首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The release of acetylcholine (ACh) and ATP from pure cholinergic synaptosomes isolated from the electric organ of Torpedo was studied in the same perfused sample. A presynaptic ATP release was demonstrated either by depolarization with KCl or after the action of a venom extracted from the annelid Glycera convoluta (GV). The release of ATP exhibited similar kinetics to that of ACh release and was therefore probably closely related to the latter. The ACh/ATP ratio in perfusates after KCl depolarization was 45; this was much higher than the ACh/ATP ratio in cholinergic synaptic vesicles, which was 5. The ACh/ATP ratio released after the action of GV was also higher than that of synaptic vesicles. These differences are discussed. The stoichiometry of ACh and ATP release is not consistent with the view that the whole synaptic vesicle content is released by exocytosis after KCl depolarization, as is the case for chromatin cells in the adrenal medulla.  相似文献   

2.
Botulinum neurotoxin type A (BoNTx) inhibits the release of acetylcholine (ACh) from Torpedo electric organ synaptosomes. We have studied several biochemical and morphological aspects in order to characterize the molecular interactions of BoNTx intoxication in our preparation. 1. We are describing for the first time an electrophoretic band from cholinergic presynaptic plasma membrane (PSPM) that is recognized by 125I-BoNTx as a putative BoNTx receptor. 2. Furthermore we describe direct interaction of botulinum toxin-gold complexes with synaptic vesicles through the three-step model of the BoNTx intoxication.  相似文献   

3.
Cholinergic synaptosomes from squid brain were found to release almost 50% of their total endogenous ATP when exposed to veratridine, an alkaloid which activates action potential sodium channels in nervous tissue. Veratridine also depolarizes synaptosomes and induces transmitter release by a mechanism which is dependent upon free Ca++ in the medium and is inhibited by tetrodotoxin, a specific veratridine inhibitor. ATP release activated by veratridine was also found to be calcium dependent and tetrodotoxin-sensitive. A new filter assay was developed to measure the kinetics of ATP release quantitatively, and veratridine-activated ATP release from synaptosomes was found to be complete in less than 30 seconds. Since ATP is a major component of cholinergic vesicles, this finding supports the concept that transmitter release from synaptosomes may occur from a vesicular rather than from a cytoplasmic pool.  相似文献   

4.
Viablse, purely cholinergic synaptosomes were prepared from the electric organ of Torpedo ocellata and partially purified by differential and sucrose density centrifugation. The synaptosomes contain acetylcholine (ACh), synaptic vesicles, cytoplasmic markers and mitochondria. No adherent postsynaptic membranes were detected. K+ depolarization as well as the ionophore A23187 mediate Ca2+ permeation into the synaptosomes and the consequent release of ACh. Mg2+ does not evoke ACh release whereas Sr2+ and Ba2+ can replace Ca2+ in evoking K+ depolarization induced ACh secretion. In accordance with the calcium hypothesis of stimulus–secretion coupling, both K+ depolarization and the ionophore A23187 seem to mediate the release of the same population of ACh molecules. The mode of action of the ionophore X537A differs from that of A23187. X537A acts independently of Ca2+ and induces the release of a larger fraction of the ACh contained in the fractionated nerve terminals. These results demonstrate that the Torpedo synaptosomes contain the neurosecretion apparatus in a functional active state. This preparation extends the utility of synaptosomes for structural and functional biochemical studies of neurotransmission, as it uniquely contains only one neurosecretion system (cholinergic).  相似文献   

5.
Abstract The total fatty acid composition of purified Torpedo californica electric organ synaptic vesicles was determined by GLC analysis of methyl esters. Limit amounts of fatty acids released by high concentrations of either β-bungarotoxin (β-BuTx) or Naja naja venom phospholipase A2 (PLA2) acting in deoxycholate are reported. The time and enzyme concentration dependence for β-BuTx- and PLA2-induced release of fatty acids from intact synaptic vesicles indicate that PLA2 is 100- to 1,000-fold more active. The Ca2+ dependence for β-BuTx-induced release of fatty acids also was determined. ATP inhibits β-BuTx- but not PLA2-induced release of fatty acids from vesicles in a manner that can not be ascribed only to chelation of the required Ca2+. ATP, other nucleotides, and adenosine have complex effects on β-BuTx-induced release of fatty acids from egg yolk phosphatidylcholine dispersed in deoxycholate. The results suggest that β-BuTx-mediated hydrolysis of the cholinergic synaptic vesicle membrane is ~10- to 100-fold more effective at causing uncoupling of vesicles than is PLA2 and that the enzymatic activity of β-BuTx is subject to regulation by nucleotide-like factors.  相似文献   

6.
Glutamate release and synaptic vesicle heterotypic/homotypic fusion were characterized in brain synaptosomes of rats exposed to hypergravity (10 G, 1 h). Stimulated vesicular exocytosis determined as KCl-evoked fluorescence spike of pH-sensitive dye acridine orange (AO) was decreased twice in synaptosomes under hypergravity conditions as compared to control. Sets of measurements demonstrated reduced ability of synaptic vesicles to accumulate AO (∼10% higher steady-state baseline level of AO fluorescence). Experiments with preloaded l-[14C]glutamate exhibited similar amount of total glutamate accumulated by synaptosomes, equal concentration of ambient glutamate, but the enlarged level of cytoplasmic glutamate measuring as leakage from digitonin-permeabilized synaptosomes in hypergravity. Thus, it may be suggested that +G-induced changes in stimulated vesicular exocytosis were a result of the redistribution of intracellular pool of glutamate, i.e. a decrease in glutamate content of synaptic vesicles and an enrichment of the cytoplasmic glutamate level. To investigate the effect of hypergravity on the last step of exocytosis, i.e. membrane fusion, a cell-free system consisted of synaptic vesicles, plasma membrane vesicles, cytosolic proteins isolated from rat brain synaptosomes was used. It was found that hypergravity reduced the fusion competence of synaptic vesicles and plasma membrane vesicles, whereas synaptosomal cytosolic proteins became more active to promote membrane fusion. The total rate of homo- and heterotypic fusion reaction initiated by Ca2+ or Mg2+/ATP remained unchanged under hypergravity conditions. Thus, hypergravity could induce synaptopathy that was associated with incomplete filling of synaptic vesicles with the neuromediator and changes in exocytotic release.  相似文献   

7.
Glutamate release and synaptic vesicle heterotypic/homotypic fusion were characterized in brain synaptosomes of rats exposed to hypergravity (10 G, 1 h). Stimulated vesicular exocytosis determined as KCl-evoked fluorescence spike of pH-sensitive dye acridine orange (AO) was decreased twice in synaptosomes under hypergravity conditions as compared to control. Sets of measurements demonstrated reduced ability of synaptic vesicles to accumulate AO (10% higher steady-state baseline level of AO fluorescence). Experiments with preloaded l-[14C]glutamate exhibited similar amount of total glutamate accumulated by synaptosomes, equal concentration of ambient glutamate, but the enlarged level of cytoplasmic glutamate measuring as leakage from digitonin-permeabilized synaptosomes in hypergravity. Thus, it may be suggested that +G-induced changes in stimulated vesicular exocytosis were a result of the redistribution of intracellular pool of glutamate, i.e. a decrease in glutamate content of synaptic vesicles and an enrichment of the cytoplasmic glutamate level. To investigate the effect of hypergravity on the last step of exocytosis, i.e. membrane fusion, a cell-free system consisted of synaptic vesicles, plasma membrane vesicles, cytosolic proteins isolated from rat brain synaptosomes was used. It was found that hypergravity reduced the fusion competence of synaptic vesicles and plasma membrane vesicles, whereas synaptosomal cytosolic proteins became more active to promote membrane fusion. The total rate of homo- and heterotypic fusion reaction initiated by Ca2+ or Mg2+/ATP remained unchanged under hypergravity conditions. Thus, hypergravity could induce synaptopathy that was associated with incomplete filling of synaptic vesicles with the neuromediator and changes in exocytotic release.  相似文献   

8.
Synaptosomes were prepared from rat cerebral cortex and incubated in [3H]choline for periods ranging from 1 to 90 min. The [3H]ACh synthesized during this period was found only in the cytoplasm and in a membrane-associated fraction. A negligible amount of the newly formed [3H]ACh was recovered in the vesicular fraction despite concerted efforts to protect a hypothetical population of labile vesicles. The specific activity of the membrane-associated component, accounting for 21% of the total [3H]ACh, was by far the highest. This membrane-associated fraction was not released by hypotonic shock or homogenization and apparently was not in association with the monodisperse synaptic vesicles. The [3H]ACh was released in a calcium dependent manner. This investigation has determined that the ACh synthesized by synaptosomes is localized in only two fractions, cytoplasmic and membrane-associated; that this newly synthesized ACh can be released from synaptosomes by a process consistent with physiological release; and that at least part of the ACh released was originally present in the cytoplasm.  相似文献   

9.
Vacuolar-H+ATPase (V-ATPase) is a complex enzyme with numerous subunits organized in two domains. The membrane domain V0 contains a proteolipid hexameric ring that translocates protons when ATP is hydrolysed by the catalytic cytoplasmic sector (V1). In nerve terminals, V-ATPase generates an electrochemical proton gradient that is acid and positive inside synaptic vesicles. It is used by specific neurotransmitter-proton antiporters to accumulate neurotransmitters inside their storage organelles. During synaptic activity, neurotransmitters are released from synaptic vesicles docked at specialized portions of the presynaptic plasma membrane, the active zones. A fusion pore opens that allows the neurotransmitter to be released from the synaptic vesicle lumen into the synaptic cleft. We briefly review experimental data suggesting that the membrane domain of V-ATPase could be such a fusion pore.We also discuss the functional implications for quantal neurotransmitter release of the sequential use of the same V-ATPase membrane domain in two different events, neurotransmitter accumulation in synaptic vesicles first, and then release from these organelles during synaptic activity.  相似文献   

10.
Abstract— Microsomes and synaptosomes from rat brain accumulated 4,5Ca against a concentration gradient by an ATP-dependent process. Calcium accumulation occurred to the same extent in microsomes prepared from white matter and from grey matter, an observation suggesting that calcium uptake may be in part an activity of the axonal membrane. Microsomes and synaptosomes accumulated calcium to a similar extent but less actively than mitochondria. By contrast, synaptic vesicles showed relatively little calcium accumulation. Isotonic concentrations of sucrose, NaCl, KCl and choline chloride inhibited calcium accumulation, with NaCl and KCl the least effective of these inhibitory agents. No consistent effects on calcium uptake were obtained with adenosine 3′,5′-monophosphate, dibutyryl cyclic AMP or the methyl xanthines. Incubation of prelabelled microsomes resulted in a release of 45Ca, and ATP inhibited this release process. In the absence of added ATP, isotonic NaCl promoted calcium release to a significantly greater extent than KCl choline chloride or sucrose. In the presence of ATP, these agents all promoted a similar degree of release. Adenosine 3′,5′-monophosphate or agents that affect its metabolism did not significantly affect calcium release. Magnesium ions reduced calcium release under all conditions tested.  相似文献   

11.
1. The exchangeability with added radioactive acetylcholine of the acetylcholine in isolated presynaptic nerve terminals (synaptosomes) and isolated synaptic vesicles was studied by a Sephadex-column method. 2. A substantial proportion of the synaptosomal acetylcholine is exchangeable with added radioactive acetylcholine. It is liberated by hypo-osmotic shock and ultrasonic treatment, and behaves as though it occupies the cytoplasmic compartment of synaptosomes. 3. Methods of isolating vesicles from hypo-osmotically ruptured synaptosomes in optimum yield are discussed. 4. The acetylcholine of synaptic vesicles isolated on a sucrose density gradient is released by hypo-osmotic conditions, suggesting that it is enclosed by a semi-permeable membrane; however, it is not easily released by ultrasonic treatment. 5. Added radioactive acetylcholine does not exchange with vesicular acetylcholine under a variety of different conditions. These include addition of ATP and Mg(2+), and pre-loading of the synaptosome with radioactive acetylcholine before hypo-osmotic rupture. This failure to exchange is discussed in terms of the possible storage mechanism of vesicular acetylcholine.  相似文献   

12.
A technique was developed which permitted the release of ATP from synaptosomes by elevated extracellular K+ or by veratridine to be directly and continuously monitored. The released ATP interacted with firefly luciferin and luciferase in the incubation medium to produce light which could be detected by a photomultiplier. The assay system was specific for ATP, in that similar concentrations of adenosine, AMP or ADP did not produce chemiluminescence. Moreover, the maximum peak of light emission correlated linearly with the concentrations of ATP present in the medium, so that semiquantitative estimates of ATP release could be made. Elevating the extracellular K+ concentration produced a graded release of ATP from synaptosomes. Rb+ also released ATP but Na+, Li+ and choline did not. The response to elevated K+ was not blocked by tetrodotoxin (TTX), indicating that this effect was not mediated by the opening of Na+-channels in synaptosomal membranes. Veratridine (50 μM) caused a graded release of ATP which was larger and more prolonged than that caused by elevated K+. The release of ATP by veratridine was blocked by TTX indicating that the opening of Na+-channels was involved. Neither veratridine nor elevated K+ released ATP from microsomal or mitochondrial fractions, showing that the release of ATP probably did not originate from microsomal, vesicular or mitochondrial contaminants of the synaptosomal preparation. Release of ATP by elevated K+ was diminished in a medium lacking CaCl+ or when EGTA was added to chelate Ca2+. In contrast, release by veratridine appeared to be augmented in Ca2+-free media or in the presence of EGTA. The K+-induced release of ATP, which is Ca2+ dependent, closely resembles the exocytotic release of putative neurotransmitters from presynaptic nerve-terminals. On the other hand, the apparent lack of a Ca2+ requirement for veratridine's action suggests that this process could originate from other sites, or involve mechanisms other than conventional neurotransmitter release processes.  相似文献   

13.
Synaptic neurotransmission is known to be an energy demanding process. At the presynapse, ATP is required for loading neurotransmitters into synaptic vesicles, for priming synaptic vesicles before release, and as a substrate for various kinases and ATPases. Although it is assumed that presynaptic sites usually harbor local mitochondria, which may serve as energy powerhouse to generate ATP as well as a presynaptic calcium depot, a clear role of presynaptic mitochondria in biochemical functioning of the presynapse is not well-defined. Besides a few synaptic subtypes like the mossy fibers and the Calyx of Held, most central presynaptic sites are either en passant or tiny axonal terminals that have little space to accommodate a large mitochondrion. Here, we have used imaging studies to demonstrate that mitochondrial antigens poorly co-localize with the synaptic vesicle clusters and active zone marker in the cerebral cortex, hippocampus and the cerebellum. Confocal imaging analysis on neuronal cultures revealed that most neuronal mitochondria are either somatic or distributed in the proximal part of major dendrites. A large number of synapses in culture are devoid of any mitochondria. Electron micrographs from neuronal cultures further confirm our finding that the majority of presynapses may not harbor resident mitochondria. We corroborated our ultrastructural findings using serial block face scanning electron microscopy (SBFSEM) and found that more than 60% of the presynaptic terminals lacked discernible mitochondria in the wild-type mice hippocampus. Biochemical fractionation of crude synaptosomes into mitochondria and pure synaptosomes also revealed a sparse presence of mitochondrial antigen at the presynaptic boutons. Despite a low abundance of mitochondria, the synaptosomal membranes were found to be highly enriched in ATP suggesting that the presynapse may possess alternative mechanism/s for concentrating ATP for its function. The potential mechanisms including local glycolysis and the possible roles of ATP-binding synaptic proteins such as synapsins, are discussed.  相似文献   

14.
ATP is as an extracellular signaling molecule able to amplify the cell lysis inflicted by certain bacterial toxins including the two RTX toxins α-hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans. Inhibition of P2X receptors completely blocks the RTX toxin-induced hemolysis over a larger concentration range. It is, however, at present not known how the ATP that provides the amplification is released from the attacked cells. Here we show that both HlyA and LtxA trigger acute release of ATP from human erythrocytes that preceded and were not caused by cell lysis. This early ATP release did not occur via previously described ATP-release pathways in the erythrocyte. Both HlyA and LtxA were capable of triggering ATP release in the presence of the pannexin 1 blockers carbenoxolone and probenecid, and the HlyA-induced ATP release was found to be similar in erythrocytes from pannexin 1 wild type and knock-out mice. Moreover, the voltage-dependent anion channel antagonist TRO19622 had no effect on ATP release by either of the toxins. Finally, we showed that both HlyA and LtxA were able to release ATP from ATP-loaded lipid (1-palmitoyl-2-oleoyl-phosphatidylcholine) vesicles devoid of any erythrocyte channels or transporters. Again we were able to show that this happened in a non-lytic fashion, using calcein-containing vesicles as controls. These data show that both toxins incorporate into lipid vesicles and allow ATP to be released. We suggest that both toxins cause acute ATP release by letting ATP pass the toxin pores in both human erythrocytes and artificial membranes.  相似文献   

15.
ACTIVE UPTAKE OF [3H]5-HT BY SYNAPTIC VESICLES FROM RAT BRAIN   总被引:2,自引:0,他引:2  
The question of whether synaptic vesicles accumulate [3H]5-HT by an active process was investigated in a mixed population of vesiclcs from whole rat brain. The temperature dependence and the effect of metabolic inhibitors were studied in synaptosomal suspensions and vesicular fractions. Arrhenius plots for synaptosomes differed from those for vesicles as did the temperature coefficients for these two fractions. For synaptosomes the Q10 was 7 and for vesicles 1.6. However, if ATP was added to the incubation, the temperature dependence of vesicular amine accumulation became manifest; the Arrhenius plot resembled that of synaptosomes and the Q10 was greater than 20 indicating strong temperature dependence. In the presence of ATP, vesicular uptake was stimulated approx 8-fold. Ouabain, dinitrophenol and NEM inhibited synaptosomal uptake but failed to affect [3H]5-HT accumulation by vesicles in the absence of ATP. When ATP was added, vesicular uptake was also blocked by NEM but was unaffected by either ouabain or DNP. Total observed uptake consisted of two components, one ATP-dependent and one nonsaturable and ATP-independent. The active process had a Km= 1.25 × 10?7 M and could be completely blocked by either 10?3 M or 10?7 M-reserpine. Active vesicular [3H]5-HT uptake was magnesium dependent and was inhibited by sodium and potassium. Cation effects on uptake were specific and could not be accounted for by either changes in osmotic pressure or ionic strength. It was concluded that synaptic vesicles from whole rat brain accumulate [3H]5-HT by an active process.  相似文献   

16.
ATP and acetylcholine, equal brethren   总被引:2,自引:0,他引:2  
Acetylcholine was the first neurotransmitter identified and ATP is the hitherto final compound added to the list of small molecule neurotransmitters. Despite the wealth of evidence assigning a signaling role to extracellular ATP and other nucleotides in neural and non-neural tissues, the significance of this signaling pathway was accepted very reluctantly. In view of this, this short commentary contrasts the principal molecular and functional components of the cholinergic signaling pathway with those of ATP and other nucleotides. It highlights pathways of their discovery and analyses tissue distribution, synthesis, uptake, vesicular storage, receptors, release, extracellular hydrolysis as well as pathophysiological significance. There are differences but also striking similarities. Comparable to ACh, ATP is taken up and stored in synaptic vesicles, released in a Ca(2+)-dependent manner, acts on nearby ligand-gated or metabotropic receptors and is hydrolyzed extracellularly. ATP and acetylcholine are also costored and coreleased. In addition, ATP is coreleased from biogenic amine storing nerve terminals as well as from at least subpopulations of glutamatergic and GABAergic terminals. Both ACh and ATP fulfill the criteria postulated for neurotransmitters. More recent evidence reveals that the two messengers are not confined to neural functions, exerting a considerable variety of non-neural functions in non-innervated tissues. While it has long been known that a substantial number of pathologies originate from malfunctions of the cholinergic system there is now ample evidence that numerous pathological conditions have a purinergic component.  相似文献   

17.
We have studied the correlation between [3H]ouabain binding sites, (Na++K+)ATPase (EC 3.6.1.3) activity and acetylcholine (ACh) release in different subcellular fractions ofTorpedo marmorata electric organ (homogenate, synaptosomes, presynaptic plasma membranes). Presynaptic plasma membranes contained the greater number of [3H]ouabain binding sites in good agreement with the high (Na++K+)ATPase activity found in this fraction. Blockade of this enzymatic activity by ouabain dose-dependently induced ACh release from pure cholinergic synaptosomes, either in the presence or absence of extracellular calcium ions. We suggest that one of the mechanisms involved in the ouabain-induced ACh release in the absence of Ca2+ o may be an increase in Na+ i that could (a) evoke Ca2+ release from internal stores and (b) inhibit ATP-dependent Ca2+ uptake by synaptic vesicles.  相似文献   

18.
Choline acetyltransferase and vesicular acetylcholine-transporter genes are adjacent and coregulated. They define a cholinergic locus that can be turned on under the control of several factors, including the neurotrophins and the cytokines. Hirschprung's disease, or congenital megacolon, is characterized by agenesis of intramural cholinergic ganglia in the colorectal region. It results from mutations of the RET (GDNF-activated) and the endothelin-receptor genes, causing a disregulation in the cholinergic locus. Using cultured cells, it was shown that the cholinergic locus and the proteins involved in acetylcholine (ACh) release can be expressed separately ACh release could be demonstrated by means of biochemical and electrophysiological assays even in noncholinergic cells following preloading with the transmitter. Some noncholinergic or even nonneuronal cell types were found to be capable of releasing ACh quanta. In contrast, other cells were incompetent for ACh release. Among them, neuroblastoma N18TG-2 cells were rendered release-competent by transfection with the mediatophore gene. Mediatophore is an ACh-translocating protein that has been purified from plasma membranes ofTorpedo nerve terminal; it confers a specificity for ACh to the release process. The mediatophores are activated by Ca2+; but with a slower time course, they can be desensitized by Ca2+. A strictly regulated calcium microdomain controls the synchronized release of ACh quanta at the active zone. In addition to ACh and ATP, synaptic vesicles have an ATP-dependent Ca2+ uptake system; they transiently accumulate Ca2+ after a brief period of stimulation. Those vesicles that are docked close to Ca2+ channels are therefore in the best position to control the profile and dynamics of the Ca2+ microdomains. Thus, vesicles and their whole set of associated proteins (SNAREs and others) are essential for the regulation of the release mechanism in which the mediatophore seems to play a key role.  相似文献   

19.
The acidification of synaptic vesicles (SV) in rat brain synaptosomes was studied using acridine orange (AO) as a fluorescent probe. In synaptosomal suspensions the AO fluorescence was partially quenched, indicating the presence of an acidic compartment. In permeabilized synaptosomes, the quenching was augmented by MgATP and was sensitive to concanamycin A, a specific inhibitor of the V-type H+-ATPase known to be present in synaptic vesicles. Some ATP-dependent acidification was also observed without permeabilization, suggesting that a fraction of synaptosomes (ca. 15%) was unsealed, irrespective of the method used to prepare the synaptosomes (sucrose or Ficoll density gradient, sedimentation or flotation). Depolarization of synaptosomes with 30 mM KCl resulted in an immediate, albeit small, rise in AO fluorescence that was prevented by the removal of Ca2+ or by substituting NaCl for KCl. This response is consistent with depolarization-evoked release of the acidic contents of an exocytosis-competent pool of synaptic vesicles, representing ca. 5% of the total. No further AO release subsequent to the immediate phase was observed in depolarized synaptosomes, which indicates an extremely rapid reacidification. The results demonstrate that AO fluorescence is suitable for monitoring SV acidification within synaptosomes, and may be used to derive an independent estimate of the relative size of the immediately releasable SV pool. In addition, the use of AO might be advantageous for the assessment of synaptosomal integrity by comparing the ATP-dependent acidification in intact and permeabilized synaptosomes.  相似文献   

20.
Synaptosomes prepared from guinea-pig cerebral cortex were suspended in a medium containing [32P]orthophosphate and subjected to electrical stimulation. When the synaptosomal phospholipids were subsequently separated, the most highly labelled was phosphatidic acid and electrical stimulation over a 10 min period increased incorporation of 32P1 into this lipid. Stimulated synaptosomes were osmotically lysed and subsynaptosomal fractions isolated. The electrically stimulated increase in phosphatidic acid labelling was localized in a fraction enriched in synaptic vesicles. This phospholipid effect was not merely a reflection of an increased specific radioactivity of synaptosomal ATP, due to the electrically stimulated increase in respiration. The time course of the phosphatidic acid effect suggests that it is synchronous with release of transmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号