首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane vesicles which constitute the sarcotubular system were separated and the fraction enriched in T-tubules purified by a calcium loading procedure. The preparations of unfractioned microsomes and T-tubules have been analyzed for their relative content of enzyme markers and acetylcholinesterase. The amount of this enzyme in the T-tubule fraction was higher than in mixed microsomes but less than two-fold the value of vesicles derived from sarcoplasmic reticulum. Arrhenius plots of membrane-bound and soluble acetylcholinesterase from either mixed microsomes or fractions enriched in T-tubules show an anomalous behaviour as two break points were obtained. The first discontinuity was found at about 17 degrees C for membrane-bound, and 12-14 degrees C for soluble acetylcholinesterase. The second one being at about 25 degrees C for both particulate and detergent-solubilized enzyme. The changes in activity with temperature suggest that lipid-protein, detergent-protein and protein-protein interactions might be involved in the stabilization of the enzyme both in the natural membrane and in the soluble state.  相似文献   

2.
Abstract— Two membrane fractions were obtained from electric organ tissue of the electric eel by sucrose gradient centrifugation of tissue homogenates. Electron microscopic examination showed that both fractions contained mainly vesicular structures (microsacs). Both the light and heavy fractions had a-bungarotoxin-binding capacity and Na+-K+ ATPase activity, while only the light fraction had AChE activity. The polypeptide patterns of vesicles derived from both the light and heavy fractions were examined by SDS-polyacrylamide gel electrophoresis and found to be very similar. The ratio of protein to phospholipid in the light vesicles was much lower than in the heavy vesicles, but the relative amounts of individual phospholipids in the two fractions were similar. A marked difference in the permeability of the light and heavy vesicles was observed by measuring efflux of both [14C]sucrose and 22Na+, and also by monitoring volume changes induced by changing the osmotic strength of the medium. All three methods showed the heavy vesicles to be much more permeable than the light ones. Only the light vesicles displayed increased sodium efflux in the presence of carbamylcholine. The AChE in the light fraction does not appear to be membrane-bound, but is rather a soluble enzyme, detached from the membrane during homogenization, which migrates on the gradient similarly to that of the light vesicles. This is supported by the fact that the bulk of the AChE is readily removed by washing the vesicles. Moreover, under the conditions employed in our sucrose gradient separations,‘native’14 S + 18 S AChE exists in the form of aggregates which migrate very similarly to the major peak of AChE activity of tissue homogenates. Separated innervated and non-innervated surfaces of isolated electroplax were obtained by microdissection. α-Bungarotoxin-binding capacity was observed only in the innervated membrane. About 80% of the AChE was in the innervated membrane, and about 70% of the Na+-K+ ATPase in the non-innervated membrane. The data presented indicate that the light and heavy vesicle fractions separated by sucrose gradient centrifugation are not derived exclusively from the innervated and non-innervated membranes respectively, as previously suggested by others, but contain membrane fragments from both sides of the electroplax. The separation of two populations on sucrose gradients may be explained both by the differences in permeability and in protein to phospholipid ratios.  相似文献   

3.
On solubilization with Triton X-100 of sarcoplasmic reticulum vesicles isolated by differential centrifugation, the Ca2+-ATPase is selectively extracted while approximately half of the initial Mg2+-, or ‘basal’, ATPase remains in the Triton X-100 insoluble residue. The insoluble fraction, which does not contain the 100 000 dalton polypeptide of the Ca2+-ATPase, contains high levels of cytochrome c oxidase. Furthermore, its Mg2+-ATPase activity is inhibited by specific inhibitors of mitochondrial ATPase, indicating that the ‘basal’ ATPase separated from the Ca2+-ATPase by detergent extraction originates from mitochondrial contaminants.To minimize mitochondrial contamination, sarcoplasmic reticulum vesicles were fractionated by sedimentation in discontinuous sucrose density gradients into four fractions: heavy, intermediate and light, comprising among them 90–95% of the initial sarcoplasmic reticulum protein, and a very light fraction, which contains high levels of Mg2+-ATPase. Only the heavy, intermediate and light fractions originate from sarcoplasmic reticulum; the very light fraction is of surface membrane origin. Each fraction of sarcoplasmic reticulum origin was incubated with calcium phosphate in the presence of ATP and the loaded fractions were separated from the unloaded fractions by sedimentation in discontinuous sucrose density gradients. It was found that vesicles from the intermediate fraction had, after loading, minimal amounts of mitochondrial and surface membrane contamination, and displayed little or no Ca2+-independent basal ATPase activity. This shows conclusively that the basal ATPase is not an intrinsic enzymatic activity of the sarcoplasmic reticulum membrane, but probably originates from variable amounts of mitochondrial and surface membrane contamination in sarcoplasmic reticulum preparations isolated by conventional procedures.  相似文献   

4.
The action of ethanol on the activity of membrane-bound and soluble acetylcholinesterase (AChE) in sarcoplasmic reticulum of skeletal muscle has been studied. Treatment of membranes with 2.5–12.5% v/v ethanol produced a slight stimulation of the AChE activity and inhibition at higher concentration. The enzyme remained associated with the membranes after these treatments. The enzyme solubilized with Triton X-100 was inhibited by ethanol in a time-independent manner. Isolated 16 S (A12), 10.5 S (G4) and 4.5 S (G1) forms of AChE were inhibited by ethanol to a similar extent. Samples were reversibly inhibited by ethanol, up to 12.5% v/v, and irreversibly at higher concentrations. Kinetic studies performed with isolated forms in the presence of 5–12.5% v/v ethanol showed that the solvent behaved as a competitive inhibitor of the asymmetric form but as a mixed inhibitor of the tetrameric and monomeric forms. The results show that the solvent interacts with active and/or regulatory sites of AChE from muscle microsomes.  相似文献   

5.
Isolated sarcoplasmic reticulum vesicles from rabbit white muscle were separated into a light (15--20% of total microsomes) and a heavy (80--85%) fraction by density gradient centifugation. The ultrastructure, chemical composition, enzymic activities and localization of membrane components in the vesicles of both fractions were investigated. From the following results it was concluded that both fractions are derived from the membranes of the sarcoplasmic reticulum system of the muscle: (i) The protein pattern of both fractions is essentially the same, except for different ratios of acidic, Ca2+-binding proteins. (ii) The 105000 dalton protein of the light fraction cross-reacts immunologically with the Ca2+-dependent ATPase of the heavy fraction. (iii) Ca2+-dependent ATPase, although of different specific activity, is found in both fractions. After rendering the vesicles leaky, specific activities in both fractions reach the same value. The light fraction was found to consist of "inside-out" vesicles by the following criteria: (i) No Ca2+ accumulation can be measured and the Ca2+-dependent ATPase activity is low and variable. (ii) The rate of trypsin digestion is lower and, compared to the heavy microsomes, a different ratio of degradation products is obtained. (iii) The sarcoplasmic reticulum membrane has a highly asymmetrical lipid distribution. This distribution of aminophospholipids is opposite to that in vesicles of heavy fraction. The light sarcoplasmic reticulum fraction has a higher phospholipid to protein ratio than the heavy one. This is consistent with the possibility that the two fractions derive from different parts of the sarcoplasmic reticulum system.  相似文献   

6.
Bovine myocardial sarcolemma and sarcoplasmic reticulum vesicle preparations contained calcium-dependent protease inhibitor protein. No inhibitor was detected in mitochondrial membranes. The membrane-bound inhibitor co-purified with the marker enzymes for sarcolemma and sarcoplasmic reticulum, Na+,K+-ATPase and Ca2+,K+-ATPase respectively, on isopycnic ultracentrifugation through linear sucrose density gradients. Sarcolemma and sarcoplasmic reticulum vesicles contained about 1 mg of inhibitor per g of membrane protein. However, about one-half of the inhibitor in sarcoplasmic reticulum vesicles was not tightly associated with the membrane. The membrane-bound inhibitor may function to modulate calcium-dependent proteolytic cleavage of sarcolemmal or sarcoplasmic reticulum-associated proteins.  相似文献   

7.
Synthesis of polyphosphoinositides has been studied in transverse (T-) tubule and sarcoplasmic reticulum (SR) membrane fractions of frog skeletal muscle, following 32P-labeling with [gamma-32P]ATP. Purified SR and T-tubule fractions respectively synthesize 9.4 +/- 0.8 and 71.9 +/- 9.8 pmol PtdInsP/mg per min, indicating nearly 8-fold higher activity of PtdIns kinase in the T-tubules than in the SR. The activity of this enzyme in both membrane systems is maximum at pH 7 and pCa 6. PtdInsP2 is synthesized from the endogenous PtdInsP, only in T-tubule membranes by the action of PtdInsP kinase. This lipid is the most intensely 32P-labeled phosphoinositide (181.7 +/- 9.2 pmol/mg per min) in these membranes. PtdIns kinase in the T-tubule and SR membranes, and PtdInsP kinase in the former are modulated by the free [Mg2+]. Loss of radiolabel from transiently maximal 32P-incorporation in polyphosphoinositides in T-tubule membranes, concomitant with a decrease in the ATP concentration in the incubation buffer, shows the occurrence of phosphoinositidases in these membranes. Under the conditions used, no such activities were evident in SR membranes. Compound 48/80, a mixture of condensation products of N-methyl-p-methoxyphenethylamine with formaldehyde, known to block phosphoinositidase C and phospholipase A2, causes a dose-dependent increase in the 32P-label of PtdInsP, in T-tubule membranes. The synthesis of lyso PtdInsP2, a deacylated form of PtdInsP2 which occurs in nearly equal quantities in both T-tubule and SR membranes, may result from a mechanism independent of phospholipase A2.  相似文献   

8.
(1) Microsomal membranes from white rabbit muscle enriched in sarcoplasmic reticulum (SR) were used to investigate the preferential localization of acetylcholinesterase (AChE) in these membranes. (2) Integrity and orientation of the vesicles was assessed by measuring the inulin-inaccessible space of the vesicles and its calcium-loading capacity. (3) Treatment of the membranes with diisopropyl phosphorofluoridate (DFP), an irreversible inhibitor which is free soluble in lipid, produced an almost complete inactivation of AChE. The inhibition was prevented in assays performed with the non-permeant reversible inhibitor BW 284c51 (BW). (4) Similar results were obtained if echothiophate iodide (ECHO), an irreversible and poorly permeant inhibitor, instead of DFP was used. (5) Sedimentation profiles of enzyme solubilized with Triton X-100 from membranes inhibited by DFP after protection with BW showed a minor reduction in the relative proportion of a 4.5 S (G1) form. (6) Treatment of intact or saponin-permeabilized membranes with concanavalin A (ConA) produced enzyme-lectin complexes. In both cases, most of the enzyme was recovered in the sedimented complexes after centrifugation of the Triton-solubilized membranes. (7) Incubation of intact membranes with the antibody AE1 led to the formation of immuno complexes. Sedimentation analyses of the molecular forms of AChE revealed a shift in the sedimentation coefficients, whether the antibody was added before or after solubilization of the enzyme. (8) These results firmly establish an external localization of AChE in SR, most of the protein backbone facing the cytoplasmic side of the membrane.  相似文献   

9.
Sarcolemmal membrane vesicle preparations from white and red muscles of rat were found to contain a carbonic anhydrase which was indistinguishable from carbonic anhydrase IV from rat lung. This isozyme appears to account for all of the carbonic anhydrase activity in the sarcolemmal vesicle preparations. Digestion of 39-kDa CA IV with endoglycosidase F reduced the Mr to 36 kDa, suggesting that it contains one N-linked oligosaccharide. Treatment of sarcolemmal vesicles with phosphatidylinositol-specific phospholipase C released all of the activity, indicating that the enzyme is anchored to membranes by a phosphatidylinositol-glycan linkage. White muscle sarcoplasmic reticulum vesicles also contain a small amount of 39-kDa CA IV-type enzyme. A 52-kDa polypeptide in sarcoplasmic reticulum membranes cross-reacts with anti-human CA II and anti-rat CA II antisera, but does not bind to the sulfonamide affinity column. This cross-reacting polypeptide has no detectable CA activity.  相似文献   

10.
Endothelial cell membranes, the site of the blood-brain barrier, were obtained from the capillaries of cow brain. The luminal and abluminal membranes were separated by centrifugation on a discontinuous Ficoll gradient. Electron microscopy revealed that the membrane preparations consisted almost entirely of sealed vesicles. The release of latent enzyme activity showed that both membrane preparations were primarily right side out. Radiolabeled L-phenylalanine uptake by luminal vesicles was proportional to membrane protein concentration, with less than 10% binding. Transport was by a high affinity carrier (Km 11.8 +/- 0.1 microM, asymptotic standard error) that showed little or no stereospecificity, and was independent of Na+ or H+ gradients. Transport was inhibited by L-tryptophan, L-leucine, 2-aminobicyclo[2,2,1]heptane-2-carboxylate and D-phenylalanine, but not by N-(methylamino)-isobutyrate. Abluminal membranes showed an additional component in which a Na+ gradient accelerated the transport of both phenylalanine and N-(methylamino)-isobutyrate. These studies demonstrate the utility of membrane vesicles as a model to characterize the transport properties of the distinct membranes of the polar endothelial cells that form the blood-brain barrier.  相似文献   

11.
Purified fractions of plasma membrane, Golgi apparatus, rough endoplasmic reticulum vesicles, nuclear envelope, and mitochondria were isolated from mouse liver and the distribution of H-2 histocompatibility antigens determined by indirect radioimmunoassay before and after membrane disruptive treatments. Fractions enriched in plasma membrane (surface membrane) revealed H-2 antigens in highest concentration; disruptive treatments were not necessary to reveal H-2 antigens with surface membranes. In contrast, internal membranes did not possess H-2 antigens which were accessible to antibody. Golgi apparatus fractions or some component of these fractions (e.g. secretory vesicles) possessed the antigens but in a latent form where accessibility was provided by simple rupture of the membrane vesicles. With endoplasmic reticulum, detergent solubilization of the membranes was required before H-2 antigen could be detected. Nuclear envelope preparations contained little or no demonstrable H-2 activity. These results were confirmed by several techniques including immunoprecipitation of labelled solubilized membrane components with anti-H-2 serum and subsequent analysis in SDS-PAGE.  相似文献   

12.
Sarcolemmal and sarcoplasmic reticulum membrane vesicle fractions were isolated from cardiac microsomes. Separation of sarcolemmal and sarcoplasmic reticulum membrane markers was documented by a combination of correlative assay and centrifugation techniques. To facilitate the separation, the crude microsomes were incubated in the presence of ATP, Ca2+, and oxalate to increase the density of the sarcoplasmic reticulum vesicles. After sucrose gradient centrifugation, the densest subfraction (sarcoplasmic reticulum) contained the highest (K+,Ca2+)-ATPase activity and virtually no (Na2+,K+)-ATPase activity, even when latent (Na+,K+)-ATPase activity was unmasked. In addition, the sarcoplasmic reticulum fraction contained no significant sialic acid, beta receptor binding activity, or adenylate cyclase activity. Sarcolemmal membrane fractions were of low buoyant density. Preparations most enriched in sarcolemmal vesicles contained the highest level of all the other parameters and only about 10% of the (K+,Ca2+)-ATPase activity of the sarcoplasmic reticulum fraction. The results suggest that (Na+,K+)-ATPase, sialic acid, beta-adrenergic receptors, and adenylate cyclase can be entirely accounted for by the sarcolemmal content of cardiac microsomes. Gel electrophoresis of the sarcolemmal and sarcoplasmic reticulum membrane fractions showed distinct bands. Membrane proteins exclusive to each of the fractions were also demonstrated by phosphorylation. Cyclic AMP stimulated phosphorylation by [gamma-32P]ATP of two proteins of apparent Mr = 20,000 and 7,000 that were concentrated in sarcoplasmic reticulum, but the stimulation was markedly dependent on the presence of added soluble cyclic AMP-dependent protein kinase. Cyclic AMP also stimulated phosphorylation of membrane proteins in sarcolemma, but this phosphorylation was mediated by an endogenous protein kinase activity. The apparent molecular weights of these phosphorylated proteins were 165,000, 90,000, 56,000, 24,000, and 11,000. The results suggest that sarcolemma may contain an integral enzyme complex, not present in sarcoplasmic reticulum, that contains beta-adrenergic receptors, adenylate cyclase, cyclic AMP-dependent protein kinase, and several substrates of the protein kinase.  相似文献   

13.
Membrane vesicles can be prepared from murine lymphoid cells by nitrogen cavitation and fractionated by sedimentation through nonlinear sucrose density gradients. Two subpopulations of membrane vesicles, PMI and PMII, can be distinguished on the basis of sedimentation rate. The subcellular distribution of adenylate and guanylate cyclases in these membrane subpopulations have been compared with the distribution of a number of marker enzymes. Approximately 20-30% of the total adenylate and guanylate cyclase activity is located at the top of the sucrose gradient (soluble enzyme), the remainder of the activity being distributed in the PMI and PMII fractions (membrane-bound enzyme). More than 90% of the 5'-nucleotidase and NADH oxidase activities detected in lymphoid cell homogenates are located in PMI and PMII fractions, whereas succinate cytochrome c reductase activity is detected only in the PMII fractions. In addition, beta-galactosidase activity is distributed in the soluble and PMII fractions of the sucrose density gradients. On the basis of the fractionation patterns of these various enzyme activities, it appears that PMI fractions contain vesicles of plasma membrane and endoplasmic reticulum, whereas PMII fractions contain mitochondria, lysomes, and plasma membrane vesicles. Approximately 30-40% of the adenylate and guanylate cyclase activities in PMII can be converted to a PMI-like form following dialysis and resedimentation through a second nonlinear sucrose gradient. Adenylate and guanulate cyclases can be distinguished on the basis of sensitivity to nonionic detergents.  相似文献   

14.
A new procedure is described for the preparation of highly purified and stable secretory vesicles from adrenal medulla. Two forms of acetylcholinesterase, a membrane bound form as well as a soluble form, were found within these vesicles. The secretory vesicles, isolated by differential centrifugation, were further purified on a continuous isotonic Percoll? gradient. In this way, secretory vesicles were separated from mitochondrial, microsomal and cell membrane contamination. The secretory vesicles recovered from the gradient contained an average of 2.26 μmol adrenalin/mg protein. On incubation for 30 min at 37°C in media differing in ionic strength, pH, Mg2+ and Ca2+ concentration, the vesicles released less than 20% of total adrenalin. Acetylcholinesterase could hardly be detected in the secretory vesicle fraction when assayed in isotonic media. However, in hypotonic media (<400 mosmol/kg) or in Triton X-100 (0.2% final concentration) acetylcholinesterase activity was markedly higher. During hypotonic treatment or when secretory vesicles were specifically lyzed with 2 mM Mg2+ and 2 mM ATP, adrenalin as well as part of acetylcholinesterase was released from the vesicular content. On polyacrylamide gel electrophoresis this soluble enzyme exhibited the same electrophoretic mobility as the enzyme released into the perfusate from adrenal glands upon stimulation. In addition to the soluble enzyme a membrane bound form of acetylcholinesterase exists within secretory vesicles, which sediments with the secretory vesicle membranes and exhibits a different electrophoretic mobility compared to the soluble enzyme. It is concluded, that the soluble enzyme found within isolated secretory vesicles is secreted via exocytosis, whilst the membrane-bound form is transported to the cell membrane during this process, contributing to the biogenesis of the cell membrane.  相似文献   

15.
Subfractionation of cardiac sarcolemma with wheat-germ agglutinin.   总被引:1,自引:0,他引:1       下载免费PDF全文
The properties of highly purified bovine cardiac sarcolemma subfractionated with the lectin, wheat-germ agglutinin (WGA) were studied. Two different membrane subfractions were isolated, one which was agglutinated in the presence of 1.0 mg of WGA/mg of protein (WGA+ vesicles) and a second fraction which failed to agglutinate (WGA- vesicles). These two membrane fractions had quantitatively different rates of Na+/K+-dependent, ouabain-sensitive ATPase and Na+/Ca2+ exchange activities, yet a similar protein composition, which suggests that they were both derived from the plasma membrane. WGA- vesicles had a decreased number of [3H]quinuclidinyl benzilate-binding sites and no detectable [3H]nitrendipine-binding sites. Electron-microscopic and freeze-fracture analysis showed that the WGA+ fraction was composed of typical spherical sarcolemmal vesicles, whereas the WGA- fraction primarily contained elongated tubular structures suggestive of the T-tubule vesicles which were previously isolated from skeletal muscle. Assays of marker enzymes revealed that these fractions were neither sarcoplasmic reticulum nor plasma membrane from endothelial cells. Moreover, WGA agglutination did not result in the separation of right-side-out and inside-out vesicles. On the basis of these findings we propose that the WGA+ fraction corresponds to highly purified sarcolemma, whereas the WGA- fraction may be derived from T-tubule membranes.  相似文献   

16.
A new method for isolating transverse tubule membranes from rabbit skeletal muscle has been developed. This procedure has the advantage of being mild, fast, and producing with good yields a purified membrane fraction. The transverse tubule membranes are purified by a discontinuous sucrose density centrifugation after loading contaminating light sarcoplasmic reticulum vesicles with calcium phosphate in the presence of ATP. Immunofluorescence staining of cryostat sections of rabbit psoas muscle with purified goat antibodies directed against the purified membranes shows that the reacting antigens are distributed at the boundary of the A and I bands of the myofibrils where transverse tubules are localized in mammalian muscle. The purified antibodies showed no cross-reactivity with sarcoplasmic reticulum, nor did they show any fluorescence staining of the muscle plasma membrane, indicating that the isolated membranes indeed originate from the transverse tubules. The transverse tubule fraction has a characteristic protein composition distinguishable from that of sarcoplasmic reticulum, a much higher cholesterol content than that of the crude microsomes, plasma membrane, and sarcoplasmic reticulum, and a phospholipid content about twice as high as that of sarcoplasmic reticulum and plasma membrane. The purified transverse tubule membrane has a distinct phospholipid composition with high contents of sphingomyelin and phosphatidylserine. A Mg2+-activated ATPase characteristic of the transverse tubule fraction undergoes a 20-30-fold increase in specific activity during purification. The levels of Ca2+-ATPase activity present in the purified transverse tubule fraction remain comparable to those of sarcoplasmic reticulum even after extensive removal of the latter.  相似文献   

17.
Hen oviduct signal peptidase is an integral membrane protein   总被引:11,自引:0,他引:11  
Membrane preparations from rough endoplasmic reticulum of hen oviduct resemble those of dog pancreas in their capacity to translocate nascent secretory proteins into membrane vesicles present during cell-free protein synthesis. As with the dog membranes, the precursor form of human placental lactogen is transported into the vesicles and processed to the native secretory form by an associated "signal peptidase." The oviduct microsomal membranes glycosylate nascent ovomucoid and ovalbumin in vitro. Attempts to extract the signal peptidase from these membrane vesicles revealed that it is one of the least easily solubilized proteins. A protocol for enrichment of signal peptidase was developed that took advantage of its tight association with these vesicles. These studies indicate that the enzyme has the characteristics of an integral membrane protein which remains active in membrane vesicles even after extraction with low concentrations of detergent that do not dissolve the lipid bilayer or after disruption of membrane vesicles in ice-cold 0.1 M Na2CO3, pH 11.5 (Fujiki, Y., Hubbard, A. L., Fowler, S., and Lazarow, P.B. (1982) J. Cell Biol. 93, 97-102), which releases the majority of membrane-associated proteins. Solubilization requires concentrations of nondenaturing detergents that totally dissolve the lipid bilayer. The detergent-solubilized enzyme retains the activity and the characteristic specificity of the membrane-bound form.  相似文献   

18.
ATP-dependent Ca2+ uptake by brain microsomes was classified into two fractions according to the sensitivity to saponin. Properties of each fraction of Ca2+ uptake were examined and compared with those of inside-out membrane vesicles of erythrocyte and cardiac sarcoplasmic reticulum. The concentration of saponin for 50% inhibition (IC50) of major saponin-sensitive Ca2+ uptake was 11 micrograms/ml, and this uptake was enhanced by calmodulin. The minor saponin-insensitive Ca2+ uptake fraction (IC50; 90 micrograms/ml) was not affected by calmodulin but was enhanced by oxalate or 0.1 M KCl. The IC 50 of saponin for inside-out membrane vesicles of erythrocyte and cardiac sarcoplasmic reticulum was 11.3 and 114.8 micrograms/ml, respectively. A characteristic ring-like saponin-cholesterol micellar structure was observed electron microscopically in most membrane vesicles of brain microsomes and erythrocyte membrane vesicles but not in the cardiac sarcoplasmic reticulum. These observations indicate that saponin-sensitive and insensitive Ca2+ uptake was derived from plasma membranes and endoplasmic reticulum, respectively. Saponin proved useful for distinguishing the Ca2+ transport activity of plasma membrane from the Ca2+ uptake of other cellular organelles in the membrane preparations.  相似文献   

19.
A kinetic study of membrane-bound and solubilized 3' : 5'-AMP-dependent protein kinase from rabbit myocardium sarcoplasmic reticulum membranes was carried out. Both enzyme preparations catalyzed the phosphorylation of exogenous protein substrates (histones) and endogenous membrane substrate. Solubilization of protein kinase and its subsequent purification on columns with DEAE-cellulose and hydroxyapatite did not change the substrate specificity and kinetic properties of the enzyme. Both preparations differed in the maximal rates of the reaction; the differences in apparent Km values for ATP and histone H1 were insignificant. The membrane-bound and solubilized preparations had the same pH optimum of 6,5. Their maximum activity was exerted at Mg2+ concentration considerably exceeding that of ATP. Ca2+ at micromolar concentrations had no effect on the enzyme activity.  相似文献   

20.
Cholinesterase (ChE) activity is present in crustacean muscle extracts. However, since acetylcholine (ACh) is not a neuromuscular transmitter in these animals, the role and exact localization of ChE was unknown. The histochemical localization of the enzyme was studied in whole muscle and in the sarcoplasmic reticulum fraction of the extract, 50-µm frozen sections of glutaraldehyde-fixed crayfish tail flexor muscle were incubated with acetylthiocholine (ATC) as substrate, and examined under the electron microscope. After some modifications in published techniques, dense deposits were found associated with the sarcolemma, sarcolemmal invaginations, and transverse tubules. No deposits were found in 10-4 M eserine, or if butyrylthiocholine (BTC) was substituted for ATC. The vesicles in the sarcoplasmic reticulum fraction which demonstrate the activity must represent minced bits of these membranes. Using a spectrophotometric method, the kinetics of the crustacean muscle enzyme was compared to the acetylcholinesterase (AChE) on mammalian red blood cells and in the lobster ventral nerve cord. Surprisingly, and contrary to previous reports, the crustacean muscle enzyme did not demonstrate substrate inhibition. While a number of similarities to AChE were found, this lack of substrate inhibition makes questionable an unequivocal similarity with classical AChE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号