首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选用耐旱性不同的两个大麦品种作为研究对象,分析其叶片结构的异同。结果表明:两个大麦品种的叶片发育可以分为幼叶萌发期、幼叶抽出期、幼叶生长期和叶片成熟期四个阶段,其中在幼叶萌发期,叶片结构无明显差异。经PAS染色,从幼叶生长期开始,耐旱性弱的Moroc 9-75,含淀粉粒的叶肉细胞少,淀粉粒颗粒小; 耐旱性强的HS 41-1,含淀粉粒的叶肉细胞多,淀粉粒颗粒大。遭受干旱胁迫后,两个品种的植株长势明显较弱,叶片短而窄; 表皮细胞角质层变厚,叶片中叶肉细胞变小,叶肉细胞胞间隙变大,叶肉细胞破裂现象增多; PAS染色反应显示,含淀粉粒的叶肉细胞减少,淀粉粒颗粒变小或基本没有; HS 41-1解体的细胞不如Moroc 9-75多。因此,在光镜下,叶片结构的差异,特别是细胞含有的淀粉粒大小与数量的区别,是植物对水分胁迫的一种适应; 同时叶脉对植物刚性的影响较大。  相似文献   

2.
Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.  相似文献   

3.
Starch was determined by means of IKI reaction in shoot apices ofChenopodium rubrum plants induced to flowering by two short days and in non-induced plants. Small starch grains were already observed in the meristematic cells at an age of four days after sowing. Larger grains were found in the subapical region of the apex. Heterogeneity increases during further growth of the plants in induced, as well as in non-induced vegetative plants. Starch disappears from the cells potentially giving rise to axillary buds, while the number and size of starch grains increase in cells from which leaf primordia will be formed. This metabolic specifity of leaf and bud primordia is preserved during morphological differentiation and applies to vegetative, as well as to prefloral apices of photoperiodically induced plants. The amount of starch in the different regions of the apex is linked rather with organogenesis than with the quantitative growth in the apex.  相似文献   

4.
研究胡萝卜体细胞胚不同发育阶段的细胞组织化学和蛋白质组成变化的结果表明:胚性愈伤组织主要源自维管束周围的细胞.球胚形成前期,淀粉粒和糊粉粒极性分布已很明显.子叶胚期,芽开始分化,有大量糊粉粒累积.在体细胞胚发育过程中,淀粉粒在胚性愈伤组织形成初期和球胚后期、糊粉粒在胚性愈伤组织形成后期和球胚期各有两次累积高峰.  相似文献   

5.
刺五加种子结构,后熟作用及其细胞化学研究   总被引:18,自引:0,他引:18  
刺五加种子为扁肾形,种皮由一层细胞构成。种子脱落时,胚处于心形胚期,胚周围的胚乳细胞解体形成囊腔包囊胚,胚细胞原生质浓厚,胚乳细胞中贮存大量蛋白质和脂类,但两者均未见贮存多糖,有萌发潜能的种子只占全部种子的12.80%,种子经变温层积处理6个月即可完成后熟过程,其细胞化学特点是:处理1.5个月时胚细胞中开始积累多糖颗粒,至4个月时达最大量并一直保持至种子萌发。试验地种植条件下饱满种子经18-20个  相似文献   

6.
Wheat plants (Triticum aestivum L., cv. Warigal) were subjectedto 20 d of water deficit during the period of endosperm celldivision. Drought accentuated the differences in final grainweight between spikelets and between grains within spikelets.The distal grains of top spikelets were most affected by drought.The maximum number of endosperm cells was, respectively, 30and 40 per cent lower in basal grains and distal grains of draughtedplants. In basal grains of middle spikelets, the number of largestarch granules per cell was unaffected but the number of smallstarch granules per cell was 45 per cent lower in grains ofdraughted plants. The initiation of small starch granules wasmore affected than cell division because severe water deficitoccurred earlier during the former process than the latter.Final dry weight appeared to correlate well with the maximumnumber of endosperm cells, but depended also on the number ofstarch granules per cell. Consequently, the amount of dry matterper cell was not constant in both treatments. The concentration of sucrose per endosperm cell was lower onlyin the droughted distal grains of top spikelets. The supplyof sucrose to endosperm cells did not regulate the initiationof small starch granules. Triticum aestivum L., wheat, drought, grain growth, cell division, starch  相似文献   

7.
Defoliation of alfalfa (Medicago sativa L.) results in a cyclic pattern of starch degradation followed by reaccumulation in taproots. Characterization of changes in anatomical distribution of starch grains in taproots will aid our understanding of biochemical and physiological mechanisms involved in starch metabolism in taproots of this species. Our objectives were to determine the influence of defoliation on starch grain distribution and size variation in taproots of two alfalfa lines selected for contrasting concentrations of taproot starch. In addition, we used electron microscopy to examine the cellular environment of starch grains, and computer-based image optical analysis to determine how cross-sectional area of tissues influenced starch accumulation. Taproots of field-grown plants were sampled at defoliation and weekly thereafter over a 28-day period. Taproot segments were fixed in glutaraldehyde and prepared for either light or electron microscopy. Transverse sections were examined for number and size of starch grains and tissue areas were measured. Starch grains were located throughout bark tissues, but were confined primarily to ray parenchyma cells in wood tissues. During the first week of foliar regrowth after defoliation, starch grains in ray cells near the cambium disappeared first, while degradation of those near the center of the taproot was delayed. During the third and fourth weeks of regrowth, there was a uniform increase in number of starch grains per cell profile across the rays, but by 28 days after defoliation there were more starch grains in ray cells near the cambium than in cells near the center of the taproot (low starch line only). Bark tissues from both lines showed synchronous degradation and synthesis of starch grains that was not influenced greatly by cell location. Diameter of starch grains varied with cell location in medullary rays during rapid starch degradation, but was not influenced by cell position in bark tissues. Therefore, during foliar regrowth there is a spatial separation in starch degradation and synthesis in alfalfa taproots. Amyloplasts from alfalfa taproots contained numerous starch grains, prolamellar-, and electron-dense bodies. The high starch line had 23% more cross-sectional area as ray cells in wood tissues when compared to the low starch line, which may explain part of the difference in starch accumulation between these alfalfa lines.  相似文献   

8.
To determine if starch statoliths do, in fact, act as gravisensors in cereal grass shoots, starch was removed from the starch statoliths by placing 45-day-old intact barley plants (Hordeum vulgare cv `Larker') in the dark at 25°C for 5 days. Evidence from staining with I2-KI, scanning electron microscopy, and transmission electron microscopy indicated that starch grains were no longer present in plastids in the pulvini of plants placed in the dark for 5 days. Furthermore, gravitropic curvature response in these pulvini was reduced to zero, even though pulvini from vertically oriented plants were still capable of elongating in response to applied auxin plus gibberellic acid. However, when 0.1 molar sucrose was fed to the dark pretreated, starch statolith-free pulvini during gravistimulation in the dark, they not only reformed starch grains in the starch-depleted plastids in the pulvini, but they also showed an upward bending response. Starch grain reformation appeared to precede reappearance of the graviresponse in these sucrose-fed pulvini. These results strongly support the view that starch statoliths do indeed serve as the gravisensors in cereal grass shoots.  相似文献   

9.
Pollen viability and germination are known to be sensitive to high temperature (HT). However, the mode by which high temperature impairs pollen functioning is not yet clear. In the present study, we investigated the effect of high temperature on changes occurring in carbohydrate of bell pepper (Capsicum annuum L. cv. Mazurka) pollen in order to find possible relations between these changes and pollen germination under heat stress. When pepper plants were maintained under a moderate HT regime (32/26 degrees C, day/night) for 8 days before flowers have reached anthesis, pollen count at anthesis was similar to that found in plants grown under normal temperatures (NT 28/22 degrees C). However, the in vitro germination, carried out at 25 degrees C, of pollen from HT plants was greatly reduced. This effect matched the marked reduction in the number of seeds per fruit in the HT plants. Maintaining the plants at high air CO2 concentration (800 &mgr;mol mol-1 air) in both temperature treatments did not affect the in vitro germination of pollen from NT plants, but restored germination to near the normal level in pollen from HT plants. Under NT conditions, starch, which was negligible in pollen at meiosis (8 days before anthesis, A-8) started to accumulate at A-4 and continued to accumulate until A-2. From that stage until anthesis, starch was rapidly degraded. On the other hand, sucrose concentration rose from stage A-4 until anthesis. Acid invertase (EC 3.2.1.26) activity rose parallel with the increase of sucrose. In pollen from HT plants, sucrose and starch concentrations were significantly higher at A-1 pollen than in that of NT plants. Under high CO2 conditions, the sucrose concentration in the pollen of HT plants was reduced to levels similar to those in NT pollen. In accordance with the higher sucrose concentration in HT pollen, the acid invertase activity in these pollen grains was lower than in NT pollen. The results suggest that the higher concentrations of sucrose and starch in the pollen grains of HT plants may result from reduction in their metabolism under heat stress. Elevated CO2 concentration, presumably by increasing assimilate availability to the pollen grain, may alleviate the inhibition of sucrose and starch metabolism, thereby increasing their utilization for pollen germination under the HT stress. Acid invertase may have a regulatory role in this system.  相似文献   

10.
Five rices (Oryza sativa L.) differing in final grain size were studied at the midmilky stage to determine if any factor could be identified which might limit rate of starch accumulation. Only UDP glucose pyrophosphorylase activity increased with increasing grain size. Detached rice panicles incubated in liquid medium containing 1% sucrose and 0.1% glutamine, in addition to minerals and vitamins, produced grains similar to those on intact plants. Sucrose level (0–1.5%) in the medium determined the extent of dry matter and starch accumulation and influenced physiological development of the ripening grains. Chemical and enzymic composition of the grain were similar to previously reported levels in grains of intact panicles analysed at regular intervals after anthesis. Addition of 3-P glycerate or K+ to the medium did not improve dry matter accumulation in the developing grain.  相似文献   

11.
Somatic embryo formation was induced from cotyledon explants of Styrian pumpkin (Cucurbita pepo L. subsp. pepo var. styriaca Greb.) by using a solid MS medium supplemented with 16.11?μM NAA and 4.44?μM BA or 26.85?μM NAA and 13.32?μM BA. The callus proliferation was more efficient on medium supplemented with 26.85?μM NAA and 13.32?μM BA. In contrast, the embryogenic response was higher on medium with lower concentrations of growth regulators (16.11?μM NAA and 4.44?μM BA). The time needed for embryo induction did not depend on medium composition. Embryos in globular stage were transferred to three different maturation media, containing 2.89?μM GA3 in combination with 0.54?μM NAA, 11.42?μM IAA and growth regulator-free medium. The germination rate was the highest when embryos were cultured on medium with 11.42?μM IAA. Plantlets grown on this medium achieved maturity suitable for transplantation into soil within 9 to 10?weeks. The regenerated plants were successfully transferred into field and developed fertile flowers and set fruits. Biochemical analysis showed significant lower total glutathione levels among in vitro grown plantlets compared to seedlings grown in soil. When the plantlets were transferred into soil, they reached a normal size within a month and the glutathione concentration was comparable to seed-derived plants at the same developmental stage. Transmission electron microscopy was used to investigate possible differences in the ultrastructure of cells from callus cultures, and leaf cells of regenerated and seed-derived plants. Differences in the ultrastructure were found within chloroplasts which contained only single thylakoids, large starch grains and small plastoglobuli in callus cells in comparison to leaf cells, which possessed a well developed thylakoid system, small starch grains and large plastoglobuli.  相似文献   

12.
蚕豆胚珠发育过程中淀粉动态的观察   总被引:4,自引:0,他引:4  
蚕豆胚珠发育过程中淀粉动态变化如下:1.发育早期,整个胚珠中未见淀粉粒。其后首先在合点区出现淀粉,而后从合点向珠孔逐渐扩大分布范围。2.珠心和内、外珠被中均含有淀粉粒,尤以内珠被的淀粉增长迅速,数量多、个体大。受精后,内珠被解体,淀粉出现在外珠被细胞中,推测营养物质可通过整个胚囊表面进入其中。3.合点与胚囊之间的珠心细胞特化或长形。可能有助于营养物质进入胚囊。4.功能大孢子中贮存丰富的淀粉粒,它和珠心细胞一起是胚囊发育时的营养来源。5.卵细胞受精后,所含淀粉粒的数量和大小明显增长,随着合子和胚细胞的分裂,其中贮存的淀粉逐渐被消耗,到多细胞球形胚时完全消失。6.胚乳核周围始终未出现淀粉粒。7.胚器官分化之后,子叶和胚轴等处逐渐出现淀粉粒,其中生长活跃的结构如生长点、维管束等不贮存淀粉。8.子叶中的淀粉粒含量迅速增加,颗粒特大,是种子内营养物质的最终贮存场所。  相似文献   

13.
白菜细胞核雄性不育花药的细胞化学观察   总被引:12,自引:1,他引:11  
对一种由一对隐性基因控制的白菜细胞核雄性不育和可育株的花药进行了细胞学和组织化学研究。种子播种后,有1/4植株为不育株,其余的为可育株。通过对不育株和可育株花药发育的细胞学观察,确认不育花粉的败育发生在小孢子发育时期。用组织化学的方法研究了可育株和不育株花药发育过程中的多糖和脂类的分布动态,发现在减数分裂前,可育花药和不育花药的药隔细胞中都储藏了大量的淀粉粒。二者的差异仅是不育花药的绒毡层细胞液泡化明显。在减数分裂后的小孢子发育时期,可育花药的绒毡层细胞具有将药隔细胞中的淀粉粒多糖吸收并转化成脂类的功能,小孢子及以后的二胞花粉中也积累了大量的脂类储藏物质。在不育花药中,虽然减数分裂后药隔细胞中的淀粉粒也都消失,但绒毡层细胞中的脂类物质相比很少,同时绒毡层细胞显示了明显的多糖反应,表明不育花药的绒毡层细胞将糖类转化为脂类的功能受阻。在小孢子的表面有些脂类物质,但在细胞质中却没有脂类积累。这一结果暗示在该种白菜细胞核雄性不育株中,由于花药绒毡层细胞转换多糖为脂类的功能失常,导致了小孢子的败育。  相似文献   

14.
油松茎次生木质部中树脂道的发育过程和组织化学研究   总被引:4,自引:0,他引:4  
利用组织化学方法对油松茎次生木质部树脂道发育过程中上皮细胞内树脂滴和淀粉粒的动态变化进行了研究。发现在树脂道原始细胞阶段,每个原始细胞含淀粉粒较少,含树脂滴稀少。在树脂道形成阶段,淀粉粒数目较多,体积增大,树脂滴也呈递增趋势。在树脂道成熟阶段,淀粉粒数目变化不大,而体积明显变小,树脂滴的体积增大,数目减少。  相似文献   

15.
白菜细胞核雄性不育花药的细胞化学观察   总被引:1,自引:0,他引:1  
对一种由一对隐性基因控制的白菜细胞核雄性不育和可育株的花药进行了细胞学和组织化学研究。种子播种后,有1/4植株为不育株,其余的为可育株。通过对不育株和可育株花药发育的细胞学观察,确认不育花粉的败育发生在小孢子发育时期。用组织化学的方法研究了可育株和不育株花药发育过程中的多糖和脂类的分布动态,发现在减数分裂前,可育花药和不育花药的药隔细胞中都储藏了大量的淀粉粒。二者的差异仅是不育花药的绒毡层细胞液泡化明显。在减数分裂后的小孢子发育时期,可育花药的绒毡层细胞具有将药隔细胞中的淀粉粒多糖吸收并转化成脂类的功能,小孢子及以后的二胞花粉中也积累了大量的脂类储藏物质在不育花药中,虽然减数分裂后药隔细胞中的淀粉粒也都消失,但绒毡层细胞中的脂类物质相比很少,同时绒毡层细胞显示了明显的多糖反应,表明不育花药的绒毡层细胞将糖类转化为脂类的功能受阻。在小孢子的表面有些脂类物质,但在细胞质中却没有脂类积累。这一结果暗示在该种白菜细胞核雄性不育株中,由于花药绒毡层细胞转换多糖为脂类的功能失常,导致了小孢子的败育。  相似文献   

16.
几种高山植物叶绿体淀粉粒的变化特征   总被引:7,自引:0,他引:7  
利用透射电镜对生长于青藏高原东北部达坂山(海拔3900m)的5种高山植物叶绿体超微结构进行了观察。结果发现,在所研究的5种高山植物叶绿体中,淀粉粒数量均较多,淀粉粒呈长椭圆形或圆形,沿叶绿体长轴分布。在珠芽蓼的叶绿体中,淀粉粒的电子密度内外不均匀,外周电子密度低,中央电子密度高。在其余4种高山植物中,淀粉粒的电子密度均较低。另外,在这5种高山植物叶绿体中还出现了脂质小球。其类囊体均出现了不同程度的膨大现象。研究表明,高山植物叶绿体中淀粉粒的这种变化是对逆境的一种适应,是青藏高原特殊生态条件长期胁迫的结果。  相似文献   

17.
The activities of starch synthesizing enzymes were investigated in wheat grains ( Triticum aestivum L. cv. Kolibri) throughout the grain development period. Starch phosphorylase (E.C. 2.4.1.1.) activity was especially high during the early period of grain development, while starch synthase I (ADP glucose α-glucan 4-α-glucosyl-transferase, E.C. 2.4.1.21) had a maximum activity during the later stage of grain filling. The synthetic potential of starch phosphorylase measured in vitro was about 16 times higher than the quantity of starch actually produced. It is therefore suggested that starch phosphorylase is of substantial importance in grain starch synthesis, particularly in the early period of grain growth. The synthetic potential of starch synthase I measured in vitro made up 25 to 50% of the starch production and the synthetic potential of starch synthase II (UDP glucose α-glucan 4α-glucosyl-transferase. E.C. 2.4.1.11) only about 5%.
Reducing light intensity (shading) during the grain filling period depressed grain growth and starch production by about 20%. Starch phosphorylase was not significantly affected by the reduced light intensity if enzyme activity is calculated on unit grain weight and not as activity per grain. Starch synthase I activity, however, was depressed by shading during the later stage of grain development. The depressed starch production found under low light conditions, however, cannot only be explained by an affected starch synthase I activity, but probably was also related to other still unknown factors limiting grain growth under low light conditions. The poor starch production in the shaded plants was not due to an insufficient supply of assimilates.  相似文献   

18.
In flowering plants, the tapetum, the innermost layer of the anther, provides both nutrient and lipid components to developing microspores, pollen grains, and the pollen coat. Though the programmed cell death of the tapetum is one of the most critical and sensitive steps for fertility and is affected by various environmental stresses, its regulatory mechanisms remain mostly unknown. Here we show that autophagy is required for the metabolic regulation and nutrient supply in anthers and that autophagic degradation within tapetum cells is essential for postmeiotic anther development in rice. Autophagosome-like structures and several vacuole-enclosed lipid bodies were observed in postmeiotic tapetum cells specifically at the uninucleate stage during pollen development, which were completely abolished in a retrotransposon-insertional OsATG7 (autophagy-related 7)-knockout mutant defective in autophagy, suggesting that autophagy is induced in tapetum cells. Surprisingly, the mutant showed complete sporophytic male sterility, failed to accumulate lipidic and starch components in pollen grains at the flowering stage, showed reduced pollen germination activity, and had limited anther dehiscence. Lipidomic analyses suggested impairment of editing of phosphatidylcholines and lipid desaturation in the mutant during pollen maturation. These results indicate a critical involvement of autophagy in a reproductive developmental process of rice, and shed light on the novel autophagy-mediated regulation of lipid metabolism in eukaryotic cells.  相似文献   

19.
Preparations of the DNA extracted from the endospermal milk and leaves of normal distichous barley plants were injected into the grains of hexastichous barley at a milk-ripeness stage and carrying waxy mutation (i.e. having defective synthesis of amylose). Restoration of normal starch synthesis in plant cells was considered as an indication of the changes produced by the exogenous DNA. In normal barley, starch contains amylose and amylopectin and is stained blue-to-black in an iodine solution, whereas in the waxy mutant, starch has no amylose and is stained red-to-brown. To exclude any relationship of dominance the analysis was carried out at a haploid level, that is on the pollen harvested from the injected plants. This approach had the additional advantage of allowing us to work with individual cells instead of whole plants or their organs. Upon injection of the preparations of wild-type DNA a certain fraction of plants showed changes toward wild type. The seeds obtained from the altered plants were sown and the progeny examined. It was established that in the second generation most plants returned to the recepient type. A detailed analysis of the progeny of plant No. 506/19, in the first generation of which almost all pollen (over 99.5%) was of wild type, showed that in these plants the alterations were considerably more stable, only one fifth or one sixth of plants returning to the original recipient type. In half of the progeny of plant No. 506/19 the starch was of the donor type, and in 30% of the plants, as in the first generations, the bulk of the polen (99.98%) was stained black by iodine. In the second generation, segregation of plants for starch staining differed from the Mendelian one, which is probably indicative of non-chromosomal localization of the genetic determinants brought along with the injected DNA. Concurrent with the alterations of the starch structure, alterations of the type of spike (hexastichous barley plants modified distichous ones) were observed in those plants whose pollen became predominantly or wholly normal. Also, delayed manifestation of the synthesis of normal starch was noted. Certain plants which did not show any changes in the first generation yielded wild-type pollen grains in the second generation.  相似文献   

20.
Poplar 741 [Populus alba × (P. davidiana + P. simonii) × P. tomentosa] leaves were rooted within 8 days when cultured on 1/2 MS medium. The subcellular localization of endogenous indole-3-acetic acid (IAA) in the rhizogenesis was investigated, using an immunocytochemical approach. The results of IAA subcellular localization revealed organelle-specific distribution. Three days after root induction, IAA in vascular cambium cells of the basal region of the petiole was distributed mainly in the plasma membrane, endoplasmic reticulum (ER), and nucleus, with a lesser amount in the cytoplasm. In phloem of the basal region of the petiole, IAA was detected in the plasma membrane and ER of the companion cell and in the plasma membrane of the sieve element. In xylem of the basal region of the petiole, no IAA gold particles were labeled. In mesophyll cells IAA was distributed in the chloroplast starch grains before root induction, and the amount in the chloroplast starch grains increased after 3 days after root induction. This suggests that the plasma membrane and nucleus of cambium cells may be the target sites where IAA performs its physiological activities during poplar leaf rhizogenesis. IAA polar transport from lamina mesophyll to the basal region of the petiole during rhizogenesis is mediated by phloem. The starch grains of mesophyll chloroplasts appeared to accumulate IAA and may be a source of IAA during poplar leaf rhizogenesis. Novel and direct evidence regarding the function of IAA during rhizogenesis is provided in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号