首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》1999,34(3):289-294
The effects of pretreatment by overliming and addition of nutrients (yeast extract, tryptone and ammonium chloride) on fermentation of mixed sugars derived by acid hydrolysis of the hemicellulose fraction of wheat straw with Bacilllus stearothermophilus strain T-13, an l-lactate dehydrogenase deficient mutant was investigated in continuous culture with partial cell recycle. Pretreatment and addition of nutrients to the hydrolysate improved the fermentation considerably. Sugar utilization, ethanol yields and productivities obtained in the treated hydrolysate with added nutrients were comparable to those obtained in a synthetic medium. Sugar utilization in the synthetic medium and treated and crude hydrolysates with added nutrients were 86%, 89% and 56%, respectively, compared with 45% in the treated hydrolysate without extra nutrients. Ethanol yields obtained were 0.32 g g−1 sugars and 0.38 g g−1 sugars in the treated hydrolysate with and without extra nutrients, respectively, compared with 0.24 g g−1 sugars in the crude hydrolysate with added nutrients. Continuous culture with partial cell recycle significantly increased the rate of ethanol production (0.60–1.02 g litre−1 h−1) in the various media and the stability of the mutant strain compared with conventional continuous culture.  相似文献   

2.
Most of the crude glycerol produced globally is generated by biodiesel production, which makes this byproduct an environmental responsibility of the biofuel industries. Among the forms of this compound in use, microalgae cultivation is a promising alternative that may generate a reduction in crude glycerol treatment costs via using it as an organic, carbon-rich substrate in culture media. In this work, the influence of different concentrations of glycerol in the culture medium, the composition of fatty acids and proteins in Spirulina sp. LEB 18 biomass and their effect on its growth were investigated. The fatty acid profile of the biomass was altered, showing a 20% increase in the unsaturated concentration and a 60% reduction in the saturated concentration in the culture supplemented with 0.05 mol L−1 of glycerol compared to those in the control. The addition of the substrate stimulated an increase in its cellular concentration (3.00 g L−1, 0.05 mol L−1), productivity (0.72 g L−1 d−1, 0.05 mol L−1) and its protein production (69.78% w w−1, 0.05 mol L−1).  相似文献   

3.
Aims: This paper developed a novel process for lactic acid and chitin co-production of the pelletized Rhzious oryzae NRRL 395 fermentation using underutilized cull potatoes and glucose as nutrient source. Methods and Results: Whole potato hydrolysate medium was first used to produce the highest pelletized biomass yield accompanying the highest chitin content in biomass. An enhanced lactic acid production then followed up using batch, repeated batch and fed batch culture with glucose as carbon source and mixture of ammonia and sodium hydroxide as neutralizer. The lactic acid productivity peaked at 2·8 and 3 g l−1 h−1 in repeated batch culture and batch culture, respectively. The fed batch culture had the highest lactate concentration of 140 g l−1. Conclusions: Separation of the biomass cultivation and the lactic acid production is able to not only improve lactic acid production, but also enhance the chitin content. Cull potato hydrolysate used as a nutrient source for biomass cultivation can significantly increase both biomass yield and chitin content. Significance and Impact of the Study: The three-step process using pelletized R. oryzae fermentation innovatively integrates utilization of agricultural residues into the process of co-producing lactic acid and chitin, so as to improve the efficiency, revenues and cost of fungal lactic acid production.  相似文献   

4.
The possible role of steroid binding proteins in the hormonal secretion process of a steroidogenic tissue was examined using bovine adrenocortical cell suspensions, either under basal conditions or in the presence of half-maximally active concentration (1 × 10−9 M) of synthetic adrenocorticotropic hormone (ACTH). Three types of plasma cortisol binding proteins were used, namely bovine serum albumine (BSA), purified transcortin (CBG) and purified anticortisol immunoglobulins (IgG). When added to the incubation medium, CBG (at 1 × 10−10 to 2 × 1010−10 M cortisol binding sites) and anticortisol IgG (at 4.8 × 10−10 to 3 × 10−9M cortisol binding sites) did not influence either the basal nor the ACTH-stimulated net cortisol production of the cell preparations. Whereas crystallized and delipidated BSA showed also no effect, crude commercial BSA preparation (Cohn fraction V) exhibited an ACTH-like cofactor effect which resulted in a marked increase in the net cortisol production by stimulated cells. These observations might be explained by the presence in crude BSA of lipoprotein-cholesterol complexes, possibly acting as an extracellular source of cholesterol available for corticosteroidogenesis.It may be concluded that specific high affinity cortisol binding systems present outside adrenoeortical steroidogenic cells do not influence their secretory activity under short term in vitro condition. In addition, it can be stressed that use of ill defined protein preparations (e.g. crude BSA) may lead to artifactual observations in the study of the differentiated functions of isolated steroidogenic cells.  相似文献   

5.
The effects of culture conditions on l-arginine production by continuous culture were studied using a stable l-arginine hyperproducing strain of Corynebacterium aceto-acidophilum, SC-190. Strain SC-190 demonstrated a volumetric productivity of 35 g l−1·h−1 at a dilution rate of 0.083h−1 and feeding sugar concentration of 8%, and a product yield of 29.2% at a dilution rate 0.021h−1 and feeding sugar concentration of 15%. The corresponding values for fed-batch culture are 0.85 g·l−1·h−1 and 26%. However, the product yield decreased with an increase in the volumetric productivity. To achieve stable l-arginine production, aeration and agitation conditions sufficient to maintain an optimal level of redox potential (>−100 mV) were necessary. The addition of phosphate to the feeding medium led to a decrease in l-arginine production. It was confirmed in the steady state that growth and l-arginine formation were inhibited by a high concentration of l-arginine.  相似文献   

6.
We analysed the glycolipid composition of glioma cells (N-370 FG cells), which are derived from a culture of transformed human fetal glial cells. The neutral and acidic glycolipid fractions were isolated by column chromatography on DEAE-Sephadex and analysed by high-performance thin-layer chromatography (HPTLC). The neutral glycolipid fraction contained 1.6 µg of lipid-bound glucose/galactose per mg protein and consisted of GlcCer (11.4% of total neutral glycolipids), GalCer (21.5%), LacCer (21.4%), Gb4 (21.1%), and three unknown neutral glycolipids (23%). These unknown glycolipids were characterized as Lewisx (fucosylneolactonorpentaosyl ceramide; Lex), difucosylneolactonorhexaosyl ceramide (dimeric Lex), and neolactonorhexaosyl ceramide (nLc6) by an HPTLC-overlay method for glycolipids using specific mouse anti-glycolipid antibodies against glycolipid and/or liquid-secondary ion (LSI) mass spectrometry. The ganglioside fraction contained 0.6 µg of lipid-bound sialic acid per mg protein with GD1a as the predominant ganglioside species (83% of the total gangliosides) and GM3, GM2, and GM1 as minor components. Trace amounts of sialyl-Lex and the complex type of sialyl-Lex derivatives were also present. Immunocytochemical studies revealed that GD1a and GalCer were primarily localized on the surface of cell bodies. Interestingly, Lex glycolipids and sialyl-Lex were localized not only on the cell bodies but also on short cell processes. Especially, sialyl-Lex glycolipid was located on the tip of fine cellular processes. The unique localization of the Lex glycolipids suggests that they may be involved in cellular differentiation and initiation of cellular growth in this cell line.  相似文献   

7.
In a study of the control of metabolite formation, prodigiosin production by Serratia marcescens was used as a model. Specific production rates of prodigiosin formation were determined using batch culture technique. Sucrose as carbon source and NH4NO3 as nitrogen source resulted in a specific production rate of 0.476 mg prodigiosin (g cell dry weight)−1 h−1. Prodigiosin formation and productivity was inversely correlated to growth rate when the bacterium was grown under carbon limitation on a defined medium in a chemostat culture. The maximum specific growth rate (μmax) was 0.54 h−1 and prodigiosin was formed in amounts over 1 mg l−1 up to a growth rate (μ) of 0.3 h−1 at steady state conditions. At a dilution rate of 0.1 h−1 growth at steady state with carbon and phosphate limitation supported prodigiosin formation giving a similar specific yield [1.17 mg prodigiosin (g cell dry weight)−1 and 0.94 mg g−1, respectively], however, cells grown with nitrogen limitation [(NH4)2SO4] did not form prodigiosin. Productivity in batch culture was 1.33 mg l−1 h−1 as compared to 0.57 mg l−1 h−1 in the chemostat.  相似文献   

8.
Liu Y  Koh CM  Ji L 《Bioresource technology》2011,102(4):3927-3933
Ustilago maydis is known to produce glycolipid-type biosurfactants. Here, we show that U. maydis is able to efficiently convert biodiesel-derived crude glycerol to glycolipids. We have optimized the medium composition and environmental factors for bioconversion of crude glycerol to glycolipids. The synthetic medium (MinCG) contains 50 g L−1 crude glycerol and 20.3 mg L−1 ammonium citrate as the carbon and nitrogen sources, respectively. The supplementation of trace amount of amino acids, Group-B vitamins and precursors of glycolipids, mannose and erythritol, also improved the final yield. At pH 4.0 and 30 °C, 32.1 g L−1 total glycolipids was produced in a 8.2-day fed-batch bioprocess. Methanol at 2% or above severely inhibited cell growth and production of glycolipids. Our results suggest that U. maydis is an excellent host for the bioconversion of crude glycerol to value-added products.  相似文献   

9.
Progesterone production of granulosa cells cultured in vitro is stimulated and cell differentiation increased, by follicle-stimulating hormone (FSH). This study examined whether the increased progesterone production observed when bovine granulosa cells are cultured occurs because (1) progesterone production by undifferentiated and/or differentiated cells is increased or (2) the differentiation of granulosa cells is stimulated. Viable bovine granulosa cells (2−3×105) from follicles 5–8 mm in diameter were cultured in the presence of 0, 1, 10 and 100 μu FSH (1 μu ≡ 1 μg NIH-FSH-S1) for 6 days at 37°C in a humidified atmosphere of 5% CO2 in air in 1 ml of a 1:1 mixture of Dulbecco's modified Eagle medium: Ham's F10 medium supplemented with 365 μg ml−1 l-glutamine, 100 U ml−1 penicillin and 100 μg ml−1 streptomycin. Progesterone production, total DNA and protein, and cell diameter were determined sequentially over the culture period. The increases in progesterone production (ng μg−1 DNA per 24 h), cytoplasmic:nuclear ratio (μg protein μg−1 DNA) and cell diameter (μm) over 6 days culture indicated that granulosa cells underwent differentiation in the presence of FSH. Progesterone production of undifferentiated granulosa cells (diameter 14 μm or less) was stimulated by FSH (P < 0.01) in a dose dependent manner (1.0±0.2, 2.9±0.3, 3.7±0.3 and 4.9±0.4 ng μg−1 DNA per 24 h for 0, 1, 10 and 100 μu ml−1 FSH respectively) but remained constant within dose (P > 0.05) during a 6 day culture period. FSH stimulated (P < 0.05) the rate of granulosa cell differentiation (10±3%, 53±13%, 74±21% and 82±10% differentiating cells per well for 0 μu, 1 μu, 10 μu and 100 μu ml−1 FSH respectively) but did not stimulate (P > 0.05) progesterone production by differentiating granulosa cells (8.7±0.5 ng μg−1 DNA per 24 h). In conclusion, the increase in progesterone production of FSH-stimulated granulosa cells cultured in vitro appears to be mainly due to an increase in the number of differentiating cells with a constant rather than an increasing progesterone production per cell.  相似文献   

10.
Escherichia coli harboring the gene encoding human interleukin-2 (IL-2) produces a mixture of two recombinant IL-2 species: one with the amino-terminal alanine (rIL-2) and the other having an additional methionine residue at the amino terminus (Met-rIL-2). Ways to increase the amount of rIL-2 and its proportion to the total IL-2 were tried. Among E. coli K-12 derivatives, N4830 was an effective producer of recombinant IL-2. The production of the mixture was greatly increased by optimizing the medium ingredients or culture conditions. However, the percentage of rIL-2 in the product decreased almost linearly with an increase of the total production of recombinant IL-2 and was less than 10% under optimal culture conditions. By adding 4.1 × 10−5 M maganese and 7.4 × 10−5 M ferric ions to the medium, we succeeded in raising the percentage of rIL-2 to 50% without any decrease of the total production.  相似文献   

11.
The incorporation of sodium acetate-[1-14C] into the heterocyst glycolipids of Anabaena cylindrica cultures from 60–234 hr old is reported. Incorporation of radioactivity was maximal in 88 hr old cultures. In 60 hr and 88 hr cultures about 90 % of the radioactivity of the heterocyst glycolipids was found in the non-saponifiable glycolipid fraction, whereas in older cultures this fraction contained only 75 % of the radioactivity. Acid hydrolysis of non-saponifiable heterocyst glycolipid fractions showed that in 60 hr cultures, 81 % of the radioactivity occurs in the lipid moiety, whereas in older cultures a greater proportion (40–53 %) of the radioactivity was found in the sugar residue. The lipid fraction obtained by acid hydrolysis contained a mixture of labelled long chain mono-, di- and trihydric alcohols. In young (60 hr) cultures the primary alcohol fraction was most heavily labelled (57.3 % of the radioactivity in the non-saponifiable glycosides) with much smaller amounts in the diol and triol (8.4 and 15.1 % respectively), whereas in older cultures (234 hr) the primary alcohol (23.6 %) diol (22.5 %) and triol (18.9 %) fractions contained ca equal amounts of radioactivity.  相似文献   

12.
Mouse adrenal cortex Y-1 cell line was cultured on microcarriers in cell reactors containing 250 ml or 1500 ml culture medium; the same cell density as in the smaller vessel (0.9 × 106 cells ml−1) was obtained in the larger reactor by controlling pH and supplying the medium with O2. Consumption of glucose, oxygen, production of lactate and variation of 19 amino acids were determined with and without oxygen supply. Synthetic ACTH 1–24 induced steroidogenesis in a serum poor medium supplemented with cholesterol and albumin. Steroid production was similar to that of cell growth in usual culture dishes (2 μg 106 cells−1 24 h−1).  相似文献   

13.
The present study was aimed to develop a membrane sparger (MS) integrated into a tubular photobioreactor to promote the increase of the carbon dioxide (CO2) fixation by Spirulina sp. LEB 18 cultures. The use of MS for the CO2 supply in Spirulina cultures resulted not only in the increase of DIC concentrations but also in the highest accumulated DIC concentration in the liquid medium (127.4 mg L−1 d−1). The highest values of biomass concentration (1.98 g L−1), biomass productivity (131.8 mg L−1 d−1), carbon in biomass (47.9% w w−1), CO2 fixation rate (231.6 mg L−1 d−1), and CO2 use efficiency (80.5% w w−1) by Spirulina were verified with MS, compared to the culture with conventional sparger for CO2 supply. Spirulina biomass in both culture conditions had high protein contents varying from 64.9 to 69% (w w−1). MS can be considered an innovative system for the supply of carbon for the microalgae cultivation and biomass production. Moreover, the use of membrane system might contribute to increased process efficiency with a reduced cost of biomass production.  相似文献   

14.
The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MEL) was undertaken based on the analysis of ribosomal DNA sequences on the yeast strains of the genus Pseudozyma. Pseudozyma rugulosa NBRC 10877 was found to produce a large amount of glycolipids from soybean oil. Fluorescence microscopic observation also demonstrated that the strain significantly accumulates polar lipids in the cells. The structure of the glycolipids produced by the strain was analyzed by 1H and 13C nuclear magnetic resonance and gas chromatography–mass spectrometry methods, and was determined to be the same as MEL produced by Pseudozyma antarctica, a well-known MEL producer. The major fatty acids of the present MEL consisted of C8 and C10 acids. Based on high performance liquid chromatography, the composition of the produced MEL was as follows: MEL-A (68%), MEL-B (12%), and MEL-C (20%). To enhance the production of MEL by the novel strain, factors affecting the production, such as carbon and nitrogen sources, were further examined. Soybean oil and sodium nitrate were the best carbon and nitrogen sources, respectively. The supplementation of a MEL precursor, such as erythritol, drastically enhanced the production yield from soybean oil at a rate of 70 to 90%. Under the optimal conditions in a shake culture, a maximum yield, productivity, and yield coefficient (on a weight basis to soybean oil supplied) of 142 g l−1, 5.0 g l−1 day−1, and 0.5 g g−1 were achieved by intermittent feeding of soybean oil and erythritol using the yeast.  相似文献   

15.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. Glucosyltransferase produced by Erwinia sp. D12 catalyses an intramolecular transglucosylation of sucrose giving isomaltulose. An experimental Design and Response Surface Methodology were applied for the optimization of the nutrient concentration in the culture medium for enzyme production in shaken flasks at 200 rpm and 30 °C. A higher production of glucosyltransferase (7.47 Uml−1) was observed in the culture medium containing sugar cane molasses (160 gl−1), bacteriological peptone (20 gl−1) and yeast extract Prodex Lac SD® (15 gl−1) after 8 h, at 30 °C. The highest production of glucosyltransferase in the 6.6-l bioreactor (14.6 Uml−1) was obtained in the optimized culture medium after 10 h at 26 °C. When Erwinia sp. D12 cells were immobilized in sodium alginate, it was verified that sodium alginate solution A could be substituted by a cheaper one, sodium alginate solution B. Using a 40% cell suspension and 2% sodium alginate solution B for cell immobilization in a packed-bed reactor, 64.1% conversion of sucrose to isomaltulose was obtained. The packed-bed reactor with immobilized cells plus glutaraldehyde and polyethylenimine solutions remained in a pseudo-steady-state for 180 h.  相似文献   

16.
Biosurfactant production from synthetic medium and industrial waste, viz. distillery and whey wastes was investigated by using an oily sludge isolate Pseudomonas aeruginosa strain BS2. In synthetic medium separately supplemented with glucose and hexadecane as water-soluble and -insoluble carbon sources, respectively, strain BS2 reduced the surface tension of the fermentation broth from 57 to 27 mN/m. The culture produced biosurfactant during the stationary growth phase and its yield was 0.97 g/l. The culture utilized distillery and whey wastes for its growth, as maximum cell counts reached to 54 × 108 and 64 × 109 c.f.u./ml from an initial inoculum size of 1 × 05 c.f.u./ml, respectively, within 48 h of incubation and in these wastes the yields of biosurfactant obtained were 0.91 and 0.92 g/l, respectively. In synthetic medium, distillery and whey wastes, strain BS2 produced a crystalline biosurfactant which belonged to the category of secondary metabolites and its maximum production occurred after the onset of nitrogen-limiting conditions. After recovering biosurfactant from the fermented waste, the chemical oxygen demand (COD) of distillery and whey wastes was significantly reduced by 81 and 87%, respectively. Total acids, nitrogen and phosphate levels in distillery waste were reduced by 90, 92 and 92%, respectively, while in case of whey waste the concentration of these nutrients was reduced by 88, 95 and 93%, respectively. The isolated biosurfactant possessed potent surface active properties, as it effectively reduced the surface tension of water from 72 to 27 mN/m and formed 100% stable emulsions of a variety of water-insoluble compounds such as hydrocarbons, viz. hexadecane, crude oil, kerosene and oily sludge and pesticides, viz. dichlorodiphenyltrichloroethane (DDT) and benzene hexachloride (BHC). The effectiveness of biosurfactant was also evident from its low critical micellar concentration (CMC) which was 0.028 mg/ml.  相似文献   

17.
《FEMS microbiology reviews》1995,16(2-3):235-241
The plant cell wall can be regarded as a giant bag-like macromolecule in which crystalline bundles of cellulose are embedded in a covalently linked matrix of hemicellulose and lignin. This heterologous polymer represents the dominant form of biomass on earth and a formidable challenge for solubilization and bioconversion. Bioconversion of lignocellulose requires the saccharification of both the hemicellulose and cellulose. Hemicellulose is composed of a mixture of sugars and can be readily hydrolysed by dilute acid at 140°C to produce a syrup containing pentoses and hexoses. However, no organisms in nature rapidly and efficiently convert both pentoses and hexoses into a single product of value. Our laboratory has developed such an organism by genetic engineering. Recombinant strains of Gram-negative bacteria (Escherichia coli or Klebsiella oxytoca or Erwinia sp.) have been constructed in which genes encoding the ethanol pathway from Zymomonas mobilis (pdc and adh) were inserted into the chromosome. These strains now efficiently convert all of the component sugars of hemicellulose and (cellulose) into ethanol. The saccharification of cellulose is more difficult and more complex. An enzymatic approach is preferred but at least three classes of enzymes are needed: endoglucanase, exoglucanase, and β-glucosidase. Klebsiella oxytoca and Erwinia sp. possess the native ability to transport and metabolize cellobiose (also cellotriose, xylobiose, and xylotriose), minimizing the need for added β-glucosidase. K. oxytoca strain P2, an ethanol-producing recombinant, has been evaluated in simultaneous saccharification and fermentation experiments to determine optimal conditions and limits of performance. Temperature was varied between 32 and 40°C over a pH range of 5.0–5.8 with 100 g 1−1 of crystalline cellulose (Sigmacell 50, Sigma Chemical Company, St. Louis, MO) as the substrate and commercial cellulase (Spezyme CE; Genencor, South San Francisco, CA). A broad optimum for fermentation was observed which allowed the production of over 44 g ethanol 1−1 (82–87% of the maximum theoretical yield). Two optimal saccharification and fermentation conditions were identified for fermentation yield, pH 5.2 at 35°C and pH 5.5 at 32°C, which produced 47 g ethanol 1−1 in 144 h (0.48 g ethanol (g cellulose) −1). Although yields were reduced at the lowest cellulase levels tested (2–5 filter paper units (g cellulose)−1), ethanol production per unit enzyme was much higher.  相似文献   

18.
The effects of organic carbon sources on cell growth and exopolysaccharide (EPS) production of dissociated Nostoc flagelliforme cells under mixotrophic batch culture were investigated. After 7?days of cultivation, glycerol, acetate, sucrose, and glucose increased the final cell density and final EPS concentrations, and mixotrophic growth achieved higher biomass concentrations. The increase in cell growth was particularly high when glucose was added as the sole carbon source. On the other hand, EPS production per dry cell weight was significantly enhanced by adding acetate. For more effective EPS production, the effects of the mixture of glucose and acetate were investigated. Increasing the ratio of glucose to acetate resulted in higher growth rate with BG-11 medium and higher EPS productivity with BG-110 medium (without NaNO3). When the medium was supplemented with a mixture of glucose (4.0?g?L?1) and acetate (2.0?g?L?1), 1.79?g?L?1 biomass with BG-11 medium and 879.6?mg?L?1 of EPS production with BG-110 medium were achieved. Adopting this optimal ratio of glucose to acetate established in flask culture, the culture was also conducted in a 20-L photobioreactor with BG-11 medium for 7?days. A maximum biomass of 2.32?g?L?1 was achieved, and the EPS production was 634.6?mg?L?1.  相似文献   

19.
When grown on vegetable oils and their derivatives, the smut fungus Ustilago maydis (DSM 4500 and ATCC 14826) produces several glycolipids under nitrogen-limiting conditions. With 45 g l−1 sunflower oil fatty acids (technical grade) a yield of 30 g l−1 glycolipid was achieved. The resulting mixture contained predominantly mannosylerythritol lipids together with smaller amounts of cellobiose lipids. The production of the more polar cellobiose lipids was enhanced when glucose was used as carbon source. The molecular structure of the main components of the glycolipid mixture were elucidated by a combination of NMR spectroscopic and mass-spectrometric techniques. Received: 22 June 1998 / Received revision: 11 September 1998 / Accepted: 13 September 1998  相似文献   

20.
《Process Biochemistry》2010,45(8):1334-1341
A high cell density cultivation protocol was developed for the secretory production of potato carboxypeptidase inhibitor (PCI) in Escherichia coli. The strain BW25113 (pIMAM3) was cultured in fed-batch mode employing minimal media and an exponential feed profile where the specific growth rate was fixed by limitation of the fed carbon source (glycerol). Plasmid loss rates were found to be proportional to the specific growth rate. Distribution of PCI along the cell compartments and the culture media was also dependent on the fixed growth rate. When specific growth rate was kept at μ = 0.10 h−1, 1.4 g PCI L−1 were obtained when adding the product present in periplasmic extracts and supernatant fractions, with a 50% of the total expressed protein recovered from the extracellular medium. This constituted a 1.2-fold increase compared to growth at μ = 0.15 h−1, and 2.0-fold compared to μ = 0.25 h−1. Last, a cell permeabilization treatment with Triton X-100 and glycine was employed to direct most of the product to the culture media, achieving over 81% of extracellular PCI. Overall, our results point out that production yields of secretory proteins in fed-batch cultures of E. coli can be improved by means of process variables, with applications to the production of small disulfide-bridged proteins. Overall, our results point out that control of the specific growth rate is a successful strategy to improve the production yields of secretory expression in fed-batch cultures of E. coli, with applications to the production of small disulfide-bridged proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号