首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
By-product formation is a serious problem in the lipase-catalyzed acyl exchange of phospholipids (PL). By-products are formed due to parallel hydrolysis reactions and acyl migration in the reaction system. A clear elucidation of these side reactions is important for practical operation in order to minimize by-products during reaction. In the present study we examined the lipozyme RM IM-catalyzed acidolysis for the production of structured phospholipids between phosphatidylcholine (PC) and caprylic acid in the solvent-free system. A five-factor response surface design was used to evaluate the influence of major factors and their relationships on a number of responses reflecting the turnover of main reactions as well as side reactions. The five factors, including enzyme dosage, reaction time, reaction temperature, substrate ratio (mol/mol caprylic acid/PC) and water addition, were varied at three levels with two star points. All parameters besides water addition had an effect on the incorporation of caprylic acid into PC and lysophosphatidylcholine (LPC). Reaction time and enzyme dosage showed increased effect on incorporation into PC, while substrate ratio and reaction temperature showed opposite effect. The PC content decreased with increase of all parameters except for substrate ratio. Optimal conditions are recommended as enzyme dosage 40%, reaction temperature 55 °C, water addition 1%, reaction time 70 h, and substrate ratio 6 mol/mol caprylic acid/PC. Under these conditions an incorporation of 46% with PC accounting for 53% of the PL fraction can be obtained. Regiospecific analysis of the product revealed that the caprylic acid was mainly incorporated into the sn-1 position accounting for 80% of the fatty acids incorporated.  相似文献   

3.
A new model of enzymatic 1,3-specific alcoholysis of triacylglycerols has been developed. The irreversibility of the acyl bounds cleavage in glycerides, a reversible monoglycerides isomerization and an irreversible enzyme deactivation have been assumed. The Ping Pong Bi Bi mechanism with competitive inhibition by alcohol has been applied to describe rates of acyl bonds cleavage. The enzymatic propanolysis and iso-propanolysis of triacetin and tricaprylin catalyzed by immobilized lipase B from Candida antarctica (Novozym 435) have been investigated to verify the model. Good agreement between experimental data and calculations has been obtained. It was shown that the rate of tricaprylin alcoholysis is higher than the triacetin alcoholysis and that the rate of iso-propanolysis reactions are higher than propanolysis. The irreversible enzyme deactivation affects the conversion of glycerides whereas the competitive alcohol inhibition may be neglected. Empirical correlations of rates for monoglycerides isomerization and enzyme deactivation have been proposed.  相似文献   

4.
The effect of ATP on the formation, spectral properties, and reactions of [beta-(2-furyl)acryloyl]glyceraldehyde-3-phosphate dehydrogenase (FA-GPDH) has been investigated. The chromophoric FA-GPDH has the advantage of providing spectrophotometric signals of the interaction of acyl enzyme with nucleotides and dinucleotides. The results are consistent with the exclusive existence of two acyl-enzyme conformations previously inferred from the interaction of the acyl enzyme with NAD+ and NADH. ATP interaction stabilizes a conformation different from that stabilized by NAD+. The inhibitory effects of ATP on these reactions are consistent with the reported inhibitory effect of ATP on the steady-state reaction with the true substrate. The physiological significance of these results to the regulation of glycolysis, via the ligand-dependent fate of 3-phosphoglycerol-GPDH, is discussed.  相似文献   

5.
Transglutaminase (TGase) is an enzyme that catalyzes acyl transfer reactions between primary amines and Gln residues in proteins or peptides. Substrate specificities of TGase, Ca2+-independent microbial transglutaminase (MTGase), and Ca2+-dependent tissue type transglutaminase from guinea pig liver (GTGase) and fish, Red sea bream (Pagrus major), liver (FTGase), for acyl donors were investigated using synthetic peptides containing Gln residues and Gln analogues with different lengths of side chain. MTGase dose not recognize the Gln analogues as a substrate and has strict substrate specificities toward L-Gln. Substrate peptides with a variety of sequences around the Gln residue, GXXQXXG (X=G, A, S, L, V, F, Y, R, N, E, L) were synthesized and used as acyl donors. As an acyl acceptor, the fluorescent reagent monodancyl cadaverine was used and the reactions analyzed with RP-HPLC. Substitution of the C-terminal of a Gln residue with a hydrophobic amino acid accelerated the reaction by GTGase and FTGase. N-terminal substitution of Gln residues had similar effects on the reaction by MTGase.  相似文献   

6.
In order to extend the use of proteases to organic synthesis and seek the rules of enzymatic reactions in organic media, we focused on unnatural substrates for proteases to form amide bonds. In this paper, the study of unnatural substrates containing D-amino acid residue, which act as acyl acceptors as well as acyl donors for proteases in organic media, is reported. Dermorphin is a heptapeptide (H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) with potent analgesic activity. The N-terminal tetrapeptide is the minimum sequence that retains dermorphin activity, and is selected as the model compound in our study. Two dermorphin-(1-4) derivatives, Boc-Tyr-D-Ala-Phe-Gly-N(2)H(2)Ph and Boc-Tyr-D-Ala-Phe-Gly-NH(2), which contained a d-amino acid residue, were synthesized by proteases in organic media for the first time. The synthesis of these two dermorphin-(1-4) derivatives could be catalyzed by subtilisin with Boc-Tyr-D-Ala-OCH(2)CF(3) as an acyl donor substrate in AcOEt. The synthesis of dermorphin-(1-2) derivative Boc-Tyr-D-Ala-N(2)H(2)Ph was catalyzed by alpha-chymotrypsin in different organic solvents and D-Ala-N(2)H(2)Ph was used as an acyl acceptor substrate. Factors influencing the above enzymatic reactions were systematically studied.  相似文献   

7.
It was found that the reactivity of alpha-amino acid naphthylamides in acyl transfer reactions catalyzed by alpha-chymotrypsin exceeds by more than two orders of magnitude the effective reactivity of other C-protected derivatives of these compounds. A detailed kinetic analysis of the acyl transfer of the tert-butyl oxycarbonyl-L-methionine residue from its p-nitrophenyl ester to L-arginine naphthylamide was carried out. A minimal kinetic scheme of acyl transfer reactions is proposed, including together with the major process, i.e., acyl residue transfer to the nucleophil, the hydrolysis of the acyl enzyme-nucleophil complex and nucleophil binding by the free enzyme. The numeric values of some kinetic constants were determined. A theoretical analysis of the effect of hydrolysis of the acyl enzyme-nucleophil complex on the degree of nucleophil conversion into the peptide at initial acyl group donor and nucleophil concentrations was carried out.  相似文献   

8.
Chromophoric [4-(dimethylamino)cinnamoyl]imidazole reacts with the serine protease alpha-chymotrypsin to form an acyl enzyme. At pHs below 4.0, the acyl enzyme turns over very slowly to yield the free acid. During this slow deacylation it is possible to obtain a very good resonance Raman spectrum of the acyl intermediate by using the 350.7-nm line of the krypton laser. The resonance Raman carbonyl frequency of the covalently bonded substrate and its wavelength at maximum intensity in the absorption spectrum of the acyl enzyme have been taken and used to monitor the active site environment. A comparison has been made of the absorption and Raman spectra of the acyl enzyme and those of the corresponding chromophoric methyl ester, aldehyde, and imidazole model compounds. A linear correlation is found between the wavelength of maximum absorption and the Raman frequency of the carbonyl group over a wide range of solvent conditions for each of the model compounds. By combining the Raman carbonyl frequency with the absorption maximum, we can determine that the bond order changes in the carbonyl bond of the bound substrate are not due to changes in the solvent, since the carbonyl frequency and the absorption maximum of the acyl enzyme do not fall on any of the linear correlations for the model compounds. The unusual spectroscopic properties of the bound substrate appear to be due to some specific enzyme-induced change in the substrate when it is bound at the active site. Thermal unfolding of the acyl enzymes changes both the carbonyl frequency of the acyl enzyme and its absorption maximum to completely different values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
HlyC, hemolysin-activating lysine-acyltransferase, catalyses the acylation (from acyl-acyl carrier protein [ACP]) of Escherichia coli prohemolysin (proHlyA) on the epsilon-amino groups of specific lysine residues, 564 and 690 of the 1024 amino acid primary structure, to form hemolysin (HlyA). Isothermal titration calorimetry was used to measure the thermodynamic properties of the protein acylation of proHlyA-derived structures, altered by substantial deletions and separation of the acylation sites into two different peptides and site directed mutation analyses of acylation sites. Acylation of proHlyA-derived proteins catalyzed by HlyC was overall an exothermic reaction driven by a negative enthalpy. The reaction, whose kinetics are compatible to a ping-pong mechanism, is composed of two partial reactions. The first, the formation of an acyl-HlyC intermediate, was entropically driven, most likely by noncovalent complex formation between acyl-ACP and HlyC; enthalpy-driven acyl transfer followed, resulting in acyl-HlyC and ACPSH product formation. The second partial reaction was an energetically unfavorable acyl transfer from acyl-enzyme intermediate to the final acyl acceptor, a proHlyA derivative. Overall the acylation of proHlyA-derived proteins catalyzed by HlyC was driven by the energetics of the acyl enzyme intermediate reaction. Of the two acylation sites, intactness of the site equivalent to proHlyA K564 was more important for acylation reaction thermodynamic stability.  相似文献   

10.
The effects of various agents that could be expected to perturb enzyme structure in a non-specific and reversible manner (alcohols, dimethylsulfoxide, dimethylformamide, dinitrobenzene, urea and guanidine - HCl) have been determined on reaction of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) with a substrate, p-nitrophenyl acetate, and two irreversible inhibitors, diisopropylphosphorofluoridate and methanesulfonyl fluoride. In all three of these reactions an acyl group (acetyl, phosphoryl or sulfonyl respectively) bonds covalently with the active center of the enzyme. As expected, the reactions of p-nitrophenyl acetate and diisopropylphosphorofluoridate were severely retarded by most of these agents. By contrast, reaction of methanesulfonyl fluoride was usually depressed to a far smaller degree, and in two cases was faster. These findings are of interest in connection with: (1) differing requirements for the integrity of tha active center in catalysis with various substrate analogs, and (2) the mechanism by which cationic substrate analogs accelerate reaction of the enzyme with methanesulfonyl fluoride.  相似文献   

11.
M Rotenberg  D Zakim 《Biochemistry》1989,28(21):8577-8582
The GT2P isoform of microsomal UDP-glucuronosyltransferase from pig liver is a lipid-dependent enzyme. The data in the present work indicate that, in addition to regulation of activity, the thermal stability of the enzyme also is modulated by the acyl chain composition of phosphatidylcholines (PC) used to reconstitute the activity of pure enzyme. There was a reversible, temperature-dependent change in the state of the pure enzyme to an inactive form with onset at T greater than 38 degrees C, depending on the environment of the enzyme. The midpoint for the transition shifted from 39.8 degrees C for enzyme in a bilayer of distearoylphosphatidylcholine (DSPC) to 47.5 degrees C for enzyme in a bilayer of 1-stearoyl-2-oleoylphosphatidylcholine (SOPC). For all lipids, the transition from a catalytically active to an inactive form of the enzyme was associated with large compensating changes in H and S. Lipid-induced stabilization of the active form of UDP-glucuronosyltransferase at T greater than 37 degrees C was associated with decreases in delta H and delta S, but the decreases in delta S were larger, indicating that lipid-induced stabilization of the active form of the enzyme was entropic. The transition between the active and inactive forms of the enzyme was too rapid in either direction to measure in a standard spectrophotometer. In addition to reversible inactivation of the enzyme, there was a slower irreversible, temperature-dependent inactivation. The rate of this process depended on the acyl chains of the phosphocholines interacting with the enzyme. However, there was no obvious correlation between the structures of lipids that stabilized the different inactivation reactions.  相似文献   

12.
Acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine occurs in the microsomal preparations of developing safflower cotyledons. Evidence is presented to show that the acyl exchange is catalysed by the combined back and forward reactions of an acyl-CoA:lysophosphatidylcholine acyltransferase (EC 2.3.1.23). The back reaction of the enzyme was demonstrated by the stimulation of the acyl exchange with free CoA and by the observation that the added CoA was acylated with acyl groups from position 2 of sn-phosphatidylcholine. Re-acylation of the, endogenously produced, lysophosphatidylcholine with added acyl-CoA occurred with the same specificity as that observed with added palmitoyl lysophosphatidylcholine. A similar acyl exchange, catalysed by an acyl-CoA:lysophosphatidylcholine acyltransferase, occurred in microsomal preparations of rat liver. The enzyme from safflower had a high specificity for oleate and linoleate, whereas arachidonate was the preferred acyl group in the rat liver microsomal preparations. The rate of the back reaction was 3-5% and 0.2-0.4% of the forward reaction in the microsomal preparations of safflower and rat liver respectively. Previous observations, that the acyl exchange in safflower microsomal preparations was stimulated by bovine serum albumin and sn-glycerol 3-phosphate, can now be explained by the lowered acyl-CoA concentrations in the incubation mixture with albumin and in the increase in free CoA in the presence of sn-glycerol 3-phosphate (by rapid acylation of sn-glycerol 3-phosphate with acyl groups from acyl-CoA to yield phosphatidic acid). Bovine serum albumin and sn-glycerol 3-phosphate, therefore, shift the equilibrium in acyl-CoA:lysophosphatidylcholine acyltransferase-catalysed reactions towards the rate-limiting step in the acyl exchange process, namely the removal of acyl groups from phosphatidylcholine. The possible role of the acyl exchange in the transfer of acyl groups between complex lipids is discussed.  相似文献   

13.
Reaction of pigeon and rat liver fatty acid synthetases with phenylmethylsulphonyl fluoride at pH 7.0 results in rapid and complete loss of activity for fatty acid synthesis. Acetyl and malonyl transacylation, two reductions, dehydration and condensation-CO2 exchange reactions are not appreciably altered in the modified enzyme. However, the deacylation of palmityl CoA is completely inhibited. Complete inactivation results in the incorporation of about 1.9 moles of 14C-phenylmethylsulphonyl groups/mole of the enzyme complex. These results suggest that either two moles of a fatty acyl deacylase or two deacylases with different fatty acyl chain length specificities may be functional in the enzyme complex.  相似文献   

14.
Many bacterial surface proteins containing an LPXTG motif are anchored to the cell wall peptidoglycan by catalysis with the thiol transpeptidase sortase. The transpeptidation and hydrolysis reactions of sortase have been proposed to proceed through a common acyl enzyme intermediate. The reactions of Staphylococcus aureus sortase with fluorogenic substrate Abz-LPETG-Dnp in the presence or absence of triglycine were characterized in this study to gain additional insight into the kinetic mechanism of sortase. We report here the development of a reverse-phase HPLC assay to identify and characterize sortase reaction intermediates. The HPLC results provide for the first time clear evidence for the formation of a kinetically competent acyl enzyme intermediate during the overall transpeptidation reaction. The results also suggest that sortase undergoes an unexpected intramolecular acyl transfer reaction in the absence of a nucleophile. The significance of this type of HPLC assay as a tool to study enzyme mechanism is discussed.  相似文献   

15.
Structural and functional organization of the animal fatty acid synthase   总被引:23,自引:0,他引:23  
The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between and within subunits.  相似文献   

16.
Diacylglycerol esterification provides an excellent target for the pharmacological reduction of triglyceride accumulation in several human disease states. We have used Saccharomyces cerevisiae as a model system to study this critical component of triglyceride synthesis. Recent studies of an oleaginous fungus, Mortierella ramanniana, identified a new family of enzymes with in vitro acyl-CoA:diacylglycerol acyltransferase activity. We show here that DGA1, the sole member of this gene family in yeast, has a physiological role in triglyceride synthesis. Metabolic labeling of DGA1 deletion strains with triglyceride precursors detected significant reductions in triglyceride synthesis. Triglyceride synthesis was virtually abolished in four different growth conditions when DGA1 was deleted in concert with LRO1, an enzyme that esterifies diacylglycerol from a phospholipid acyl donor. The relative contributions of the two enzymes depended on growth conditions. The residual synthesis was lost when ARE2, encoding an acyl-CoA:sterol acyltransferase, was deleted. In vitro microsomal assays verified that DGA1 and ARE2 mediate acyl-CoA:diacylglycerol acyltransferase reactions. Three enzymes can thus account for diacylglycerol esterification in yeast. Yeast strains deficient in both diacylglycerol and sterol esterification showed only a slight growth defect indicating that neutral lipid synthesis is dispensable under common laboratory conditions.  相似文献   

17.
The imidazole of chromophoric p-(dimethylamino)benzoic acid, DABIm, reacts with the serine protease alpha-chymotrypsin in the pH range of 4-7 to form a stable acyl intermediate that gives very good resonance-enhanced Raman spectra. The resonance Raman and absorption spectra of the acyl enzyme intermediate have been compared with the spectra of simple model compounds such as the corresponding chromophoric methyl ester, aldehyde, and imidazole. The resonant Raman and ultraviolet absorption spectra of these simple chromophoric model compounds change considerably with the solvent. However, each of the model compounds exhibits a linear correlation between the maximum wavelength of absorption and the frequency of the carbonyl vibration. The observed values of the acyl intermediate do not fall on the line for the methyl ester but rather on the line for the aldehyde. This shows that the chromophoric serine ester of the acyl enzyme behaves differently than an ordinary ester, which cannot be explained as a solvent effect. Thermal unfolding of the acyl enzyme brings the spectroscopic parameters close to those of the model ester. We conclude that it is the specific conformation of the native enzyme and not solvent effects that change the spectroscopic properties of the acyl chromophore. It is reasonable that these changes arise from the same forces that cause the catalytic events. The carbonyl frequencies of a series of para-substituted benzoyl methyl esters show a remarkably linear correlation with the rate of deacylation of the corresponding acyl enzymes.  相似文献   

18.
Acyl Group Migrations in 2-Monoolein   总被引:6,自引:0,他引:6  
Acyl migration in 2-monoolein dissolved in solvents under conditions common in lipid modification reactions has been studied. The effects on acyl migration of solvent, incubation temperature, water activity, polar additives and solid additives have been investigated. Extensive acyl migration occured in aliphatic hydrocarbons and water-miscible alcohols under dry conditions. The acyl migration rate could be decreased in several nonpolar solvents by adding a small amount of water or an alcohol. Increasing water activity had no effect in isooctane, but decreased the acyl migration rate dramatically in methyl tert-butyl ether and methyl isobutyl ketone. Several commonly used enzyme supports catalysed acyl migration, showing that supports with surface charges could catalyse acyl migration.  相似文献   

19.
The Actinomadura R39 DD-peptidase catalyzes the hydrolysis and aminolysis of a number of small peptides and depsipeptides. Details of its substrate specificity and the nature of its in vivo substrate are not, however, well understood. This paper describes the interactions of the R39 enzyme with two peptidoglycan-mimetic substrates 3-(D-cysteinyl)propanoyl-D-alanyl-D-alanine and 3-(D-cysteinyl)propanoyl-D-alanyl-D-thiolactate. A detailed study of the reactions of the former substrate, catalyzed by the enzyme, showed DD-carboxypeptidase, DD-transpeptidase, and DD-endopeptidase activities. These results confirm the specificity of the enzyme for a free D-amino acid at the N-terminus of good substrates and indicated a preference for extended D-amino acid leaving groups. The latter was supported by determination of the structural specificity of amine nucleophiles for the acyl-enzyme generated by reaction of the enzyme with the thiolactate substrate. It was concluded that a specific substrate for this enzyme, and possibly the in vivo substrate, may consist of a partly cross-linked peptidoglycan polymer where a free side chain N-terminal un-cross-linked amino acid serves as the specific acyl group in an endopeptidase reaction. The enzyme is most likely a DD-endopeptidase in vivo. pH-rate profiles for reactions of the enzyme with peptides, the thiolactate named above, and β-lactams indicated the presence of complex proton dissociation pathways with sticky substrates and/or protons. The local structure of the active site may differ significantly for reactions of peptides and β-lactams. Solvent kinetic deuterium isotope effects indicate the presence of classical general acid/base catalysis in both acylation and deacylation; there is no evidence of the low fractionation factor active site hydrogen found previously in class A and C β-lactamases.  相似文献   

20.
Hofvander P  Doan TT  Hamberg M 《FEBS letters》2011,585(22):3538-3543
The reduction of acyl-CoA or acyl-ACP to fatty alcohol occurs via a fatty aldehyde intermediate. In prokaryotes this reaction is thought to be performed by separate enzymes for each reduction step while in eukaryotes these reactions are performed by a single enzyme without the release of the intermediate fatty aldehyde. However, here we report that a purified fatty acyl reductase from Marinobacter aquaeolei VT8, evolutionarily related to the fatty acyl reductases in eukaryotes, catalysed both reduction steps. Thus, there are at least two pathways existing among prokaryotes for the reduction of activated acyl substrates to fatty alcohol. The Marinobacter fatty acyl reductase studied has a wide substrate range in comparison to what can be found among enzymes so far studied in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号