首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global expression profiling of mammalian cells used for the production of biopharmaceuticals will allow greater insights into the molecular mechanisms that result in a high producing cellular phenotype. These studies may give insights for genetic intervention to possibly create better host cell lines or even to provide clues to more rational strategies for cell line and process development. In this review I will focus on the contribution of proteomic technologies to a greater understanding of the biology of Chinese hamster ovary cells and other producing cell lines such as NS0 mouse cells.  相似文献   

2.
大规模动物细胞培养的问题及对策   总被引:3,自引:0,他引:3  
大规模动物细胞培养在生物技术产业化进程中显示出强大的潜力。本文综述了大规模动物细胞培养过程中出现的问题及其解决办法 ,包括细胞培养环境、基因工程途径改建细胞系及过程监控等。对于这些进展的充分了解对优化细胞培养工艺、提高产品质量具有重要意义  相似文献   

3.
This review focuses on cultivation of mammalian cells in a suspended perfusion mode. The major technological limitation in the scaling-up of these systems is the need for robust retention devices to enable perfusion of medium as needed. For this, cell retention techniques available to date are presented, namely, cross-flow filters, hollow fibers, controlled-shear filters, vortex-flow filters, spin-filters, gravity settlers, centrifuges, acoustic settlers, and hydrocyclones. These retention techniques are compared and evaluated for their respective advantages and potential for large-scale utilization in the context of industrial manufacturing processes. This analysis shows certain techniques have a limited range of perfusion rate where they can be implemented (most microfiltration techniques). On the other hand, techniques were identified that have shown high perfusion capacity (centrifuges and spin-filters), or have a good potential for scale-up (acoustic settlers and inclined settlers). The literature clearly shows that reasonable solutions exist to develop large-scale perfusion processes.  相似文献   

4.
The design of a suspension culture facility capable of producing approximately 1012 cells per week has been developed on a small-scale system which has evolved from various architectural, engineering, biological, and biohazard considerations. The smaller system is composed of spinner flasks (50 ml to 8 liters) modified for semicontinuous culture conditions, metal reservoirs, a continuous flow centrifuge, and supportive equipment. The large system which is under construction is composed of metallic vessels of up to 500 liter working volume with hard plumbing, monitors, controllers, recorders, continuous flow centrifuge and other ancillary equipment. This system begins with medium preparation and ends with harvesting of cells and disposition of supernatant. The design of this turn-key operation was developed over a two and one-half year period through the cooperation of private industry, the federal government, and the academic community.  相似文献   

5.
A flat-bed hollow-fiber cell culture system has been developed which maximizes the utilization of the large fiber surface while diminishing significantly the problems inherent in a cartridge-type reactor. The reactor core consists of a shallow bed of hollow fibers sandwiched between two stainless-steel microporous filter plates through which the media flow is directed normal to the plane of the fiber bed. Reactors with both 930 and 9300 cm2 of fiber surface have been successfully constructed and operated. A variety of cells has been grown in these reactors including SV3T3 cells, baby hamster kidney cells, Vero cells, and rhesus money kidney cells, and cell products such as plasminogen activator and migration inhibition factor (MIF) were produced. This system offers an excellent prototype for scaleup design.  相似文献   

6.
A single-pass, plug-flow bioreactor has been developed in which oxygen is supplied to entrapped hybridoma cells via sllicone tubes threaded through the square channels of a macroporous ceramic monolith. Oxygen diffuses from the gas phase, through the silicone tubing, across the open square channel, and into the pores of the ceramic wall where it is consumed by entrapped cells. Advantages of such a reactor include higher product yields, protection of cells from detrimental hydrodynamic effects, no internal moving parts to compromise asepsis, and simplicity of operation. A prototype bioreactor was constructed and operated over a range of residence times. A side-by-side experimental comparison with a conventional recycle bioreactor was performed by inoculating both bioreactors with cells from the same stock culture and feeding medium from the same reservoir. Final antibody titers were 80% higher in the single-pass bioreactor at a residence time of 200 minutes compared with those of the recycle bioreactor at a residence time of 800 minutes. A theoretical analysis of oxygen transport in this bioreactor is developed to highlight important design criteria and operating strategies for scale-up. (c) 1992 John Wiley & Sons, Inc.  相似文献   

7.
It has been demonstrated experimentally that the thickness of fluid overlay in conventional tissue culture systems limits the oxygen available to mammalian cells growing as a submerged monolayer. A rocker culture system is described which circumvents critical problems associated with thin film culture while permitting nearly unlimited access of oxygen to the cell monolayer. Good growth of primary hepatic cells as isolated sheets has been obtained.  相似文献   

8.
The Cell Culture Center at the University of Alabama in Birmingham was set up to produce large quantities of cells and their products from suspension cultured cell lines. This system has now been in operation for over five years and has been effective in producing large quantities of mammalian cells of murine and human origin. This article describes the system and some growth parameters which have been of importance for large-scale mammalian cell growth.  相似文献   

9.
A radial flow hollow fiber bioreactor has been developed that maximizes the utilization of fiber surface for cell growth while eliminating nutrient and metabolic gradients inherent in conventional hollow fiber cartridges. The reactor consists of a central flow distributor tube surrounded by an annular bed of hollow fibers. The central flow distributor tube ensures an axially uniform radial convective flow of nutrients across the fiber bed. Cells attach and proliferate on the outer surface of the fibers. The fibers are pretreated with polylysine to facilitate cell attachment and long-term maintenance of tissuelike densities of cell mass. A mixture of air and CO(2) is fed through the tube side of the hollow fibers, ensuring direct oxygenation of the cells and maintenance of pH. Spent medium diffuses across the cell layer into the tube side of the fibers and is convected away along with the spent gas stream. The bioreactor was run as a recycle reactor to permit maximum utilization of nutrient medium. A bioreactor with a membrane surface area of 1150 cm(2) was developed and H1 cells were grown to a density of 7.3 x 10(6) cells/cm(2).  相似文献   

10.
11.
12.
A series of intraspecific, interspecific and interorder somatic cell cybrids and hybrids have been prepared by fusions in which one of the parents contained the cytoplasmically inherited marker for chloramphenicol (CAP) resistance. A clear relationship has been established between the expression of the CAP-resistant (CAP-R) determinants in the fusion products and the genetic homology of the parents. With increased genetic divergence, the acceptability of the CAP-R mitochondria decreased. Intraspecific cybrids and hybrids of the same strain were stable for the CAP-R marker, while those between strains were stable only in CAP. Intergeneric mouse-hamster cybrids occurred at a high frequency but were unstable in CAP, while CAP suppressed hybrid formation 100-fold. Interorder cybrids (CAP-R human X CAP-S mouse) occurred either at a moderate frequency and were stable at a low frequency and were unstable in CAP. Interorder hybrids could only be formed by challenging HAT-selected hybrids with CAP or by direct selection in ouabain and CAP. Reciprocal interorder crosses between CAP-R mouse and CAP-S human cells were unsuccessful. Interspecific cybrids contain only the chromosomes of the CAP-S parent. Interspecific hybrids selected directly in CAP segregated the chromosomes of the CAP-S parent, while hybrids selected in HAT and then CAP segregated those of the CAP-R parent. The mitochondrial DNA(mtDNA) of all mouse-human cybrids and most HAT and then CAP-selected hybrids contain only the mtDNA of the CAP-S mouse parent. However, preliminary evidence suggests that one of these hybrids contains both mouse and human mtDNA sequences.  相似文献   

13.
Summary For the past 60 years, fundamental discoveries in eukaryotic biology using mammalian cell cultures have been significant but modest relative to the enormous potential. Combined with advances in technologies of cell and molecular biology, mammalian cell culture technology is becoming a major, if not essential tool, for fundamental discovery in eukaryotic biology. Reconstruction of the milieu for cells has progressed from simple salt solutions supporting brief survival of tissues outside the body to synthesis of the complete set of structurally defined nutrients, hormones and elements of the extracellular matrix needed to reconstruct complex tissues from cells. The isolation of specific cell types in completely defined environments reveals the true complexity of the mammalian cell and its environment as a dynamic interactive physiological unit. Cell cultures provide the tool for detection and dissection of the mechanism of action of cellular regulators and the genes that determine individual aspects of cell behavior. The technology underpins advances in virology, somatic cell genetics, endocrinology, carcinogenesis, toxicology, pharmacology, hematopoiesis and immunology, and is becoming a major tool in develomental biology, complex tissue physiology and production of unique mammalian cell-derived biologicals in industry. This article is the first of a series of invited reviews aimed at identifying fundamental contributions and current challenges associated with research activities in subdiscriplines of cell and developmental biology in vitro. This treatise is dedicated to Dr. Brian Kimes, Program Director at the National Cancer Institute, whose vision, encouragement and support have contributed significantly to modern developments in mammalian cell culture.  相似文献   

14.
15.
Proliferation of mammalian cells, even under conditions of unlimited growth, presents a complex problem because of the interaction of deterministic and stochastic processes. Division of the cell cycle into a finite number of parts establishes a multidimensional vector space. In this space an arbitrary culture can be represented by a vector called the state vector. The culture's subsequent growth is represented mathematically as a series of transformations of the state vector. The operators effecting these transformations are presented in matrix form and their relationship to the distribution of cell generation times is described. As an application of the model, the growth of an initially synchronized culture is considered and an unambiguous measure of the degree of synchrony is proposed. Results of a computer simulation of such a culture show the behavior with time of the degree of synchrony, the total cell number, and the mitotic index. In particular the importance of the magnitude of the coefficient of variation of the generation time distribution is illustrated.  相似文献   

16.
17.
The metabolism of juvenile hormone (JH) I has been examined in fetal mouse liver cells maintained in culture. Diffusion of the hormone into the cells appears to be passive. The hormone is metabolized essentially to organic-soluble metabolites (diol ester, diol acid and acid) by the action of epoxide hydrase and carboxylesterases. Conjugative reactions play a minor role, less than 3% of the hormone being excreted as conjugates (glucuronides, sulfates and mercapturic acid). About 0.8% of the cellular radioactivity is bound to macromolecules, mainly those of nuclear and mitochondrial origin. Metyrapone and SKF 525-A inhibit covalent binding of the hormone to cytoplasmic macromolecules, which suggests participation of the cytochrome P-450 system in covalent binding of the hormone.  相似文献   

18.
Rate equations recently proposed by the authors for growth, death, consumption of nutrients, and formation of lactic acid, ammonium, and monoclonal antibody of hybridoma cells are used to simulate and analyze the behavior of perfusion cultures. Model simulations are in good agreement with experimental results from three different cell lines under varied perfusion and cell bleed rates except for cultures with very low viability. Analysis of simulations and experimental results indicates that in perfusion cultures with a complete cell separation cell bleed rate is a key parameter that strongly affects all the process variables, whereas the perfusion rate mainly affects the total and viable cell concentrations and the volumetric productivity of monoclonal antibody. Growth rate, viability, and specific perfusion rate of cells are only a function of the cell bleed rate. This also applies to cultures with partial cell separation in the permeate if the effective cell bleed rate is considered. It is suggested that the (effective) cell bleed rate of a perfusion culture should be carefully chosen and controlled separately from the perfusion rate. In general, a low cell bleed rate that warrants a reasonable cell viability appears to be desirable for the production of antibodies. Furthermore, model simulations indicate the existence of an optimum initial glucose concentration in the feed. For the cell lines considered, the initial glucose concentration used in normal cell culture media is obviously too high. The initial glutamine concentration can also be reduced to a certain extent without significantly impairing the growth and antibody production but considerably reducing the ammonia concentration. The mathematical model can be used to predict these optimum conditions and may also be used for process design.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号