首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake of glucose, 3-O-methylglucose and sucrose into beetroot protoplasts is considerably stimulated by 10–6M fusicoccin. This effect is decreased in the presence of 10mM Na+ or K+, 2 mM Mg2+ or Ca2+. Whereas fusicoccin causes no change in the pH-optimum of the sugar uptake (pH 5.0), the apparent Km of this uptake which obeys a biphasic kinetics is decreased by the action of fusicoccin. In the protoplast suspension, fusicoccin induces an acidification which is suppressed by uncoupling agents. Correspondingly, uncouplers as well as vanadate and diethylstilbestrol markedly inhibit the effect of fusicoccin on sugar uptake. The present data support the view that glucose uptake into beetroot protoplasts depend on the proton-pumping activity of the plasmalemma-ATPase. cis–Abscisic acid diminishes significantly the fusicoccin-enhanced glucose uptake. By using a radioimmunoassay, the internal abscisic acid content of the protoplast was estimated to be in the range of 10–6 M. Protoplasts isolated from bundle tissue contain twice as much abscisic acid as those derived from storage parenchyma. Because protoplasts from the bundle tissue were shown to take up sugars much faster than those from the storage cells, the observed effect of abscisic acid might reflect an involvement of this hormone in the regulation of carbohydrate partitioning in the beet.Abbreviations ABA cis–abscisic acid - bundle protoplast protoplasts isolated from the conducting tissue of beetroots - DES diethylstilbestrol - FC fusicoccin - 3-OMG 3-O-methylglucopyranose - PCMBS p–chloromercuribenzenesulfonic acid - storage protoplasts protoplasts isolated from storage parenchyma  相似文献   

2.
Putrescine and spermidine uptake in carrot (Daucus carota L., cv “Tip top”) protoplasts and isolated vacuoles was studied. Protoplasts and vacuoles accumulated polyamines very quickly, with maximum absorption within 1 to 2 minutes. The insertion of a washing layer containing 100 millimolar unlabeled putrescine or spermidine did not change this pattern, but strongly reduced the uptake of putrescine and spermidine in protoplasts and in vacuoles. The dependence of spermidine uptake on the external concentration was linear up to the highest concentrations tested in protoplasts, while that in vacuoles showed saturation kinetics below 1 millimolar (Km = 61.8 micromolar) and a linear component from 1 to 50 millimolar. Spermidine uptake in protoplasts increased linearly between pH 5.5 and 7.0, while there was a distinct optimum at pH 7.0 for vacuoles. Preincubation of protoplasts with 1 millimolar Ca2+ affected only surface binding but not transport into the cells. Nonpermeant polycations such as La3+ and polylysine inhibited spermidine uptake into protoplasts. Compartmentation studies showed that putrescine and spermidine were partly vacuolar in location and that exogenously applied spermidine could be recovered inside the cells. The characteristics of the protoplast and vacuolar uptake system induce us to put forward the hypothesis of a passive influx of polyamines through the plasmalemma and of the presence of a carrier-mediated transport system localized in the tonoplast.  相似文献   

3.
Stomatal movement is an energetic oxygen-requiring process. In the present study, the effect of oxygen concentration on mitochondrial respiratory activity and red-light-dependent photosynthetic oxygen evolution by Vicia faba and Brassica napus guard cell protoplasts was examined. Comparative measurements were made with mesophyll cell protoplasts isolated from the same species. At air saturated levels of dissolved oxygen in the protoplast suspension media, respiration rates by mesophyll protoplasts ranged from 6 to 10μmoles O2 mg?1 chl h?1, while guard cell protoplasts respired at rates of 200–300 μmoles O2 mg chl?1 h?1, depending on the species. Lowering the oxygen concentration below 50–60 mmol m?3 resulted in a decrease in guard cell respiration rates, while rates by mesophyll cell protoplasts were reduced only at much lower concentrations of dissolved oxygen. Rates of photosynthesis in mesophyll cell protoplasts isolated from both species showed only a minor reduction in activity at low oxygen concentrations. In contrast, photosynthesis by guard cell protoplasts isolated from V. faba and B. napus decreased concomitantly with respiration. Oligomycin, an inhibitor of oxidative phos-phorylation, reduced photosynthesis in mesophyll cell protoplasts by 27–46% and in guard cell protoplasts by 51–58%. The reduction in both guard cell photosynthesis and respiration following exposure to low oxygen concentrations suggest close metabolic coupling between the two activities, possibly mediated by the availability of substrate for respiration associated with photosynthetic electron transport activity and subsequent export of redox equivalents.  相似文献   

4.
The potassium uptake by potato tuber discs tissues freshly cut and after 24 h of ageing in the presence or not of abscisic acid was investigated. Uptake kinetics revealed a biphasic dependence on external K+ concentrations. At concentration less than 10 mM, uptake was mediated by a saturable component and a linear component became apparent at higher concentrations. At low K+ concentrations (lmM), the capacity of K+ uptake diminished by 2 times after ageing. Treatment of tissues with ABA increased the rate of K+ uptake. In both fresh and aged tissues the uptake was strongly enhanced by fusicoccin and decreased by several metabolic inhibitors and ATPase inhibitors, underlying the active nature of uptake and suggesting the involvement of a plasmalemma H+-ATPase in K+ transport system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Uptake of phosphate ions by 1 mm segments of isolated maize root cortex layers was studied. Cortex segments (from roots of 8 days old maize plants) absorb phosphate ions from 1 mM KH2PO4 in 0.2 mM CaSCO4 at the average rate of 34.3 ±3.2 μg Pi g?1 (fr. m.) h?1,i.e. 0.35± 0.02 μmol Pi g?1 (fr. m.) h?1. Phosphate uptake considerably increases after a certain period of “augmentation”,i.e. washing in aerated 0.2 mM CaSO4. This increase is completely blocked by the presence of 10 μg ml?1 cycloheximide. The relation of uptake rate to phosphate concentration in the medium was shown to have 3 phases in the concentration range of 0.02 - 40 mM. Transition points were found between 0.8–1 mM and 10–20 mM. Following Km and Vmax values were found: Km[mM] : 0.37 - 3.82 - 27.67 Vmax[μg Pi g?1 (fr. m.) h?1] : 3.33 - 39.40 - 66.67 We have found no sharp pH optimum for phosphate uptake. It proceeds at almost constant rate till pH 6.0 and then the uptake rate drops with increasing pH. At low phosphate concentrations (1 mM) the lowest uptake rate was found at 5 and 13 °C, while the uptake is higher at 5 °C than at 13 °C at phosphate concentrations higher than 1 mM. At these concentrations uptake rate at 35 °C is lower than at 25 °C. Phosphate uptake considerably decreased in anaerobic conditions. DNP and iodoacetate (0.1 mM) completely blocked phosphate uptake from 1 mM KH2PO4, while uptake from 5 and 10 mM KH2PO4 was left unaffected by these substances. The inhibitors of active - SH groups NEM and PCMB inhibited phosphate uptake: 10?3 M NEM by 81.6%, 104 M NEM by 42% and 10?4 M PCMB by 42%.  相似文献   

6.
Guy M  Reinhold L 《Plant physiology》1978,61(4):593-596
A method has been developed for observing membrane transport in isolated protoplasts. Transport of sugars and amino acids has been studied in protoplasts isolated from the mesophyll of Pisum sativum L. That uptake was not due to passive diffusion through damaged membranes was demonstrated by supplying simultaneously two sugar stereoisomers, the one 3H-labeled and the other 14C-labeled. The protoplast membranes were sufficiently functional to discriminate strongly between these stereoisomers.

To characterize transport the nonmetabolized glucose analogue 3-O-methyl glucose (MeG) and amino acid analogue α-aminoisobutyric acid (AIB) were employed. When uptake was compared per unit of protein as between leaf strips and protoplasts prepared from the same tissue, it was estimated that the protoplasts had retained approximately 40 to 50% of the uptake ability of the whole cells. Uptake of neither MeG nor AIB by protoplasts was linear with time, but the tendency to flatten was more marked for AIB. Addition of Mg-ATP to buffered medium significantly promoted AIB uptake, an effect not ascribable to either chelation or pH. Transport of both MeG and AIB was markedly pH-dependent, uptake falling with rise in pH.

The stimulatory effect of Mg-ATP and the pH dependence confirm that uptake was not due to a diffusional inward “leak” but involved membrane function.

This work demonstrates the feasibility of using isolated protoplasts for membrane transport studies. The potential advantages of using protoplasts for such studies are pointed out.

  相似文献   

7.
Insulin (0.1 μM) and 1 μM epinephrine each increased the uptake and phosphorylation of 2-deoxyglucose by the perfused rat heart by increasing the apparent Vmax without altering the Km. Isoproterenol (10 μM), 50 μM methoxamine and 10 mM CaCl2 also increased uptake. Lowering of the perfusate Ca2+ concentration from 1.27 to 0.1 mM Ca2+, addition of the Ca2+ channel blocker nifedipine (1 μM) or addition of 1.7 mM EGTA decreased the basal rate of uptake of 2-deoxyglucose and prevented the stimulation due to 1 μM epinephrine. Stimulation of 2-deoxyglucose uptake by 0.1 μM insulin was only partly inhibited by Ca2+ omission, nifedipine or 1 mM EGTA. Half-maximal stimulation of 2-deoxyglucose uptake by insulin occurred at 2 nM and 0.4 nM for medium containing 1.27 and 0.1 mM Ca2+, respectively. Maximal concentrations of insulin (0.1 μM) and epinephrine (1 μM) were additive for glucose uptake and lactate output but were not additive for uptake of 2-deoxyglucose. Half-maximal stimulation of 2-deoxyglucose uptake by epinephrine occurred at 0.2 μM but maximal concentrations of epinephrine (e.g., 1 μM) gave lower rates of 2-deoxyglucose uptake than that attained by maximal concentrations of insulin. The addition of insulin increased uptake of 2-deoxyglucose at all concentrations of epinephrine but epinephrine only increased uptake at sub-maximal concentrations of insulin. The role of Ca2+ in signal reversal was also studied. Removal of 1 μM epinephrine after a 10 min exposure period resulted in a rapid return of contractility to basal values but the rate of 2-deoxyglucose uptake increased further and remained elevated at 20 min unless the Ca2+ concentration was lowered to 0.1 mM or nifedipine (1 μM) was added. Similarly, removal of 0.1 μM insulin after a 10 min exposure period did not affect the rate of 2-deoxyglucose uptake, which did not return to basal values within 20 min unless the concentration of Ca2+ was decreased to 0.1 mM. Insulin-mediated increase in 2-deoxyglucose uptake at 0.1 mM Ca2+ reversed upon hormone removal. It is concluded that catecholamines mediate a Ca2+-dependent increase in 2-deoxyglucose transport from either α or β receptors. Insulin has both a Ca2+-dependent and a Ca2+-independent component. Reversal studies suggest an additional role for Ca2+ in maintaining the activated transport state when activated by either epinephrine or insulin.  相似文献   

8.
《Experimental mycology》1991,15(4):326-335
Several properties of transformation in the basidiomycete,Schizophyllum commune, were examined. The transformation efficiency of protoplasts made from germinating basidiospores is dependent upon the length of time that the spores are incubated under conditions that promote germination. Protoplasts prepared from ungerminated spores transform at least 10 times more efficiently than protoplasts prepared from germlings (25 μm in length) or from mycelium. Transformation frequencies of 1000 transformants/μg of control plasmid DNA and 107 protoplasts are sufficient for obtaining transformants with 2 × 107 protoplasts and 10 μg of bank DNA from a genomic plasmid library. The probability of cotransforming with two plasmids is dependent on the DNA concentrations of each; concentrations can be adjusted to yield nearly 100% cotrasformants. The presence of a nonselected plasmid in the reaction mix improves the transformation frequency of a selected marker carried on another plasmid; this is not true if linear fragments ofSchizophyllum genomic DNA are used as the nonselected DNA. Transformation of aSchizophyllum protoplast does not require its fusion to another protoplast.  相似文献   

9.
Vital protoplasts from Spathiphyllum wallisii ‘Alain’ and Anthurium scherzerianum ‘238’ were isolated from both somatic embryos and leaves. The highest yields were obtained when 1.5% cellulase, 0.5% macerase and 0.5% driselase were used for Spathiphyllum wallisii leaves and 0.5% cellulase, 0.3% macerase and 0.5% driselase for Anthurium scherzerianum embryos. About 1 × 106 protoplasts g−1 and 1 × 105 protoplasts g−1 could be isolated from leaves and embryos, respectively. For protoplast fusion Spathiphyllum wallisii ‘Alain’ and Anthurium scherzerianum ‘238’ were mixed in a 1:1 ratio in a fusion solution containing 1 mM CaCl2·2H2O, 1 mM MES and 0.5 M mannitol. Fusion was performed by protoplast alignment under 500 V cm−1 alternating current for 60 s and subsequent generation of two pulses of 4500 V cm−1 direct current during 50 μs. Development until colony stage was achieved using agarose beads for protoplast culture.  相似文献   

10.
Properties of the fully developed phosphate transport system in the fertilized egg of the sea urchin, Strongylocentrotus purpuratus, were investigated. The rates of phosphate transport at concentrations of external phosphate of 1 to 44 μM, both in the absence and in the presence of 100 μM arsenate, exhibit typical saturation kinetics. At sea water concentrations of 2 μM phosphate, the rate of uptake is about 2 × 10?9 μm/egg/minute at 15°C. Arsenate is a competitive inhibitor of phosphate transport, fully and immediately reversible in its effects, yielding Ki values ranging from 10.5 to 14.1 × 10?6 M in comparison to the corresponding apparent KM (Michaelis-Menten) constants for phosphate of 5.6 to 7.5 × 10?6 M (pH 8.0, 15°C). The rate of arsenate uptake in a phosphate deficient medium amounts to 2.8 to 2.9 × 10?10 μm arsenate/egg/minute at an arsenate concentration of 2.9 to 10.2 μM arsenate (HAsO4??), which is 9.5 and 5.6% of the rate of phosphate uptake at corresponding phosphate concentrations. Arsenate has essentially the same developmental effects at initial concentrations of 5–10 μM and 100 μM arsenate, namely no observable effects for exposure periods of 7.5 hours, although longer periods result in blockage of development at the early blastula stage. Outward flux of phosphate ions cannot be demonstrated by washing prelabelled eggs with sea water containing low or high concentrations of phosphate, even when phosphorylation has been blocked by exposing the eggs to a metabolic inhibitor. Phosphate uptake rates measured in the pH range from 5.0 to 10.0 reveal a sharp optimum at pH 8.8–8.9. Reference to the apparent pK' values of the phosphoric acid system indicate that the entering species is the HPO4?? ion. The effects on rates of phosphate uptake of exposure to sea water at pH values between 7 and 10 for 30 minute periods are fully reversible, but at lower pH values, reversal is delayed, and is only partial. Sodium molybdate (0.01 M), sodium pyrophosphate (1.5 × 10?4 M), and adenosine triphosphate (1–5 × 10?4 M) for exposure periods ranging from 40 to 180 minutes did not significantly affect phosphate uptake. Omission of Ca++ ion from artificial sea water is without effect on phosphate uptake but the absence of both Ca++ and Mg++ results in profound and irreversible depression of both phosphate uptake and development. The data of this and the following paper are consistent with the conclusion that the transport of phosphate involves a surface located carrier. The apparent secondary and tertiary ionization constants of phosphoric acid in sea water (ionic strength = 0.6885) were measured, resulting in a value for pK′2 = 6.14 and for pK′3 = 10.99, at 15°C and phosphate at infinite dilution.  相似文献   

11.
Chen FG  Wang C  Zhi DY  Xia GM 《Amino acids》2005,29(3):235-239
Summary. Amino acids analysis in single wheat embryonic protoplast was performed using capillary electrophoresis equipped with laser-induced fluorescence (CE-LIF), combination with tissue culture technique. Reagent fluorescein isothiocyanate (FITC) was introduced into living protoplasts by electroporation for intracellular derivatization. A special osmotic buffer (0.6 mol/L mannitol, 5 mmol/L CaCl2) was used to keep the osmotic balance of embryonic protoplasts during the protoplasts derivatization. After completion of the derivatization reaction in the protoplasts, a single protoplast was drawn into the capillary tip by electroosmotic flow. Then a 0.1 M NaOH lysing solution was injected by diffusion. The derivatized amino acids were separated by capillary electrophoresis and detected by laser-induced fluorescence detection after the protoplast was lysed Nine amino acids were quantitatively and qualitatively determined and compared in lysate and single protoplast of wheat embryonic cells respectively, with mean concentrations of amino acids ranging from 2.68×10−5 mol/L to 18.18×10−5 mol/L in single protoplast.  相似文献   

12.
Uptake of 3H-labelled (±)-abscisic acid (ABA) into isolated barley (Hordeum vulgare L.) epidermal cell protoplasts (ECP) was followed over a range of pH values and ABA concentrations. The present results show that ABA uptake is not always linearly correlated with the external concentration of undissociated ABA (ABAH). At pH 7.25, ABA uptake exhibited saturation kinetics with an apparent K m value of 75 mmol·m–3 to tal ABA. This saturable transport component was inhibited by pretreating the protoplasts with 1 mol·m–3 p-chloromercuribenzenesulfonic acid at pH 8.0, conditions that minimized the uptake of this acid sulfhydryl reagent. Moreover, the rate of (±)-[3]HABA uptake was reduced by addition of 0.1 mol·m–3 (±)-ABA to 41%, whereas the same concentration of (±)-ABA was approximately half as effective (46% of the inhibitory effect). Thus, it was concluded that only (±)-ABA competes for an ABA carrier that is located in the epidermal cell plasma membrane. The permeability of the epidermal cell plasma membrane was studied by performing a Collander analysis. At pH 6 the overall plasma-membrane permeability of epidermal cells was similar to that of guard cells but was about two times higher than that of mesophyll cells.Abbreviations ABA abscisic acid - ABA anion of ABA - ABAH undissociated ABA - 2,4-D 2,4-dichlorophenoxyacetic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - ECP deepidermal cell protoplast - Kr partition coefficient - Mr relative molecular mass - NEM N-ethylmaleimide - PCMBS p-chloromercuriben zenesulfonic acid - Ps permeability coefficient We are grateful to Barbara Dierich for expert technical assistance, to Prof. H. Gimmler (Lehrstuhl für Botanik I, Universität Würzburg, FRG) for helpful discussions and to the Deutsche Forschungsgemeinschaft (SFB 251, TP 3) for financial support.  相似文献   

13.
Studies on protoplast isolation were carried out with mature pollen grains of Tulbaghia violacea Harv. (Liliaceae). Pollen grains drifted from surface sterilized crushed anthers were incubated either in a nonenzymatic solution composed of Nitsch medium and sucrose, or in the same solution supplemented with 1% cellulase Onozuka R-10 and 1% Macerozyme R-10. The process of protoplast release was studied as a function of pH and sucrose concentration of nonenzymatic and enzymatic solutions. For nonenzymatic isolation, the tested range of pH and sucrose concentration was from 3.3 to 13.1 and from 0.015 to 1.12 M (final solution osmolality from 200 to 1,300 mOs kg-1 H2O), respectively. In the former case, the release of protoplasts occurred only at nonphysiological pH (12.2 to 13.1) and could be observed after several seconds to 120 min, depending on pH and sucrose concentration of medium. Under enzymatic incubation, viable protoplasts were released more rapidly (3 to 35 min) and in more physiological conditions, the optimum being pH 5.8 and final medium osmolality 652 mOs kg-1 H2O. Speed, manner of protoplast release, number and quality of protoplasts were dependent on interactions of pH and sucrose concentration.  相似文献   

14.
Following assimilation of 14CO2 by leaves of Stachys sieboldii, 14C-stachyose is translocated into the tubers. Stachyose is accumulated and stored in the vacuoles of the pith parenchyma. Protoplasts and vacuoles were isolated and the uptake of sugars was examined. Uptake of sucrose and sucrosyl oligosaccharides of the raffinose family by protoplasts was very low compared to glucose. Transport parameters for glucose indicated a carrier mediated transport in the lower concentration range which was superimposed by diffusion at higher concentrations (> 10 mM). The very low sugar uptake by protoplasts and the sparse enzyme activities of stachyose synthase in the storage parenchyma as well as acid invertase and α-galactosidase in the cell walls indicated symplastic unloading of stachyose in the tubers. Experiments on 14C-stachyose uptake by isolated vacuoles confirmed previous observations by Keller (1992). Isolated vacuoles exhibited ATP and PP hydrolysis and were capable of generating a proton gradient across the tonoplast by a V-type H+-ATPase and H+-PPase. This was demonstrated by fluorescence quenching of quinacrine. Fluorescence could be restored by the addition of gramicidin and partly recovered by the addition of stachyose; mannitol, sorbitol and glucose had no effect. Fluorescence recovery depended on the concentration of stachyose and revealed saturation kinetics (Km = 28 mM). Comparable results have been obtained with tonoplast vesicles by Greutert and Keller (1993). Experimental data presented here provide circumstantial evidence for symplastic unloading of stachyose in the tubers of Stachys sieboldii and demonstrate that the stachyose concentration in the cytoplasm of storage parenchyma cells is kept low by active stachyose transport into the vacuoles. The results suggest a stachyose/H+-antiport system.  相似文献   

15.
Cladophora glomerata was exposed to CH3203HgCl at concentrations of 10, 50, and 100 μg/liter of water. Formalin-killed alga was exposed to a concentration of 50 μg CH3203HgCl/liter. Uptake was monitored at 2 and 12 hr, and days 1, 2, 4, 8, and 16. At the end of this period, the Cladophora was placed in uncontaminated water, and release of methylmercury was monitored at 1, 2, 4, 8, and 16 days. Sorption occurred at all concentrations, and the live algal material accumulated more methylmercury than the dead alga, at equal exposure concentrations. Accumulation of methylmercury by the live Cladophora peaked on or near the second day for all exposure concentrations, suggesting that the uptake rate was independent of methylmercury concentration in the water. Uptake was greatest at the 50 μg/liter exposure. Desorption was nominal during the 16-day release period. The mechanisms of methylmercury uptake by Cladophora are discussed.  相似文献   

16.
Conditions were standardized for the isolation and culture of protoplasts from an embryogenic cell suspension culture of Picea glauca. A combination of 0.5% Cellulase R-10, 0.25% Macerozyme, 0.25% Driselase, 0.25% Rhozyme HP-150 with 0.5M mannitol and 5 mM CaCl2.2H2O produced an average of 4.5 × 106 protoplasts per gram fresh weight of cells. Of the several protoplast culture media tested, von Arnold and Eriksson and Kao and Michayluk (KM8P) media best supported mitotic divisions of protoplasts. A density of 105 protoplasts per ml and the addition of 5 mM glutamine to the culture medium was necessary to induce sustained divisions and microcallus formation. Microcalli grew into subculturable callus using a nurse culture technique.Abbreviations BAP benzylaminopurine - 2,4-D 2,4-dichlorophenoxy-acetic acid - FDA fluorescein diacetate NRCC No. 27937  相似文献   

17.
Cellular internalization of cell-penetrating peptide HIV-1 Tat basic domain (RKKRRQRRR) was studied in Triticale cv AC Alta mesophyll protoplasts. Fluorescently labeled monomer (Tat) and dimer (Tat2) of Tat basic domain efficiently translocated through the plasma membrane of mesophyll protoplast and showed distinct nuclear accumulation within 10 min of incubation. Substitution of first arginine residue with alanine in Tat basic domain (M-Tat) severely reduced cellular uptake of the peptide (3.8 times less than Tat). Tat2 showed greater cellular internalization than Tat (1.6 times higher). However, characteristics of cellular uptake remained same for Tat and Tat2. Cellular internalization of Tat and Tat2 was concentration dependent and non-saturable whereas no significant change in cellular uptake was observed even at higher concentrations of M-Tat. Low temperature (4 °C) remarkably increased cellular internalization of Tat as well as Tat2 but M-Tat showed no enhanced uptake. Viability test showed that peptide treatment had no cytotoxic effect on protoplasts further indicating involvement of a common mechanism of peptide uptake at all the temperatures. Endocytic inhibitors nocodazole (10 μM), chloroquine (100 μM) and sodium azide (5 mM) did not show any significant inhibitory effect on cellular internalization of either Tat or Tat2. These results along with stimulated cellular uptake at low temperature indicate that Tat peptide is internalized in the plant protoplasts in a non-endocytic and energy-independent manner. Competition experiments showed that non-labeled peptide did not inhibit or alter nuclear accumulation of fluorescent Tat or Tat2 suggesting active transport to the nucleus was not involved. Studies in mesophyll protoplasts show that internalization pattern of Tat peptide is apparently similar to that observed in mammalian cell lines.  相似文献   

18.
Di- and tripeptides and peptide mimetics such as β-lactam antibiotics are efficiently reabsorbed from the tubular lumen by a high-affinity peptide transporter. We have recently identified and characterized this H+-coupled high-affinity peptide transport system in the porcine proximal tubular cell line LLC-PK1. Here we describe for the first time the regulation of the renal high-affinity peptide cotransporter at the cellular level. Uptake of 5 μM 3H-D-Phe-L-Ala into LLC-PK1 cells was significantly increased by lowering [Ca2+]in and decreased by increasing [Ca2+]in. Moreover, it was shown that the [Ca2+]in effects on peptide transport activity were dependent on Ca2+ entry from the extracellular site (e.g., via a store-regulated capacitative Ca2+ influx). Protein kinase C (PKC) was found to transmit the effects of [Ca2+]in on peptide transport. Although we demonstrate by pHin measurements that the PKC inhibitor staurosporine did decrease the transmembrane H+ gradient and consequently should have reduced the driving force for peptide uptake, the only effect on transport kinetics of 3H-D-Phe-L-Ala observed was a significant decrease in Km from 22.7 ± 2.5 μM to 10.2 ± 1.9 μM with no change in maximal velocity. J. Cell. Physiol. 178:341–348, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

19.
Time courses of [3H]uridine uptake as a function of uridine concentration were determined at 25° in untreated and ATP-depleted wild-type and uridine kinase-deficient Novikoff cells and in mouse L and P388 cells, Chinese hamster ovary cells and human HeLa cells. Short term uptake was measured by a rapid sampling technique which allows sampling of cell suspensions in intervals as short as one and one-half seconds. The initial segments of the time courses were the same in untreated, wild-type cells in which uridine is rapidly phosphorylated and in cells in which uridine phosphorylation was prevented due to lack of ATP or uridine kinase. The initial rates of uptake, therefore, reflected the rate of uridine transport. Uridine uptake, however, was approximately linear for only five to ten seconds at uridine concentrations from 20–160 μM and somewhat longer at higher concentrations. In phosphorylating cells the rate of uridine uptake (at 80 μM) then decreased to about 20–30% of the initial rate and this rate was largely determined by the rate of phosphorylation rather than transport. At uridine concentrations below 1 μM, however, the rate of intracellular phosphorylation in Novikoff cells approached the transport rate. The apparent substrate saturation of phosphorylation suggests the presence of a low Km uridine phosphorylation system in these cells. The “zero-trans” (zt) Km for the facilitated transport of uridine as estimated from initial uptake rates fell between 50 and 240 μM for all cell lines examined. The zero-trans Vmax values were also similar for all the lines (4–15 pmoles/μ1 cell H2O.sec). The time courses of uridine uptake by CHO cells and the kinetic constants for transport were about the same whether the cells were propagated (and analyzed for uridine uptake) in suspension or monolayer culture. When Novikoff cells were preloaded with 10 μM uridine the apparent Km and Vmax values (infinite-trans) were two to three times higher than the corresponding zero-trans values. Uridine transport was inhibited in a simple competitive manner by several other ribo- and deoxyribonucleosides. All nucleosides seem to be transported by the same system, but with different efficiencies. Uridine transport was also inhibited by hypoxanthine, adenine, thymine, Persantin, papaverin, and o-nitrobenzylthioinosine, and by pretreatment of the cells with p-chloromercuri-benzoate, but not by high concentrations of cytosine, D-ribose or acronycin. The inhibition of uridine transport by Persantin involved changes in both V and K. Because of the rapidity of transport, some loss of intracellular uridine occurred when cells were rinsed in buffer solution to remove extracellular substrate, even at 0°. This loss was prevented by the presence of a transport inhibitor, Persantin, in the rinse fluid or by separating suspended cells from the medium by centrifugation through oil. Metabolic conversion of intracellular uridine were also found to continue during the rinse period. The extent of artifacts due to efflux and metabolism during rinsing increased with duration of the rinse.  相似文献   

20.
When mannose was included in the enzyme incubation medium during the preparation of protoplasts from leaves of spinach, maltose was an early product of protoplast photosynthesis and, after 12 minutes, accounted for up to 15% of the 14C incorporated from 14CO2. Maltose was not detected in protoplasts prepared in the normal enzyme medium. Rapid separation of cytoplasm and chloroplasts following exposure to 14CO2 showed that maltose was present in both fractions. Direct measurements of [14C]maltose uptake indicated transport across the chloroplast envelope at rates similar to the transport of glucose. The source of maltose and site of its initial formation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号