首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A simple medium enhancing the production of thiaminase I (EC 2.5.1.2) by Bacillus thiaminolyticus was developed. Ca2+ stimulated the enzyme production. The activity of extracellular thiaminase I ranged between 1.29 and 1.33 U/ml medium.  相似文献   

2.
Thiaminase I of Bacillus thiaminolyticus is reversibly inactivated when it is incubated with its primary substrate, thiamine, or with one of several structural analogues of thiamine in the absence of an acceptor base. The inactivation reaction is pH and temperature dependent and is stochiometric with respect to thiamine and thiaminase I concentrations. One molecule of thiamine is cleaved for each molecule of enzyme inactivated. Inactivation is prevented or reversed by sulfhydryl-reducing agents. Active or reactivated thiaminase I migrate as a single band in polyacrylamide electrophoresis gels. Inactive thiaminase I appears to migrate as two separate bands. Active, inactive, and reactivated thiaminase I are immunologically similar. A possible mechanism for the inactivation of thiaminase I by its substrate is discussed.  相似文献   

3.
The gene encoding sarcosine oxidase from Arthrobacter sp. TE1826 (soxA) was cloned in Escherichia coli by a convenient plate assay. It was located within a 1.7-kbp PstI-EcoRI fragment of the recombinant plasmid pSAOEP3. The purified sarcosine oxidase from the recombinant strain was found to be the same as that from the parental strain. The DNA sequence of soxA was determined, and an open reading frame composed of 389 amino acid residues was found. By Edman degradation of the enzyme, it was revealed that the amino-terminal amino acid (methionine) was eliminated in the parental strain and E. coli. The molecular weight (43,249) of the enzyme was consistent with the result from SDS-polyacrylamide gel electrophoresis. The FAD-binding site was found in the amino-terminal region of sarcosine oxidase by a homology search. The soxA gene was subcloned on a shuttle vector, pHY300PLK, and was expressed in both E. coli and Bacillus subtillis in the absence of an inducer, although the enzyme was induced with sarcosine in the parental strain.  相似文献   

4.
The gene that codes for cardiolipin (CL) synthase and an adjacent gene that codes for a MecA homolog in the alkaliphilic bacteria Bacillus firmus OF4 have been cloned and sequenced (GenBank accession number U88888). The cls gene contains 1509 nucleotides, corresponding to a polypeptide of 57.9 kDa. The predicted amino acid sequence has 129 identities and 100 similarities with the Escherichia coli CL synthase. Homologies were also noted with polypeptide sequences from putative cls genes from Bacillus subtilis and Psuedomonas putida. Conserved histidine, tyrosine, and serine residues may be part of the active site and participate in phosphatidyl group transfer. The B. firmus OF4 cls gene product was inserted into plasmid pET3 to form a recombinant plasmid pDG2, which overproduces CL synthase in E. coli. A membrane fraction containing the overproduced enzyme converts phosphatidylglycerol to CL and glycerol. The B. firmus enzyme is stimulated by potassium phosphate, inhibited by CL and phosphatidate, and has a slightly higher pH optimum than the E. coli enzyme.  相似文献   

5.
The gene specifying a sequence-specific modification methylase of Bacillus centrosporus has been cloned in Escherichia coli using the restriction endonuclease HindIII and the plasmid pBR322. The selection was based on detection of new methylation properties rendering recombinant plasmids carrying the methylase gene nonsusceptible to BcnI endonuclease cleavage. The presence of a 3.2-kb HindIII fragment in either orientation conferred BcnI resistance on the recombinant plasmids. These results suggest that the BcnI methylase gene is expressed in E. coli under the control of a promoter located on the cloned fragment. The relative level of BcnI methylase enzyme in E. coli was similar to that in B. centrosporus. The recombinant clones do not exhibit any BcnI restriction-endonuclease activity.  相似文献   

6.
Summary The cloned peroxidase gene from Bacillus stearothermophilus was highly expressed in Escherichia coli. Using the high copy number plasmid which is temperature-sensitive and its own strong promoter, this thermostable peroxidase was produced at 28% of the total cell proteins when the cells were grown at 42°C. The enzyme could be easily purified from E. coli by heat treatment and single-column Sephadex G-200 chromatography. From a 200 ml culture, 30 mg of purified enzyme was obtained. The peroxidase produced by E. coli showed a thermostability, haem type and content identical with those of the peroxidase produced by B. stearothermophilus.Offprint requests to: H. Okada  相似文献   

7.
The gene for new Rhodococcus erythropolis TA37 acylamidase, which possesses unique substrate specificity, has been cloned and expressed in E. coli. Substrates for this enzyme are not only simple amides, such as acetamide and propionamide, but also N-substituted amides, such as 4′-nitroacetanilide. The 1431-bp gene was expressed in E. coli BL21 (DE3) cells on pET16b plasmid under the control of a promoter of the ? 10 gene from the T7 phage. The molecular mass of recombinant acylamidase in E. coli was 55 kDa, which corresponded to that of native acylamidase from Rhodococcus erythropolis TA37. Recombinant acylamidase was able to hydrolize N-substituted amides. A search of a nucleotide database and multiple alignment revealed that acylamidase belonged to the Amidase protein family PF01425, but its nucleotide and amino acid sequences differed significantly from those of the described amidases.  相似文献   

8.
The gene encoding an endo-β-1,4-xylanase from an Indonesian indigenous Bacillus licheniformis strain I5 was amplified using PCR, cloned, and expressed in Escherichia coli. The nucleotide sequence of a 642 bp DNA fragment was determined, revealing one open reading frame that encoded a xylanase. Based on the nucleotide sequence, calculated molecular mass of the enzyme was 23 kDa. This xylanase has a predicted typical putative signal peptide; however, in E. coli, the active protein was located mainly in intracellular form. Neither culture supernatant of recombinant E. coli nor periplasmic fraction has significantly detectable xylanase activity. The deduced amino acid of the gene has 91% identity with that of Bacillus subtilis endoxylanase. Optimal activity of the recombinant enzyme was at pH 7 and 50°C  相似文献   

9.
The genes coding for the GGPyPuCC-specific (BanI) and ATCGAT-specific (BanIII) restriction-modification systems of Bacillus aneurinolyticus IAM1077 were cloned and expressed in Escherichia coli using pBR322 as a vector. The plasmids carrying the BanI and BanIII restriction-modification genes were designated pBanIRM8 and pBanIIIRM12, respectively. The restriction maps of these recombinant plasmids were constructed. These two plasmids were stably maintained in E. coli HB101. However, when E. coli JM109 was used as a host, pBanIIIRM12 was efficiently propagated but pBanIRM8 was not. The HB101 cells carrying only the restriction gene of BanIII were viable, but the BanI restriction gene carrier could not form colonies on agar plates. The growth of bacteriophage λ was strongly restricted only in the F. coli HB101 cells harboring pBanIRM8. These facts indicate that the BanI restriction enzyme is expressed and functions more efficiently than BanI modification enzyme in E. coli.  相似文献   

10.
Efficient production of thermophilic α-amylase from Bacillus stearothermophilus was investigated using recombinant Escherichia coli HB101/pH1301 immobilized with κ-carrageenan by the addition of glycine. The effects of glycine, the concentrations of κ-carrageenan and KCI on the production of the enzyme as well as the stability of plasmid pHI301 were studied. In the absence of glycine, the enzyme was localized in the periplasmic space of the recombinant E. coli cells and a small amount of the enzyme was liberated in the culture broth. Although the addition of glycine was very effective for release of α-amylase from the periplasm of E. coli entrapped in gel beads, a majority of the enzyme accumulated in the gel matrix. (In this paper, production of the enzyme from recombinant cells to an ambient is expressed by the term “release”, while diffusion-out from gel beads is referred to by the term “liberate”.) Concentrations of KCI and immobilizing support significantly affected on the liberation of α-amylase to the culture broth. Mutants which produced smaller amounts of the enzyme emerged during a successive culture of recombinant E. coli, even under selective pressure, and they predominated in the later period of the passages. The population of plasmid-lost segregants increased with cultivation time. The stability of pHI301 for the free cells was increased by the addition of 2% KCI, which is a hardening agent for carrageenan. Although the viability of cells and α-amylase activity in the beads decreased with cultivation time during the successive culture of the immobilized recombinant E. coli, the plasmid stability was increased successfully by immobilization. Efficient long-term production of α-amylase was attained by an iterative re-activation-liberation procedure using the immobilized recombinant cells. Although the viable cell number, plasmid stability and enzyme activity liberated in the glycine solution decreased at an early period in the cultivation cycles, the process attained steady state regardless of the addition of an antibiotic.  相似文献   

11.
The gene kerA (1,047 bp) encoding the main keratinase from Bacillus licheniformis was cloned into two conventional vectors, pET30α and pET32α, and expressed in Escherichia coli. From SDS-PAGE analysis, the recombinant keratinases were 45 and 55 kDa. They had different optimal pH values (7.5 and 8.5) but the same optimum temperature of 50 °C. The recombinant keratinase produced in E. coli pET30α-kerA was more stable than that produced in E. coli pET32α-kerA, and retained approx. 70 % of its total enzyme activity after 30 min at 70 °C.  相似文献   

12.
《Gene》1998,206(2):181-184
The bovine pancreatic (bp-) DNase I gene has been cloned from bp-cDNA and expressed in E. coli. A polynucleotide sequence of 1295 base pairs was deduced from clones of the cDNA. The sequence showed an open reading frame which can be translated as a 282-amino acid polypeptide, including a hydrophobic signal peptide and the polypeptide of bp-DNase I. An expression plasmid was constructed by inserting into the vector pET-15b, a cDNA fragment coding for bp-DNase I ligated with a hexanucleotide coding for Met–Ala at the 5′-end. The plasmid was transformed into E. coli strain DH5α and the active recombinant bovine (rb-) DNase I was produced after induction of protein synthesis. From the induced culture medium, rb-DNase I was purified by chromatography on a Mono Q column. The purified rb-DNase I showed a molecular mass of 29 kDa and had the same specific activity as bp-DNase I. The NH2-terminus of rb-DNase I was Ala, not Met, and at position 19, corresponding to the carbohydrate attachment site of bp-DNase I, Asn was not glycosylated.  相似文献   

13.
All the 28 strains of Clostridium sporogenes type I tested produced thiaminase. Only 2 of the 16 strains of Cl. sporogenes type II tested were positive for the enzyme; these gave a weak positive reaction. The single strain of Cl. sporogenes type III behaved in a manner similar to the strains of type I, giving a strong positive thiaminase reaction. Thiaminase production amongst the strains of Cl. sporogenes does in the main support the cultural, biochemical and immunological properties described earlier.  相似文献   

14.
A polyester polyurethane (PU)-degrading enzyme, PU esterase, derived from Pseudomonas fluorescens, a bacterium that utilizes polyester PU as the sole carbon source,was purified to homogeneity as indicated by sodium dodecyl sulfate-polyacrylamide gelelectrophoresis. This enzyme was a soluble, extracellular protein with a molecular mass of 48 kDa and was inhibited by phenylmethylsulfonylfluoride (PMSF). A genomic library of Ps.fluorescens was constructed using the Escherichia coli bacteriophage l vector lZAPII. A recombinant phage exhibiting activity against Impranil DLN was isolated. The geneencoding the polyurethanase (PUase) protein was subcloned into a plasmid expression vectorpT7-6 and expressed in E. coli. Upon expression, the PUase was secreted by the host,displayed esterase activity which was inhibited by PMSF, and in vivo 35S-methionine labeling of the gene product encoded by the open reading frame of the clone insertrevealed a single polypeptide with a molecular mass of 48 kDa.  相似文献   

15.
Plasmodium falciparum, the causative agent of human malaria, is totally dependent on de novo pyrimidine biosynthetic pathway. A gene encoding P. falciparum dihydroorotase (pfDHOase) was cloned and expressed in Escherichia coli as monofunctional enzyme. PfDHOase revealed a molecular mass of 42 kDa. In gel filtration chromatography, the major enzyme activity eluted at 40 kDa, indicating that it functions in a monomeric form. This was similarly observed using the native enzyme purified from P. falciparum. Interestingly, kinetic parameters of the enzyme and inhibitory effect by orotate and its 5-substituted derivatives parallel that found in mammalian type I DHOase. Thus, the malarial enzyme shares characteristics of both type I and type II DHOases. This study provides the monofunctional property of the parasite DHOase lending further insights into its differences from the human enzyme which forms part of a multifunctional protein.  相似文献   

16.
Streptomyces cholesterol oxidase was produced in Escherichia coli by a modification of the cholesterol oxidase gene (choA′) in which the native codons for the precursor NH2-terminal region and the ribosome binding site were substituted for those favored by E. coli. The choA′ gene was expressed under the control of the lac or tac promoter in a multiple copy plasmid vector, although no expression of the native choA gene from Streptomyces was observed in E. coli. E. coli cells carrying the plasmid, pCo117, produced 2-fold more cholesterol oxidase intracellularly during 18-h culture than did the producing strain of Streptomyces sp. SA-COO cultured for 4 d. The NH2-terminal amino acid sequence of cholesterol oxidase produced by E. coli appeared to be processed between Ala20 and Ala21 of the precursor enzyme, while the Streptomyces enzyme was processed between Ala42 and Asp43. Based on the facts that the cholesterol oxidase was stable, could be assayed rapidly, and no endogenous cholesterol oxidase activity was found in any enteric bacteria, we developed two widely applicable, new promoter-probe vectors posessing the choA′ gene, multiple cloning sites, and either a low or high copy number plasmid. Since these plasmids can replicate in enteric bacteria, the new plasmid vectors have a great potential for use in enteric bacteria without the isolation of Cho mutants.  相似文献   

17.
Summary A DNA fragment containing the gene for a cell wall hydrolase of Bacillus licheniformis was cloned into Escherichia coli. Sequencing of the fragment showed the presence of an open reading frame which encodes a polypeptide of 253 amino acids with a molecular mass of 27 513. The gene was designated as cwlM, for cell wall lysis. The deduced amino acid sequence indicated that there is a repeated sequence consisting of 33 amino acid residues in the C-terminal region. Deletion of the C-terminal region did not lead to any loss of cell wall lytic activity. The gene product purified from E. coli cells harboring a cwlM-bearing plasmid exhibited a M r value of 29 kDa on SDS-polyacrylamide gels, and characterization of the specific substrate bond cleaved by CWLM indicated that the enzyme is an N-acetylmuramoyl-l-alanine amidase (EC 3.5.1.28). The enzyme hydrolyzed the cell wall of Micrococcus luteus more efficiently than those of B. licheniformis and B. subtilis, but the truncated CWLM (lacking the C-terminal region) had lost this preference. CWLM prepared from B. subtilis cells harboring a plasmid containing cwlM had a similar M r value to that from E. coli. Amino acid sequence homologies between CWLM and other amidases, and their protein structures are discussed.  相似文献   

18.
The precursor of aqualysin I, an extracellular subtilisin-type protease produced by Thermus aquaticus, consists of four domains: an N-terminal signal peptide, an N-terminal pro-sequence, a protease domain, and a C-terminal extended sequence. In an Escherichia coli expression system for the aqualysin I gene, a 38 kDa precursor protein consisting of the protease domain and the C-terminal extended sequence is accumulated in the membrane fraction and processed to a 28 kDa mature enzyme upon heat treatment at 65°C. The 38 kDa precursor protein is separated as a soluble form from denatured E. coli proteins after heat treatment. Accordingly, purification of the 38 kDa proaqualysin I was performed using chromatography. The purified precursor protein gave a single band on SDS-polyacrylamide gels. The precursor protein exhibited proteolytic activity comparable to that of the mature enzyme. The purified precursor protein was processed to the mature enzyme upon heat treatment. The processing was inhibited by diisopropyl fluorophosphate. The processing rate increased upon either the addition of mature aqualysin I or upon an increase in the concentration of the precursor, suggesting that the cleavage of the C-terminal extended sequence occurs through an intermolecular self-processing mechanism.  相似文献   

19.
20.
In this study, a new approach for extracellular production of recombinant α-amylase in Escherichia coli was investigated. A gene encoding a highly efficient raw-starch-digesting α-amylase from Bacillus licheniformis ATCC 9945a was cloned and expressed in E. coli. The gene encoding mature α-amylase was cloned into the pDAss expression vector, and secretion of the gene product was regulated by fusion to the signal peptide of DsbA, a well-characterized E. coli periplasmic protein. E. coli BL21 (DE3) carrying pDAss vector containing amylase gene had approximately 2.5-fold higher volumetric enzyme productivity than the natural system. The recombinant enzyme showed higher efficiency for digesting diverse raw starches when compared with the native enzyme and was similar to commercial α-amylase in its ability to hydrolyze raw starches. The properties of the recombinant enzyme demonstrate the potential of the DsbA signal peptide approach for the secretory production of the fully active, industrially important recombinant enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号