rabbit platelets.  相似文献   

20.
Both human and rat erythrocytes respond to low doses (10−11-10−9 M) of L-isoproterenol and Lepinephrin with an increased degree of hypotonic hemolysis and a decreased rate of filtration through standardized paper filters. The receptors in both cell types have many of the characteristics of β-receptors for catecholamines. However, hormone-receptor interaction in the human cell does not lead to an increase in intracellular cyclic AMP concentration, but in the rat cell, hormone-receptor interaction does lead to a significant increase in cylic AMP content. Thus, catecholamine-β-receptor interaction, at least in the human red cell, leads to a change in red cell properties which are not mediated by adenylate cyclase activation. Likewise, prostaglandin E2, at 10−12-10−10 M, causes an increased degree of hypotonic hemolysis and a decreased rate of filtration through standardized paper filters, but it also does not increase the cyclic AMP content of the human erythrocyte but does increase that of the rat erythrocyte. Nevertheless, exogenous cyclic AMP, when added at a concentration of 10−8 M to washed human erythrocytes, increases the degree of hypotonic hemolysis. Conversely, prostaglandin E1, at 10−12-10−10 M, causes a decreased degree of hypotonic hemolysis and an increased rate of filtration through a standard filter. Both prostaglandin E2 and the catecholamines decrease the size of a rapidly exchangeable calcium pool, and prostaglandin E1 increases it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号