首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of a mild heat shock were investigated using cultured 15-day-old fetal rat hepatocytes in which an acute glucocorticoid-dependent glycogenic response to insulin was present. After exposure from 15 min to 2 h at 42.5°C, cell surface [125I]insulin binding progressively decreased down to 60% of the value shown in cells kept at 37°C, due to a decrease in the apparent number of insulin binding sites with little change in insulin receptor affinity. In parallel cultures, protein labeling with [35S]methionine exhibited stimulated synthesis of specific proteins, in particular, 73-kDa Hsc (heat shock cognate) and 72-kDa Hsp (heat shock protein). When cells were returned to 37°C after 2 h at 42.5°C, cell surface insulin binding showed a two-third restoration within 3 h (insulin receptor half-life = 13 h), with similar concomitant return of Hsps72,73 synthesis to preinduction levels. The rate of [14C]glucose incorporation into glycogen measured at 37°C after 1- to 2-h heat treatment revealed a striking yet transient increase in basal glycogenesis (up to 5-fold). At the same time, the glycogenesis stimulation by insulin was reduced (from 3.2 to 1.4—fold), whereas that induced by a glucose load was maintained. Induction of thermotolerance after a first heating was obtained for the heat shock-dependent events except for the enhanced basal glycogenesis. In insulin-unresponsive cells grown in the absence of glucocorticoids, heat shock decreased the glycogenic capacity without modifying the glucose load stimulation, supporting the hypothesis that insulin and thermal stimulation of glycogenesis share at least part of the same pathway. Inverse variations were observed between Hsps72,73 synthesis and both cell surface insulin receptor level and insulin glycogenic response in fetal hepatocytes experiencing heat stress. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The influence of medium composition on basal and insulin-stimulated glycogenesis was studied in cultured 17-day-old rat fetal hepatocytes, which contain no glycogen at the time of transplantation. Continuous-labeling 14C-glucose experiments were used to determine both glycogen content and glycogen labeling. The specific activity of glucose units in the newly formed glycogen (a) was compared to that of the medium glucose (b): the ratio a/b expresses the contribution of medium glucose to glycogen formation. In standard medium (5.5 mM glucose), this ratio averaged 0.60. Variations of glucose concentration in the medium from 1 to 40 mM were accompanied by a progressive increase in both glycogen content and the ratio a/b (up to 0.80). Supplementation of standard medium with fructose, galactose, glycerol, or lactate-pyruvate decreased the hepatocyte glucose uptake from the medium. Galactose (1 to 5 mM) or lactate-pyruvate (5 mM) enhanced the glycogen content whereas glycerol or fructose (1 to 5 mM) had no effect. The ratio a/b, not modified by glycerol or lactate-pyruvate, was decreased to 0.45 by fructose (5 mM). Galactose at concentrations as low as 1 to 2 mM brought the ratio down to 0.30, indicating that it is a superior precursor of glycogen as compared to glucose. When the hepatocytes were grown in the presence of 10 nM insulin, the glycogen content was constantly higher than in the absence of the hormone (2-fold stimulation). Also the amplitude of the glycogenic effect of insulin was similar whatever the modifications of the medium, whereas ratio a/b and glucose uptake were hardly increased by insulin. Thus several substrates can contribute to glycogen formation (especially galactose) in cultured fetal hepatocytes and the essential effect of insulin is a stimulation of the final step of the glycogenosynthetic pathway.  相似文献   

3.
Insulin-stimulated glycogenesis and insulin degradation were studied simultaneously at 37 degrees C in cultured foetal hepatocytes grown for 2-3 days in the presence of cortisol. Degradation of cell-associated insulin, as measured by trichloroacetic acid precipitation, was significant after 4 min in the presence of 1-3 nM-125I-labelled insulin. This process became maximal (30% of insulin degraded) after 20 min, a time when binding-state conditions were achieved. No insulin-degradative activity was detected in a medium that had been exposed to cells. At steady-state, the appearance of insulin degradation products in the medium was linearly dependent on time (1.5 fmol/min per 10(6) cells at 1nM-125I-labelled insulin). Chloroquine (3-50 microM), bacitracin (0.1-10 mM) and NH4Cl (1-10 mM) inhibited insulin degradation as soon as this became detectable and caused an increase in the association of insulin to hepatocytes after 20 min. Lidocaine and dansylcadaverine had similar effects, whereas N-ethylmaleimide, aprotinin, phenylmethanesulphonyl fluoride and leupeptin were found to be ineffective. Chloroquine, and also bacitracin, at concentrations that inhibited insulin degradation, decreased the insulin-stimulated incorporation of [14C]glucose into glycogen over 2 h. This effect of chloroquine was specific, since it did not modify the basal glycogenesis, or the glycogenic effect of a glucose load in the absence of insulin. It therefore appears that the receptor-mediated insulin degradation (or some associated pathway) is functionally related to the glycogenic effect of insulin in foetal hepatocytes.  相似文献   

4.
Glycogen synthesis in hepatocyte cultures is dependent on: (1) the nutritional state of the donor rat, (2) the acinar origin of the hepatocytes, (3) the concentrations of glucose and gluconeogenic precursors, and (4) insulin. High concentrations of glucose (15-25 mM) and gluconeogenic precursors (10 mM-lactate and 1 mM-pyruvate) had a synergistic effect on glycogen deposition in both periportal and perivenous hepatocytes. When hepatocytes were challenged with glucose, lactate and pyruvate in the absence of insulin, glycogen was deposited at a linear rate for 2 h and then reached a plateau. However, in the presence of insulin, the initial rate of glycogen deposition was increased (20-40%) and glycogen deposition continued for more than 4 h. Consequently, insulin had a more marked effect on the glycogen accumulated in the cell after 4 h (100-200% increase) than on the initial rate of glycogen deposition. Glycogen accumulation in hepatocyte cultures prepared from rats that were fasted for 24 h and then re-fed for 3 h before liver perfusion was 2-fold higher than in hepatocytes from rats fed ad libitum and 4-fold higher than in hepatocytes from fasted rats. The incorporation of [14C]lactate into glycogen was 2-4-fold higher in periportal than in perivenous hepatocytes in both the absence and the presence of insulin, whereas the incorporation of [14C]glucose into glycogen was similar in periportal and perivenous hepatocytes in the absence of insulin, but higher in perivenous hepatocytes in the presence of insulin. Rates of glycogen deposition in the combined presence of glucose and gluconeogenic precursors were similar in periportal and perivenous hepatocytes, whereas in the presence of glucose alone, rates of glycogen deposition paralleled the incorporation of [14C]glucose into glycogen and were higher in perivenous hepatocytes in the presence of insulin. It is concluded that periportal and perivenous hepatocytes utilize different substrates for glycogen synthesis, but differences between the two cell populations in the relative utilization of glucose and gluconeogenic precursors are dependent on the presence of insulin and on the nutritional state of the rat.  相似文献   

5.
Hormonal and substrate regulation of hepatic glycogen accumulation was evaluated in primary cultures of hepatocytes prepared from 1-day-fasted rats. Hepatocytes were cultured in media containing 5 mM-glucose and 10 mM-lactate and then exposed to 100 nM-dexamethasone for 4 h before an increase in glucose concentration and the addition of insulin. When this protocol was used to mimic the post-prandial state in vivo, net glycogen accumulation (over 2 h) and insulin (10 nM) effects were linear at physiological (5-10 mM) and supraphysiological (20-30 mM) glucose concentrations. To define the role of substrates in glycogen accumulation, hepatocytes were incubated in a buffered salt solution containing 10 mM-glucose and either 10 mM-lactate or 5 mM-glutamine, or both. In the absence of hormones, net glycogen accumulation was increased by 59%, 83%, and 127% by the addition of lactate, glutamine, and lactate plus glutamine respectively, compared with incubations with glucose alone, and 6-fold in the presence of substrates, insulin and dexamethasone. Labelling with [3-3H]glucose and [U-14C]glucose showed that in the absence of hormones approx. 50% of glycogen formation came from glucose via the direct pathway and the remainder from glucose via the indirect pathway or from non-glucose precursors, or both. Insulin-dependent enhancement of glycogen formation is through stimulation of both the direct and indirect pathways, and dexamethasone-dependent stimulation occurs through stimulation of both these pathways of glycogen formation from glucose as well as from non-glucose precursors. Lactate serves as a gluconeogenic C3 precursor for the observed enhanced glycogen formation, whereas glutamine-dependent enhancement of glycogen accumulation occurs primarily through a stimulation of the direct and indirect pathways of glycogen formation from glucose.  相似文献   

6.
The effects of insulin and glucagon on glycogen metabolism were studied in cultured fetal hepatocytes transplanted from 15-day-old fetuses. The effects of these hormones were examined just after transplantation, when the cells contained only minute amounts of glycogen, and during the 3 to 4 day culture period, when the hepatocytes were exposed to 10 muM cortisol and actively accumulated glycogen. At all stages of the culture, glucagon addition (10 nM) was followed by a rapid depletion of labeled glycogen, previously synthesized during a pulse labeling with [14C]glucose: this effect was mimicked by N6, O2'-dibutyryl adenosine 3':5'-monophosphate (dibutyryl cyclic AMP) (0.3 to 1 nM). Such a glycogenolytic effect of glucagon was observed even 6 hours after transplantation, i.e. at a time when cortisol was not present. In addition, glucagon clearly induced cyclic adenosine 3':5'-monosphosphate (cyclic AMP) accumulation in cells grown for 18 hours in the absence of cortisol. With cells grown for 3 days in the presence of cortisol, glucagon-dependent glycogenolysis was also obtained when cortisol was removed from the medium 20 hours before hormone addition. Thus the presence of cortisol is not necessary either to maintain a response to glucagon or for the onset of the glycogenolytic effect of glucagon. Insulin addition (10 nM) stimulated [14C]glucose incorporation into glycogen at all stages of the culture when grown in the presence of cortisol; no glycogenic response to insulin was observed 6 hours after transplantation where cortisol was not previously introduced. In addition, if the hepatocytes were grown in the presence of insulin alone (i.e. in the absence of cortisol) no significant storage of glycogen occurred. Maximal storage (or labeling) of glycogen was observed when hepatocytes were grown in the presence of both cortisol and insulin. The presence of cortisol was therefore necessary for the expression of the glycogenic effect of insulin. These data show that marked difference exist between the onset of developmental responses towards glucagon and insulin. The glucagon-dependent regulatory pathway should be present very early in fetal development and should not depend on cortisol. On the contrary, the onset of the insulin-dependent regulatory pathway seems to be induced during culture, and it is likely that this is caused by cortisol.  相似文献   

7.
Rat parenchymal hepatocytes in monolayer culture were used to study the metabolic effects of epidermal growth factor (EGF) and insulin on ketogenesis, gluconeogenesis and glycogen metabolism. EGF, unlike insulin, did not inhibit ketogenesis from palmitate or gluconeogenesis from pyruvate in hepatocyte cultures. It also had no effect on these pathways in the presence of insulin. In contrast, EGF potently counteracted the stimulation of [14C]pyruvate incorporation into glycogen by insulin, and also glycogen deposition from both gluconeogenic precursors and glucose. The EGF concentration causing half-maximal effect was about 0.1 nM. The anti-glycogenic effect of EGF was observed after both long-term (24 h) and short-term (1 h) exposure to EGF, and was more marked in the presence of insulin than in its absence. EGF did not displace bound insulin, suggesting that it neither competes for the insulin receptor nor affects the affinity of the receptor for insulin. EGF did not alter cellular cyclic AMP; and inhibition of cyclic AMP phosphodiesterase activity did not prevent the anti-glycogenic effect of EGF. In liver-derived dividing epithelial cells, Hep-G2 cells and fibroblasts, which have no capacity for gluconeogenesis, EGF did not counteract the stimulatory effect of insulin on [14C]glucose incorporation into glycogen, and in the epithelial cells EGF increased [14C]glucose incorporation into glycogen. The counter-effect of EGF on the glycogenic action of insulin in parenchymal hepatocytes may be due to a direct effect on glycogen metabolism or to an interaction with the post-receptor events in insulin action.  相似文献   

8.
Cultured rat hepatocytes were used to characterize the relationship between cellular glycogen content and the basal rate, as well as response to insulin of glycogen synthesis. Depending on the concentration of medium glucose, glycogen-depleted monolayers accumulated glycogen between 24 and 48 h of culture up to the fed in vivo level. Insulin at 100 nM stimulated glycogen deposition 20-fold at 1 mM and 1.5-fold at 50 mM glucose. The rate of further glycogen storage decreased with time and increasing glycogen content. In hepatocytes preincubated with 1-50 mM glucose during 24-48 h, short-term basal and insulin-dependent incorporation of 10 mM [14C]glucose into glycogen was inversely related to the actual cellular glycogen content. This was not due to different intracellular dilution of the label, since the specific radioactivity of UDP-glucose was similar in all groups. 125I-Insulin binding indicated that insulin receptors were also not involved in this phenomenon. An inverse relationship was also found between glycogen content and the stimulation of glycogen synthase I activity by insulin, whereas the basal activity of the enzyme was dissociated from the rate of incorporation of [14C]glucose. Basal net glycogen deposition at 10 mM glucose was also inversely related to cellular glycogen; however, no such relation was evident in the presence of insulin due to the overlapping inhibition of glycogenolysis. These studies suggest that the glycogen-mediated inhibition of the activation of glycogen synthase I is operative in the cultured hepatocyte and leads to an apparent inverse relationship between the actual glycogen content and basal as well as insulin-dependent glycogenesis.  相似文献   

9.
Na3VO4 (6.5 mumol/100 g rat weight), co-injected with a trace amount of [14C]glucose, increased within 15 min the incorporation of radiolabel in diaphragmal glycogen. After 2 h the vanadate-induced increases were 12-fold in the diaphragm and 7-8-fold in heart and liver. In contrast, when added to isolated diaphragms for up to 1 h, vanadate (0.1-5 mM) had no effect on the synthesis of glycogen from 5 mM glucose. In search of a putative mediator of vanadate's action in vivo, insulin and the insulin-like growth factors (IGFs) were considered. Their plasma concentration was not affected by vanadate treatment. In isolated diaphragms, 1 mM vanadate did not potentiate insulin-induced glycogen synthesis, but it caused a several-fold increase in glycogen synthesis in the presence of concentrations of IGF-I which, alone, had no effect. A similar synergism occurred between vanadate and IGF-II. We propose that the glycogenic action of vanadate in vivo, at least in some tissues, involves a potentiation of the action of IGF-I.  相似文献   

10.
The pathways of glycogen synthesis from glucose were studied using double-isotope procedures in 18-day cultured foetal-rat hepatocytes in which glycogenesis is strongly stimulated by insulin. When the medium containing 4 mM-glucose was supplemented with [2-3H,U-14C]glucose or [3-3H,U-14C]glucose, the ratios of 3H/14C in glycogen relative to that in glucose were 0.23 +/- 0.04 (n = 6) and 0.63 +/- 0.09 (n = 8) respectively after 2 h. This indicates that more than 75% of glucose was first metabolized to fructose 6-phosphate, whereas 40% reached the step of the triose phosphates prior to incorporation into glycogen. The stimulatory effect of 10 nM-insulin on glycogenesis (4-fold) was accompanied by a significant increase in the (3H/14C in glycogen)/(3H/14C in glucose) ratio with 3H in the C-2 position (0.29 +/- 0.05, n = 6, P less than 0.001) or in the C-3 position (0.68 +/- 0.09, n = 8, P less than 0.01) of glucose, whereas the effect of a 12 mM-glucose load (3.5-fold) did not alter these ratios. Fructose (4 mM) displaced [U-14C]glucose during labelling of glycogen in the presence and absence of insulin by 50 and 20% respectively, and produced under both conditions a similar increase (45%) in the (3H/14C in glycogen)/(3H/14C in glucose) ratio when 3H was in the C-2 position. 3-Mercaptopicolinate (1 mM), an inhibitor of gluconeogenesis from lactate/pyruvate, further decreased the already poor labelling of glycogen from [U-14C]alanine, whereas it increased both glycogen content and incorporation of label from [U-14C]serine and [U-14C]glucose with no effect on the relative 3H/14C ratios in glycogen and glucose with 3H in the C-3 position of glucose. These results indicate that an alternative pathway in addition to direct glucose incorporation is involved in glycogen synthesis in cultured foetal hepatocytes, but that insulin preferentially favours the classical direct route. The alternative foetal pathway does not require gluconeogenesis from pyruvate-derived metabolites, contrary to the situation in the adult liver.  相似文献   

11.
Glycogen synthesis in isolated hepatocytes can occur from glucose both by a direct mechanism and by an indirect process in which glucose is first metabolized to C3 intermediates before use for glycogenesis via gluconeogenesis. We studied the incorporation into glycogen of glucose and the gluconeogenic substrate, fructose, in primary cultures of hepatocytes from fasted rats. In the presence of insulin, both glucose and fructose promoted net deposition of glycogen; however, fructose carbon was incorporated into glycogen to a greater extent than that from glucose. When glucose and fructose were administered simultaneously, the glycogenic utilization of glucose was stimulated 2-3-fold, and that of fructose was increased by about 50%. At constant hexose concentrations, the total incorporation of carbon, and the total accumulation of glycogen mass, from glucose and fructose when present together exceeded that from either substrate alone. Fructose did not change the relative proportion of glucose carbon incorporated into glycogen via the indirect (gluconeogenic) mechanism. The synergism of glucose and fructose in glycogen synthesis in isolated rat hepatocytes in primary culture appears to result from a decrease in the rate of degradation of newly deposited glycogen, owing to (i) decreased amount of phosphorylase a mediated by glucose and (ii) noncovalent inhibition of residual phosphorylase activity by some intermediate arising from the metabolism of fructose, presumably fructose 1-phosphate.  相似文献   

12.
Isolated liver cells from 24 h starved rats were incubated in Krebs-Ringer buffer containing 4% albumin. In the presence of 10, 20 and 30 mM glucose, addition of insulin stimulated net glycogen production by 52, 39 and 20%, respectively. 2 . 10(-9) M insulin was required for half-maximal stimulation. Increases of glycogen production and of glycogen synthase a activity were observed after 15-30 min of incubation with insulin. The stimulatory effect of insulin was additive to that of lithium. In agreement with the literature, insulin antagonized the inhibitory action of suboptimal doses of glucagon on glycogen deposition whereby a decrease of glucagon-elevated cyclic AMP levels was observed. In addition, we found that insulin also decreased the basal cyclic AMP levels in the absence of added glucagon by 22%. It is concluded that physiological concentrations of insulin stimulate net glycogen deposition in hepatocytes from fasted rats; the decrease of basal cyclic AMP levels upon insulin addition may play a role in the mechanism of the hormone action.  相似文献   

13.
The glycogenic action of cortisol in cultured fetal rat hepatocytes was completely abolished by the absence of NaHCO3 from the medium, while its presence stimulated the action in relation to its concentration. The absence of NaHCO3 slightly reduced glycogen storage by insulin but did not affect glucose-dependent glycogen deposition in the basal state. Also, the cortisol-induced increase in glycogen synthase a activity was reduced but that in total synthase activity was not affected. The absence of NaHCO3 did not reduce the cortisol-induced increase in tyrosine aminotransferase activity and the incorporation of [3H]dexamethasone into the nuclei. These results show that the absence of NaHCO3 specifically inhibits the glycogenic action of glucocorticoids in cultured fetal rat hepatocytes and indicate the need for further investigation into the role of HCO3- in universally used bicarbonate-buffered media.  相似文献   

14.
Addition of insulin to liver cells from fed rats incubated in the absence of other hormones resulted in a 2-fold increase in glycogen synthase activity. This direct effect of insulin has been characterized and compared with the antagonism by insulin of alpha 1-adrenergic effects on glycogen metabolism. The activation of glycogen synthase by insulin developed slowly (20-25 min) and was most effective when the enzyme was partially preactivated by glucose. With glucose concentrations above 15 mM the effects of insulin and glucose were additive. In contrast to glucose, which caused inverse changes in phosphorylase and glycogen synthase activity, insulin activated glycogen synthase without affecting phosphorylase a. Treatment of hepatocytes with phenylephrine led to an activation of phosphorylase and inactivation of glycogen synthase, which could be partially blocked by insulin. This antagonistic effect of insulin was rapid (complete within 5 min of insulin addition) and showed an identical time course for both enzymes. The activation of glycogen synthase by insulin and inactivation by phenylephrine both resulted principally from alterations in the Vmax. Insulin added alone did not alter the basal cytosolic free Ca2+ concentration, which was 160 nM as measured with Quin 2 as an intracellular Ca2+ indicator. Both the magnitude and the initial rate of cytosolic free Ca2+ increase induced by phenylephrine were reduced by about 50% in cells pretreated with insulin. It is concluded that the direct activation of glycogen synthase by insulin is mediated by a glycogen synthase-specific kinase or phosphatase, whereas insulin antagonizes the effects of alpha 1-agonists by interfering with their ability to elevate cytosolic free Ca2+.  相似文献   

15.
Defects in the deposition of glycogen and the regulation of glycogen synthesis in the livers of severely insulin-deficient rats can be reversed, in vivo, within hours of insulin administration. Using primary cultures of hepatocytes isolated from normal and diabetic rats in a serum-free chemically defined medium, the present study addresses the chronic action of insulin to facilitate the direct effects of insulin and glucose on the short term regulation of the enzymes controlling glycogen metabolism. Primary cultures were maintained in the presence of insulin, triiodothyronine, and cortisol for 1-3 days. On day 1 in alloxan diabetic cultures, 10(-7) M insulin did not acutely activate glycogen synthase over a period of 15 min or 1 h, whereas insulin acutely activated synthase in cultures of normal hepatocytes. By day 3 in hepatocytes isolated from alloxan diabetic rats, insulin effected an approximate 30% increase in per cent synthase I within 15 min as was also the case for normal cells. The acute effect of insulin on synthase activation was independent of changes in phosphorylase alpha. Whereas glycogen synthase phosphatase activity could not be shown to be acutely affected by insulin, the total activity in diabetic cells was restored to normal control values over the 3-day culture period. The acute effect of 30 mM glucose to activate glycogen synthase in cultured hepatocytes from normal rats after 1 day of culture was missing in hepatocytes isolated from either alloxan or spontaneously diabetic (BB/W) rats. After 3 days in culture, glucose produced a 50% increase in glycogen synthase activity during a 10-min period under the same conditions. These studies clearly demonstrate that insulin acts in a chronic manner in concert with thyroid hormones and steroids to facilitate acute regulation of hepatic glycogen synthesis by both insulin and glucose.  相似文献   

16.
The effects of insulin, epinephrine, glucose and anti-insulin receptor antibodies on enzymes involved in the regulation of glycogen synthesis were investigated in the isolated mouse soleus muscle. Insulin maximally increased the percentage of glycogen synthase active form after 15 min in the absence of glucose in the extracellular medium; half-maximal and maximal effects were obtained with 1.5 and 33 mM insulin, respectively. The basal percentage of glycogen phosphorylase active form was not altered by insulin. Antibodies to the insulin receptor had similar effects to those of insulin on both enzymes. The percentage of glycogen synthase active form was maximally decreased and that of phosphorylase maximally increased after a 2 min exposure to epinephrine in the absence of extracellular glucose. Glucose alone had no effect on muscle glycogen synthase. When muscles were incubated with insulin (33 nM) plus glucose (20 mM) for 5-10 min, the increase in the percentage of glycogen synthase active form was greater than with insulin alone. This enhancing effect of glucose on insulin activation of glycogen synthase disappeared after 20 min. The results suggest the existence of two mechanisms whereby insulin activates muscle glycogen synthase. The main effect is operative in the absence of extracellular glucose and occurs at insulin concentrations close to the physiological range. The other effect requires glucose and may result from the stimulation by insulin of glucose transport and/or metabolism.  相似文献   

17.
Isolated rat hepatocytes exhibit an insulin-like anabolic response to hypoosmotic incubation and a glucagon-like catabolic response to hyperosmotic incubation. Recently, a distinct glycogenic response to hypoosmotic treatment was likewise reported for cultured rat myotubes. The present study examines the effects of anisoosmolar exposure on glucose metabolism in freshly isolated rat soleus muscle strips. Under the same experimental conditions as used for cultured myotubes, hypoosmolarity reduced net glycogen synthesis to 52%, while hyperosmolarity stimulated glycogen storage to 231% of isoosmolar control (nmol glucose incorporated into glycogen g(-1) x h(-1): hypoosmolar, 34+/-3; isoosmolar, 65+/-8; hyperosmolar, 150+/-11; p<0.01 each vs. isoosmolar). The responses of native skeletal muscle to anisoosmolarity are therefore in opposition to what has been described for hepatocytes and cultured myotubes. Further experiments on rat skeletal muscle revealed that the observed lack of a glycogenic response to hypoosmolarity persisted independent of medium composition, specifically with regard to prevailing glucose and K+ concentrations. In conclusion, hypoosmotic exposure inhibits glycogen synthesis in isolated rat soleus muscle, which clearly argues against the hypothesis that osmotic changes and cell swelling may be physiologically relevant stimulators of muscle glycogen synthesis.  相似文献   

18.
The effects of insulin, epinephrine, glucose and anti-insulin receptor antibodies on enzymes involved in the regulation of glycogen synthesis were investigared in the isolated mouse soleus muscle. Insulin maximally increased the percentage of glycogen synthase active form after 15 min in the absence of glucose in the extracellular medium; half-maximal and maximal effects were obtained with 1.5 and 33 nM insulin, respectively. The basal percentage of glycogen phosphorylase active form was not altered by insulin. Antibodies to the insulin receptor had similar effects to those of insulin on both enzymes. The percentage of glycogen synthase active form was maximally decreased and that of phosphorylase maximally increased after a 2 min exposure to epinephrine in the absence of extracellular glucose. Glucose alone had no effect on muscle glycogen synthase. When muscles were incubated with insulin (33 nM) plus glucose (20 mM) for 5–10 min, the increase in the percentage of glycogen synthase active form was greater than with insulin alone. This enhancing effect of glucose on insulin activation of glycogen synthase disappeared after 20 min. The results suggest the existence of two mechanisms whereby insulin activates muscle glycogen synthase. The main effect is operative in the absence of extracellular glucose and occurs at insulin concentrations close to the physiological range. The other effect requires glucose and may result from the stimulation by insulin of glucose transport and/or metabolism.  相似文献   

19.
Expression of the glycogen-targeting protein PTG promotes glycogen synthase activation and glycogen storage in various cell types. In this study, we tested the contribution of phosphorylase inactivation to the glycogenic action of PTG in hepatocytes by using a selective inhibitor of phosphorylase (CP-91149) that causes dephosphorylation of phosphorylase a and sequential activation of glycogen synthase. Similar to CP-91194, graded expression of PTG caused a concentration-dependent inactivation of phosphorylase and activation of glycogen synthase. The latter was partially counter-acted by the expression of muscle phosphorylase and was not additive with the activation by CP-91149, indicating that it is in part secondary to the inactivation of phosphorylase. PTG expression caused greater stimulation of glycogen synthesis and translocation of glycogen synthase than CP-91149, and the translocation of synthase could not be explained by accumulation of glycogen, supporting an additional role for glycogen synthase translocation in the glycogenic action of PTG. The effects of PTG expression on glycogen synthase and glycogen synthesis were additive with the effects of glucokinase expression, confirming the complementary roles of depletion of phosphorylase a (a negative modulator) and elevated glucose 6-phosphate (a positive modulator) in potentiating the activation of glycogen synthase. PTG expression mimicked the inactivation of phosphorylase caused by high glucose and counteracted the activation caused by glucagon. The latter suggests a possible additional role for PTG on phosphorylase kinase inactivation.  相似文献   

20.
When fasted rats ate regular lab chow there was a lag time of about 2 h before the concentration of fructose 2,6-bisphosphate (Fru-2,6-P2) in liver began to rise from its low basal level. By contrast, in animals refed on a sucrose-based diet hepatic [Fru-2,6-P2] increased 20-fold (to a value of approximately 12 nmol/g wet weight) during the first hour. These responses correlated with differences in the ability of the two diets to increase the circulating [insulin]/[glucagon] ratio and thus to elevate the ratio of 6-phosphofructo-2-kinase to fructose-2, 6-bisphosphatase. Liver glycogen was deposited briskly in both groups of rats. To assess its mechanism of synthesis (directly from glucose versus indirectly via the gluconeogenic pathway), animals eating the chow or sucrose diets received intravenous infusions of [14C]bicarbonate, [1-14C] fructose, and 3H2O. After isolation, the glycogen was subjected to positional isotopic analysis of its glucose residues. The results established that regardless of the diet the bulk of liver glycogen was gluconeogenic in origin. The fact that with sucrose feeding carbon flow through hepatic fructose-1,6-bisphosphatase remained active despite high levels of Fru-2,6-P2 (a potent inhibitor of this enzyme in vitro) presents a metabolic paradox. Conceivably, the suppressive effect of Fru-2, 6-P2 on hepatic fructose-1,6-bisphosphatase is overridden in vivo by some unknown factor or factors generated in response to sucrose feeding. Alternatively, metabolic zonation in liver might result in the coexistence of hepatocytes rich in Fru-2,6-P2 (high glycolytic, low gluconeogenic, low glycogenic capacitites) with cells depleted of Fru-2,6-P2 (low glycolytic, high gluconeogenic, high glycogenic capacities).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号