首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the effects of fluctuations in deoxynucleoside triphosphate (dNTP) pool size on DNA repair and, conversely, the effect of DNA repair on dNTP pool size. In confluent normal human skin fibroblasts, dNTP pool size was quantitated by the formation of [3H]TTP from [3H]thymidine; DNA repair was examined by repair replication in cultures irradiated with UV light. As defined by HPLC analysis, the [3H]TTP pool was formed within 30 min of the addition of [3H]thymidine and remained relatively constant for the next 6 h. Addition of 2-10 mM hydroxyurea (HU) caused a gradual 2-4-fold increase in the [3H]TTP pool as HU inhibited DNA synthesis but not TTP production. No difference was seen between the [3H]TTP pool size in cells exposed to 20 J/m2 and unirradiated controls, although DNA-repair synthesis was readily quantitated in the former. This result was observed even though the repair replication protocol caused an 8-10-fold reduction in the size of the [3H]TTP pool relative to the initial studies. In the UV excision-repair studies the presence of hydroxyurea did not alter the specific activity of [3H] thymidine 5'-monophosphate incorporated into parental DNA due to repair replication. These results suggest that fluctuations in the deoxynucleoside triphosphate pools do not limit the extent of excision-repair synthesis in human cells and demonstrate that DNA nucleotide excision-repair synthesis does not significantly diminish the size of the [3H]TTP pool.  相似文献   

2.
Hydroxyurea, deoxyadenosine, pyridine-2-carboxaldehyde thiosemicarbazone, pyrazoloimidazole, 3,5-diamino-1,2,4 triazole (guanazole), 3,4,5-trihydroxy benzohydroxamic acid and 3,4-dihydroxy benzohydroxamic acid were examined for their effects on cellular dNTP pools, DNA excision repair, DNA replication and deoxynucleoside uptake in human diploid fibroblasts. All 7 agents were effective inhibitors of the UV excision repair process in noncycling quiescent cells, but not in rapidly dividing log-phase cells. This differential effect clearly demonstrates dependency upon modulation of cellular purine dNTP pool levels at the level of the reductase. Repair synthesis is shown to be less sensitive to all 7 reductase inhibitors than is replicative synthesis. Studies on cellular uptake of labeled DNA precursors in inhibitor-treated cells support the notion that deoxynucleosides cannot channel into the replicative synthesis process whereas they are readily utilized at repairing sites.Abbreviations HU hydroxyurea - dA deoxyadenosine - TSC pyridine-2-carboxaldehyde thiosemicarbazone - IMPY pyrazoloimidazole - THBA 3,4,5-trihydroxy benzohydroxamic acid - DHBA 3,4-dihydroxy benzohydroxamic acid - UDS unscheduled DNA synthesis - dT thymidine - dNTP deoxynucleoside triphosphate  相似文献   

3.
In exponentially growing 3T6 cells, the synthesis of deoxythymidine triphosphate (dTTP) is balanced by its utilization for DNA replication, with a turnover of the dTTP pool of around 5 min. We now investigate the effects of two inhibitors of DNA synthesis (aphidicolin and hydroxyurea) on the synthesis and degradation of pyrimidine deoxynucleoside triphosphates (dNTPs). Complete inhibition of DNA replication with aphidicolin did not decrease the turnover of pyrimidine dNTP pools labeled from the corresponding [3H]deoxynucleosides, only partially inhibited the in situ activity of thymidylate synthetase and resulted in excretion into the medium of thymidine derived from breakdown of dTTP synthesized de novo. These data demonstrate continued synthesis of dTTP in the absence of DNA replication. In contrast, hydroxyurea decreased the turnover of pyrimidine dNTP pools 5-50-fold. Hydroxyurea is an inhibitor of ribonucleotide reductase and stops DNA synthesis by depleting cells of purine dNTPs but not pyrimidine dNTPs. Our results suggest that degradation of dNTPs is turned off by an unknown mechanism when de novo synthesis is blocked.  相似文献   

4.
The effect of hydroxyurea on DNA repair replication has been studied in Chinese hamster ovary cells. Mitotic cells were treated with UV irradiation, methyl methanesulfonate or nitrogen mustard and incuated in the presence of each of the 4 [3H]deoxyribonucleosides plus BrdUrd and FdUrd for 2 h. The amount of repair replication was quantitated on CsCl gradients and similar values were obtained for each nucleoside. In all cases addition of HU during the incubation period increased these values approximately 2-fold. Following MMS treatment, pool sizes for each of the nucleosides were estimated by varying the amount of exogenously supplied nucleoside. They were found to be insensitive to the addition of HU and it is concluded that the increased incorporation of [3H]deoxyribonucleosides in the presence of HU reflects an increased amount of repair replication.  相似文献   

5.
R D Snyder 《Mutation research》1984,131(3-4):163-172
The effects of hydroxyurea (HU) on the DNA-excision repair process in human cells has been systematically examined. It is demonstrated that HU induces DNA single-strand break accumulation in a dose-dependent fashion in ultraviolet-irradiated and MMS-treated confluent but not log-phase fibroblasts and that these breaks are clearly the consequence of the inhibition by HU of the enzyme, ribonucleotide reductase. The breaks form rapidly, are stable for at least 10 h and largely disappear by 20 h. The production of these DNA-strand breaks is antagonized by a combined treatment of 10 microM deoxyadenosine, deoxycytidine and deoxyguanosine whereas thymidine potentiates strand-break formation at low HU concentrations. It is also confirmed that HU, while inhibiting replicative synthesis has no apparent inhibitory effect on unscheduled DNA synthesis (UDS) although the increased uptake of labeled DNA precursors into HU-treated cells makes it difficult to assess the actual effects on the repair-synthetic process. Analysis of the effects of HU on deoxynucleoside triphosphate pool levels and the demonstration of the failure of the HU block to replicative synthesis to be reversed by high (1 mM) concentrations of added deoxynucleosides lend support to the notion of compartmentalized dNTP pools for repair and replication.  相似文献   

6.
DNA excision repair inhibition by arabinofuranosyl cytosine (ara-C) or by ara-C/hydroxyurea (HU) was measured in log phase and confluent cultures of normal and xeroderma pigmentosium (XP)-variant human fibroblasts following insult by ultraviolet (UV) light (20 J/m2). Repair inhibition was determined by measuring the accumulation of DNA single-strand breaks/108 daltons following cell culture exposure to ara-C or ara-C/HU in a series of 3 hr. pulses up ro 24 hr. after UV insult. Both normal and XP-variant derived cells showed a wide range of sensitivity to ara-C in log phase cells (0.2–9.4 breaks/108 daltons DNA), although strand break accumulation was constant for each specific cell line. The same cells were more sensitive to ara-C/HU with a 2–14 fold increase in DNA strand breaks depending upon the cell line assayed. In confluent cultures of normal cells, maximum sensitivity to ara-C and ara-C/HU was achieved with similar levels of repair inhibition observed (16.1 and 16.5 breaks/108 daltons, respectively). The same level of repair inhibition was observed in confulent XP-variants receiving ara-C/HU, but was reduced by 62–68% in cells treated with ara-C alone. Ara-C repair arrest was more rapidly reversed by competing concentrations of exogenous deoxycytidine (dCyd) in XP-variant compared to normal cells, especially in confluent cell cultures. In ara-C/HU treated cells, the level of dCyd reversal was reduced in the XP-variant when compared to cells exposed to ara-C alone. However, the same addition of HU had relatively little effect on dCyd reversal in normal cells. The measurements of dNTP levels indicate an elevated level of intracellular deoxycytosine triphosphate in XP-variant vs normal cells. The implications of these results are discussed as they relate to possible excision repair anomalies in the XP-variant.Abbreviations ara-C arabinofuranosul cytosine - dCTP deoxycytosine triphosphate - dCyd deoxycytidine - dNTP deoxynucleoside triphosphate - dT thymidine - HU hydroxyurea - XP xeroderma pigmentosium This research was sponsored jointly by the National Cancer Institute under Interagency Agreement #40-5-63, and the Office of Health and Environment Research, U. S. Department of Energy, under Contract W-7405-eng-26 with the Union Carbide Corporation.  相似文献   

7.
Hydroxyurea inactivates ribonucleotide reductase from mammalian cells and thereby depletes them of the deoxynucleoside triphosphates required for DNA replication. In cultures of exponentially growing 3T6 cells, with 60-70% of the cells in S-phase, 3 mM hydroxyurea rapidly stopped ribonucleotide reduction and DNA synthesis (incorporation of labeled thymidine). The pool of deoxyadenosine triphosphate (dATP) decreased in size primarily, but also the pools of the triphosphates of deoxyguanosine and deoxycytidine (dCTP) were depleted. Paradoxically, the pool of thymidine triphosphate increased. After addition of hydroxyurea this pool was fed by a net influx and phosphorylation of deoxyuridine from the medium and by deamination of intracellular dCTP. An influx of deoxycytidine from the medium contributed to the maintenance of intracellular dCTP. 10 min after addition of hydroxyurea, DNA synthesis appeared to be completely blocked even though the dATP pool was only moderately decreased. As possible explanations for this discrepancy, we discuss compartmentation of pools and/or vulnerability of newly formed DNA strands to nuclease action and pyrophosphorolysis.  相似文献   

8.
Using pulse labeling techniques with [3H]thymidine or [3H]cytidine, combined with DNA fiber autoradiography, we have investigated the direction and rate of DNA chain growth in mammalian cells. In general, chain elongation proceeds bidirectionally from the common origin of pairs of adjacent replication sections. This type of replication is noted whether the DNA is labeled first with [3H]thymidine of high specific activity, followed by [3H]thymidine of low specific activity or the sequence is reversed. Approximately one-fifth of the growing points have unique origins and in these replication units, chain growth proceeds in one direction only. Fluorodeoxyuridine and hydroxyurea both inhibit DNA chain propagation. Fluorodeoxyuridine exerts its effect on chain growth within 15–23 min, while the effect of hydroxyurea is evident within 15 min under conditions where the endogenous thymidine pool has been depleted by prior treatment with fluorodeoxyuridine. Puromycin has no effect on chain growth until 60 min after addition of the compound, even though thymidine incorporation is more than 50% reduced within 15 min. After 2 h of treatment with puromycin, the rate of chain growth is reduced by 50%, whereas thymidine incorporation is reduced by 75%. Cycloheximide reduces the rates of DNA chain growth and thymidine incorporation 50% within 15 min, and, on prolonged treatment, the decrease in rate of chain growth generally parallels the reduction in thymidine incorporation.  相似文献   

9.
Quantitation of Some DNA Precursor Data   总被引:1,自引:0,他引:1  
THE work of Kornberg on DNA repair and synthesis1,2 implicates deoxyribonucleoside 5′-triphosphate as a direct precursor of DNA synthesis. This relationship was questioned by the possibility of alternative replication schemes3,4. Werner5 studied the flux of thymine and thymidine into Escherichia coli DNA to determine the in vivo precursors of replicating DNA. Werner studied the incorporation of 3H labelled thymine into DNA and intracellular nucleotide pools under steady state conditions, in which thymine is converted into thymidine, thymidine monophosphate (TMP), thymidine diphosphate (TDP) and thymidine triphosphate (TTP). Werner measured separately the activities of labelled TMP, TDP, TTP and DNA at various times after E. coli cells had been exposed to a 3H-thymine synthetic medium. From a qualitative consideration of his results, Werner concluded that both TDP and TTP—but not TMP—were possible direct precursors of DNA replication.  相似文献   

10.
We have investigated the effects of inhibiting protein synthesis on the overall rate of DNA synthesis and on the rate of replication fork movement in mammalian cells. In order to test the validity of using [3H]thymidine incorporation as a measure of the overall rate of DNA synthesis during inhibition of protein synthesis, we have directly measured the size and specific radioactivity of the cells' [3H]dTTP pool. In three different mammalian cell lines (mouse L, Chinese hamster ovary, and HeLa) nearly complete inhibition of protein synthesis has little effect on pool size (±26%) and even less effect on its specific radioactivity (±11%). Thus [3H]thymidine incorporation can be used to measure accurately changes in rate of DNA synthesis resulting from inhibition of protein synthesis.Using the assay of [3H]thymidine incorporation to measure rate of DNA synthesis, and the assay of [14C]leucine or [14C]valine incorporation to measure rate of protein synthesis, we have found that eight different methods of inhibiting protein synthesis (cycloheximide, puromycin, emetine, pactamycin, 2,4-dinitrophenol, the amino acid analogs canavanine and 5-methyl tryptophan, and a temperature-sensitive leucyl-transfer tRNA synthetase) all cause reduction in rate of DNA synthesis in mouse L, Chinese hamster ovary, or HeLa cells within two hours to a fairly constant plateau level which is approximately the same as the inhibited rate of protein synthesis.We have used DNA fiber autoradiography to measure accurately the rate of replication fork movement. The rate of movement is reduced at every replication fork within 15 minutes after inhibiting protein synthesis. For the first 30 to 60 minutes after inhibiting protein synthesis, the decline in rate of fork movement (measured by fiber autoradiography) satisfactorily accounts for the decline in rate of DNA synthesis (measured by [3H]thymidine incorporation). At longer times after inhibiting protein synthesis, inhibition of fork movement rate does not entirely account for inhibition of overall DNA synthesis. Indirect measurements by us and direct measurements suggest that the additional inhibition is the result of decline in the frequency of initiation of new replicons.  相似文献   

11.
The ability of a variety of chemical and physical agents to stimulate DNA repair synthesis in human cell cultures was tested by a simplified scintillometric procedure, with the use of hydroxyurea (HU) to suppress DNA replicative synthesis. After incubation with [3H]thymidine, the radioactivity incorporated in to DNA was determined in controls (C) and treated (T) cultures and in the corresponding HU series (CHU, THU). The ratios THU/CHU and THU/T:CHU/C, indicating absolute and relative increases of DNA radioactivity, were calculated. When both ratios were significantly higher than 1, they were taken as indices of DNA repair stimulation, whereas, no stimulation in inferred when both of them are ?1. The scintillometric estimate of DNA repair was always in agreement with the autoradiographic observations, so that the procedure adopted can be used as a rapid test for screening investigations.Agents giving a relative but no an absolute increase of DNA radioactivity are generally not inducers of repair synthesis as estimated by autoradiography. However, the same scintillometric results are also occasionally observed with DNA repair inducers, such as methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS), owing to alterations of thymidine pool radioactivity. These chemicals, besides affecting the levels of labelled precursors in the intracellular pool in the T series, differently modified the increase of pool radioactivity which is a regular effect of HU. With such chemicals, DNA repair synthesis can be detected only after normalization of th DNA radioactivity on the basis of pool alterations.The quantitative value of the autoradiographic estimate of DNA repair is also affected by the changes in the radioactivity of the thymidine pool although autoradiography retains its qualitative value.Dimethylnitrosamine, mitomycin C and potassium dichromate, described by other authors as inducers of DNA repair, also gave negative results by the scintillometric procedure after normalization of DNA radioactivities. However, in our hands, these agents were unable to stimulated repair synthesis, according to the results of autoradiography and isopynic centrifugation.The proposed scintillometric procedure is effective in indicating false negative inducers of DNA repair, not giving rise to false positives.  相似文献   

12.
When HeLa cells are irradiated with UV and treated with the DNA synthesis inhibitors hydroxyurea (HU) and 1-beta-D-arabinofuranosylcytosine (ara C), DNA strand breaks accumulate at sites where excision repair of DNA damage has been inhibited after the incision step. This break accumulation occurs in mitotic, G1 and S phase cells. But UV-induced repair synthesis of DNA, as measured by [3H]thymidine incorporation into unreplicated DNA, is not inhibited by HU and ara C in G1 or S phase cells, even though replicative synthesis is virtually abolished. Repair and replication must therefore utilise different DNA precursor pools, or different DNA synthetic systems; and the action of Hu and ara C in causing strand break accumulation may occur at the ligation step of excision repair.  相似文献   

13.
The repair activity of a human transformed cell line, RSa, which was found to be highly sensitive to the lethal effects of 254 nm far-ultraviolet radiation, was compared with that of HeLa cells by evaluating the range of UV-induced incorporation of [methyl-3H]thymidine ([3H]dThd) or 5-[6-3H]bromodeoxyuridine ([3H]BrdUrd) into deoxyribonucleic acid. Direct scintillation counting was used for measuring the extent of unscheduled DNA synthesis (UDS) in UV-irradiated cells, which were treated with hydroxyurea or with arginine deprivation. More quantitative measurements were made by using the density labeling and equilibrium centrifugation method for assaying repair replication. All the amounts of UDS and repair replication in RSa cells were markedly below those in HeLa cells. The possible relationships of the low repair activity to abnormally high UV sensitivity in RSa cells are discussed.  相似文献   

14.
Human lymphocytes in the quiescent state were exposed to UVC radiation. After irradiation the cells were allowed to repair for various times in the presence of [3H]thymidine or [3H]deoxycytidine in the culture medium. Hydroxyurea was not used to suppress semiconservative DNA replication in the small number of growing cells. After incubation DNA strand breaks were detected by the DNA-unwinding method and the amount of 3H incorporation in DNA was measured by liquid scintillation counting. The results show that the yield of DNA strand breaks and the amount of unscheduled DNA synthesis (UDS) can be measured from the same lymphocyte sample. A low background 3H incorporation in untreated cells could be achieved even in the absence of hydroxyurea. This requires, however, that 3H incorporation is measured only in the double-stranded DNA and that [3H]dCyd is used instead of [3H]dThd as the labelled deoxynucleoside.  相似文献   

15.
The induction of DNA repair synthesis by UV radiation and methylmethane sulphonate (MMS) in mammalian cell lines of human (EUE, HeLa, FT, KB) and hamster (CHO, BHK) origin has been evaluated by means of autoradiography and the scintillometric procedure which implied the use of hydroxyurea (HU) to suppress DNA replication.While with UV radiation both methods produce concordant positive results, in the case of MMS the evidence of DNA repair synthesis obtained from the autoradiograms is occasionally accompanied by a lack of increase of DNA radioactivity in the treated cultures, as detected by scintillation counting. In such instances MMS is shown to reverse the enhancement of pool radioactivity in the cultures incubated with HU and even to reduce the radioactivity of thymidine pool below control values. By normalizing DNA radioactivities on the basis of pool variations, the discrepancy between autoradiography and scintillation counting is solved.The chromatographic analysis of thymidine pool components justifies the normalization procedure as it demonstrates that also in cultures treated with MMS or MMS + HU pool variations closely parallel the variations of thymidine triphosphate (dTTP) level.The normalization of DNA radioactivities based on the overall pool radioactivities gives an improved evaluation of the actual rate of DNA synthesis. It can be recommended for screening studies of DNA repair inducers because it allows one to correct false negative results without producing false positive data. Compared with the dTTP levels, overall pool radioactivities used as normalizing factors still produce an underestimate of DNA repair when high doses of MMS are applied to hamster cell cultures.  相似文献   

16.
The effect of in vitro age on thymidine triphosphate (TTP) synthesis was assessed in WI38 cultures according to the following measurements: (1) thymidine kinase activity of broken cell preparations; (2) in situ incorporation of [3H]thymidine into acid-soluble material; and (3) total intracellular TTP content as determined by an enzymatic assay. All three parameters were maximal in exponentially proliferating populations and minimal in quiescent monolayers; no significant differences between young and old cultures were observed despite the reduced replicative capacity of the latter. The addition of serum to density-arrested cultures induced both TTP synthesis and DNA replication after a lag of approx. 12 h; although a greater percentage of young cells initiated replication as compared with old, pool sizes expanded to a similar extent in both populations. Pool expansion did not require entry into S phase; the pool sizes of control and cytosyl arabinoside-treated cultures were comparable. These findings suggest that senescent cells retain the ability to synthesize TTP, even though they are incapable of replicating DNA. Because TTP synthesis is a cell cycle-dependent event that normally begins in late G1, senescent cells might be blocked in the latter portion of the prereplicative phase and not in G0 as are quiescent cells.  相似文献   

17.
Treatment of L-cells with hydroxyurea markedly inhibits the incorporation of [3H]thymidine into DNA. The 3H incorporation that persists during hydroxyurea inhibition is largely into 7S DNA chains. The labelled fragments can be chased into higher MW DNA, suggesting that they are intermediates in the replication process. This interpretation concurs with that of earlier reports which describe a similar effect of hydroxyurea on the replication of viral DNA.  相似文献   

18.
The incorporation of [3H]thymidine into DNA due to unscheduled DNA synthesis (UDS) induced by N-OH-2-acetylaminofluorene (N-OH-AAF), aflatoxin B1 (AFB1), ethyl methanesulfonate (EMS) and ultra-violet light was quantitated by autoradiography and by scintillation spectrometry on acid precipitable macromolecules or DNA insolated by isopycnic banding in cesium chloride (CsCl). Dose-dependent increases in UDS due to N-OH-AAF and AFB1 treatment were found. Only 2-fold increases at the highest dose levels were found, however, when incorporated [3H]thymidine was quantitated by scintillation spectrometry. Seven, 11, and 25-fold increases in UDS induced by AFB1, N-OH-AAF and ultra-violet light, respectively, were found when incorporated [3H]thymidine was quantitated by autoradiography, indicating a high sensitivity for detecting ‘long patch’ repair by this technique. Scintillation spectrometry was completely ineffective in detecting EMS-induced UDS, whereas autoradiography demonstrated a small, but significant induction in [3H]thymidine incorporation at high dose levels. The non-proliferative nature of the primary hepatocyte prohibits the uniform radioactive prelabeling of DNA, necessary in other techniques, for the detection of ‘short patch’ repair induced by compounds such as EMS. Therefore, the sensitivity of the primary cultured rat hepatocyte in conjunction with UDS for detecting DNA damage caused by mutagens and carcinogens which induce ‘short patch’ repair may be limited to the autoradiographic analysis of the unscheduled incorporation of [3H]thymidine.  相似文献   

19.
—In growing rat brain, the specific activity of DNA at 12 h after the subcutaneous injection of [3H]thymidine underwent a sharp rise during the first 6 days of life, dropping just as precipitously by 15 days, thereafter continuing to decrease with increasing age. When [3H]thymidine was given to 6-day-old rats, a considerable amount was taken up immediately into the brain. Thymidine taken up into the acid-soluble fraction was readily phosphorylated to its nucleotides, thymidine mono-, di-, and triphosphate (TMP, TDP and TTP) within only 30 min following injection. The highest specific activity was found in TTP. The incorporation of of [3H]thymidine into DNA took place over a longer period of time after injection.  相似文献   

20.
Treatment of Physarum polycephalum with cycloheximide during the DNA synthesis period resulted in a reduction in the incorporation of [3H]thymidine into DNA. This effect was caused by both a reduction in the specific activity of TTP and by an inhibition of progeny strand elongation within replication units. No effect of the drug on the initiation of synthesis of replication units or on the ligation of DNA fragments was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号