首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oxidation of yeast cytochrome c peroxidase by hydrogen peroxide produces a unique enzyme intermediate, cytochrome c peroxidase Compound I, in which the ferric heme iron has been oxidized to an oxyferryl state, Fe(IV), and an amino acid residue has been oxidized to a radical state. The reduction of cytochrome c peroxidase Compound I by horse heart ferrocytochrome c is biphasic in the presence of excess ferrocytochrome c as cytochrome c peroxidase Compound I is reduced to the native enzyme via a second enzyme intermediate, cytochrome c peroxidase Compound II. In the first phase of the reaction, the oxyferryl heme iron in Compound I is reduced to the ferric state producing Compound II which retains the amino acid free radical. The pseudo-first order rate constant for reduction of Compound I to Compound II increases with increasing cytochrome c concentration in a hyperbolic fashion. The limiting value at infinite cytochrome c concentration, which is attributed to the intracomplex electron transfer rate from ferrocytochrome c to the heme site in Compound I, is 450 +/- 20 s-1 at pH 7.5 and 25 degrees C. Ferricytochrome c inhibits the reaction in a competitive manner. The reduction of the free radical in Compound II is complex. At low cytochrome c peroxidase concentrations, the reduction rate is 5 +/- 3 s-1, independent of the ferrocytochrome c concentration. At higher peroxidase concentrations, a term proportional to the square of the Compound II concentration is involved in the reduction of the free radical. Reduction of Compound II is not inhibited by ferricytochrome c. The rates and equilibrium constant for the interconversion of the free radical and oxyferryl forms of Compound II have also been determined.  相似文献   

2.
The catalytic mechanism of Pseudomonas cytochrome c peroxidase   总被引:1,自引:0,他引:1  
The catalytic mechanism of Pseudomonas cytochrome c peroxidase has been studied using rapid-scan spectrometry and stopped-flow measurements. The reaction of the totally ferric form of the enzyme with H2O2 was slow and the complex formed was inactive in the peroxidatic cycle, whereas partially reduced enzyme formed highly reactive intermediates with hydrogen peroxide. Rapid-scan spectrometry revealed two different spectral forms, one assignable to Compound I and the other to Compound II as found in the reaction cycle of other peroxidases. The formation of Compound I was rapid approaching that of diffusion control. The stoichiometry of the peroxidation reaction, deduced from the formation of oxidized electron donor, indicates that both the reduction of Compound I to Compound II and the conversion of Compound II to resting (partially reduced) enzyme are one-electron steps. It is concluded that the reaction mechanism generally accepted for peroxidases is applicable also to Pseudomonas cytochrome c peroxidase, the intramolecular source of one electron in Compound I formation, however, being reduced heme c.  相似文献   

3.
The effect of complex formation between ferricytochrome c and cytochrome c peroxidase (Ferrocytochrome-c:hydrogen peroxide oxidoreductase, EC 1.11.1.5) on the reduction of cytochrome c by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), reduced N-methylphenazonium methosulfate (PMSH), and ascorbate has been determined at low ionic strength (pH 7) and 25 degrees C. Complex formation with the peroxidase enhances the rate of ferricytochrome c reduction by the neutral reductants TMPD and PMSH. Under all experimental conditions investigated, complex formation with cytochrome c peroxidase inhibits the ascorbate reduction of ferricytochrome c. This inhibition is due to the unfavorable electrostatic interactions between the ascorbate dianion and the negatively charged cytochrome c-cytochrome c peroxidase complex. Corrections for the electrostatic term by extrapolating the data to infinite ionic strength suggest that ascorbate can reduce cytochrome c peroxidase-bound cytochrome c faster than free cytochrome c. Reduction of cytochrome c peroxidase Compound II by dicyanobis(1,10-phenanthroline)iron(II) (Fe(phen)2(CN)2) is essentially unaffected by complex formation between the enzyme and ferricytochrome c at low ionic strength (pH 6) and 25 degrees C. However, reduction of Compound II by the negatively changed tetracyano-(1,10-phenanthroline)iron(II) (Fe(phen)(CN)4) is enhanced in the presence of ferricytochrome c. This enhancement is due to the more favorable electrostatic interactions between the reductant and cytochrome c-cytochrome c peroxidase Compound II complex then for Compound II itself. These studies indicate that complex formation between cytochrome c and cytochrome c peroxidase does not sterically block the electron-transfer pathways from these small nonphysiological reductants to the hemes in these two proteins.  相似文献   

4.
  • 1.1. The results of chemically crosslinking yeast cytochrome c peroxidase with both horse and yeast iso-1 ferricytochromes c have been studied by a combination of gel electrophoresis and proton NMR spectroscopy.
  • 2.2. The complexes were formed at a variety of potassium phosphate concentrations ranging from 10 to 300 mM using the water soluble crosslinking agent, EDC (l-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide).
  • 3.3. The primary crosslinking product in both cases is the 1:1 covalent complex, but, for each pair of partner proteins the yield of the 1:1 crosslinked complex varies with the salt concentration.
  • 4.4. Furthermore, at low salt concentrations the yield of the 1:1 covalent complex involving horse cytochrome c is much larger than the yield of the 1:1 covalent complex formed with yeast iso-1 cytochrome c, whereas at high salt concentrations the situation is reversed.
  • 5.5. Proton NMR spectroscopy, in combination with gel electrophoresis, provides evidence for the formation of different types of 1:1 complexes for the peroxidase/yeast cytochrome c pair and has been used to study the effect of changes in the solution ionic strength upon both the peroxidases/horse cytochrome c and the peroxidase/yeast cytochrome c complexes.
  • 6.6. This work indicates that electrostatic interactions between proteins play a dominant role in formation of complexes between cytochrome c peroxidase and horse ferricytochrome c, whereas the hydrophobic effect plays a comparatively larger role in stabilizing complexes between cytochrome c peroxidase and yeast iso-1 ferricytochrome c.
  相似文献   

5.
The 1:1 covalently cross-linked complex between horse cytochrome c and yeast cytochrome c peroxidase (ccp) has been formed by a slight modification of the method of Waldmeyer and Bosshard [Waldmeyer, B., & Bosshard, H. R. (1985) J. Biol. Chem. 260, 5184-5190]. This earlier study has been extended to show that efficient cross-linking of the two proteins can occur in a variety of buffers over a broad ionic strength range. The substitution of ferrocytochrome c for ferricytochrome c in the cross-linking studies resulted in an increased yield of 1:1 complex (approximately 10-20%) under the conditions studied. An improved method for purifying the covalent complex in relatively large quantities is presented here as are the results of electrophoresis and proton NMR studies of the complex. Both electrophoresis and NMR studies indicate modification of some surface acidic amino acids in the covalent complex by the carbodiimide. The proton hyperfine-shifted resonances of cytochrome c are broadened in the covalent complex relative to free cytochrome c, and the resonances corresponding to the cytochrome c heme 3-CH3 and 8-CH3 groups are shifted closer together in the complex. Integration of NMR resonances confirms a 1:1 complex as the primary cross-linking reaction product. However, we also demonstrate that the covalent complex can be further coupled to ccp and to cytochrome c to form higher molecular weight aggregates.  相似文献   

6.
7.
A covalent complex between recombinant yeast iso-1-cytochrome c and recombinant yeast cytochrome c peroxidase (rCcP), in which the crystallographically defined cytochrome c binding site [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] is blocked, was synthesized via disulfide bond formation using specifically engineered cysteine residues in both yeast iso-1-cytochrome c and yeast cytochrome c peroxidase [Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580]. Previous studies on similar covalent complexes, those that block the Pelletier-Kraut crystallographic site, have demonstrated that samples of the covalent complexes have detectable activities that are significantly lower than those of wild-type yCcP, usually in the range of approximately 1-7% of that of the wild-type enzyme. Using gradient elution procedures in the purification of the engineered peroxidase, cytochrome c, and covalent complex, along with activity measurements during the purification steps, we demonstrate that the residual activity associated with the purified covalent complex is due to unreacted CcP that copurifies with the covalent complex. Within experimental error, the covalent complex that blocks the Pelletier-Kraut site has zero catalytic activity in the steady-state oxidation of exogenous yeast iso-1-ferrocytochrome c by hydrogen peroxide, demonstrating that only ferrocytochrome c bound at the Pelletier-Kraut site is oxidized during catalytic turnover.  相似文献   

8.
1. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are described. Kinetic differences between the older and more recent preparations of the enzyme most probably arise from differences in intrinsic turnover rates. 2. The time-courses of cytochrome c peroxidation by the enzyme follow essentially first-order kinetics in phosphate buffer. Deviations from first-order kinetics occur in acetate buffer, and are due to a higher enzymic turnover rate in this medium accompanied by a greater tendency to autocatalytic peroxidation of cytochrome c. 3. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are interpreted in terms of a mechanism postulating formation of reversible complexes between the peroxidase and both reduced and oxidized cytochrome c. Formation of these complexes is inhibited at high ionic strengths and by polycations. 4. Oxidized cytochrome c can act as a competitive inhibitor of ferrocytochrome c peroxidation by peroxidase. The K(i) for ferricytochrome c is approximately equal to the K(m) for ferrocytochrome c and thus probably accounts for the observed apparent first-order kinetics even at saturating concentrations of ferrocytochrome c. 5. The results are discussed in terms of a possible analogy between the oxidations of cytochrome c catalysed by yeast peroxidase and by mammalian cytochrome oxidase.  相似文献   

9.
The aryl azide, 2,4-dinitro-5-fluorophenylazide, was reacted with horse heart cytochrome c to give a photoaffinity-labeled derivative of this heme protein. The modified cytochrome c, with one to two dinitroazidophenyl groups per mole of the enzyme, has a half-reduction potential the same (± 10 mV) as native cytochrome c. The dissociation constant for the modified cytochrome c from cytochrome c-depleted mitochondrial membranes and the apparent Km for the reaction with cytochrome c oxidase were each five to six times greater than the values for native cytochrome c. Irradiation of cytochrome c-depleted mitochondrial membranes supplemented with an excess of photoaffinity-labeled cytochrome c resulted in covalent binding of the derivative to the mitochondrial membranes. Fractionation of the irradiated mitochondria in the presence of detergents and salts followed by chromatography on agarose, Bio-Gel A, showed that labeled cytochrome c was bound covalently to cytochrome c oxidase in a 1:1 molar complex. The covalently linked cytochrome c-cytochrome c oxidase complex was active in mediating the electron transfer between N,N,N′,N′-tetramethyl-p-phenylenediamine/ascorbate and the oxidase.  相似文献   

10.
The reaction of bovine heart ferrocytochrome c with nitrite was studied under various conditions. The reaction product was ferricytochrome c at around pH 5, whereas at around pH 3 it was Compound I, characterized by twin peaks at 529 and 563 nm of equal intensity. However, ferrocytochrome c decreased obeying first-order kinetics over the pH range examined, irrespective of the presence or absence of molecular oxygen. The apparent first-order rate constant was proportional to the square of the nitrite concentration at pH 4.4 and it increased as the pH was lowered. At pH 3 the reaction was so rapid that it had to be followed by stopped-flow and rapid-scanning techniques. The apparent rate constant at this pH was found to increase linearly with the nitrite concentration. Based on these results the active species of nitrite was concluded to be dinitrogen trioxide at pH 4.4 and nitrosonium ion, no+, at pH 3. Compound II was formed by reaction of ferrocytochrome c and NO gas at acidic and alkaline pH values. The absorption peaks were at 533 and 563 nm at pH 3, and at 538 and 567 nm at pH 12.9. This compound was also formed by reducing Compound I with reductants. Compound I prepared from ferricytochrome c and NO was stable below pH 6. However, appreciable absorption peaks for ferrocytochrome c appeared between pH 8 and 10, because Compound I was dissociated into ferrocytochrome c and NO+, and because ferrocytochrome c thus formed reacted with NO very slowly in this pH region. Saccharomyces ferricytochrome c under NO gas behaved differently from mammalian cytochrome, indicating the significance of the nature of the heme environment in determing the reactivity. Only at extreme pH values was Compound II formed exclusively and persisted. A model system for dissimilatory nitrite reductase was constructed by using bovine heart cytochrome c, nitrite and NADH plus PMS at pH 3.3, and a scheme involving cyclic turnover of ferrocytochrome c, Compound I and Compound II is presented, with kinetic parameters.  相似文献   

11.
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 · 107 M?1 · s?1 at low ionic strength (I = 223 mM, 10°C). The value of this rate constant decreases to 1.8 · 105 M?1 · s?1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 · 105 M?1 · s?1 and k?1 = 3.3 · 105 M?1 · s?1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10°C). The ‘equilibrium’ constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ai cytochrome c3+1 + cytochrome c2+.  相似文献   

12.
This investigation concerns the effect of certain physical factors—viscosity, dielectric constant, ionic strength, and temperature of the medium—on the reaction of hydrogen peroxide and ferrocytochrome c in the presence of the enzyme horse-radish peroxidase. From study of the effects of viscosity and dielectric constant, it was concluded that the reaction between the secondary complex of hydrogen peroxide and enzyme on the one hand and ferrocytochrome c on the other is controlled by diffusion in media of high viscosity and by electrostatic effects at low viscosities. With respect to ionic strength, the data at pH 4.7 indicated a dipole-dipole interreaction. The temperature dependence of the over-all reaction had a Q10 of 1.25.  相似文献   

13.
Initial velocities for the cytochrome c peroxidase-catalyzed oxidation of ferrocytochrome c by hydrogen peroxide have been measured as functions of both the ferrocytochrome c (0.27-104 microM) and hydrogen peroxide (0.25-200 microM) concentrations at 25 degrees C, 0.01 M ionic strength, and pH 7 in a cacodylate/KNO3 buffer system Eadie-Hofstee plots of the initial velocity as a function of ferrocytochrome c concentration at constant hydrogen peroxide are nonlinear. A mechanism is proposed which includes random addition of the two substrates to the enzyme and a single catalytically active cytochrome c binding site. The mechanism is consistent with prior studies on cytochrome c peroxidase and fits the steady state kinetic data well.  相似文献   

14.
《Free radical research》2013,47(4):439-444
Abstract

The peroxidase-type reactivity of cytochrome c is proposed to play a role in free radical production and/or apoptosis. This study describes cytochrome c catalysis of peroxide consumption by ascorbate. Under conditions where the sixth coordination position at the cytochrome c heme iron becomes more accessible for exogenous ligands (by carboxymethylation, cardiolipin addition or by partial denaturation with guanidinium hydrochloride) this peroxidase activity is enhanced. A reaction intermediate is detected by stopped-flow UV-vis spectroscopy upon reaction of guanidine-treated cytochrome c with peroxide, which resembles the spectrum of globin Compound II species and is thus proposed to be a ferryl species. The ability of physiological levels of ascorbate (10–60 µM) to interact with this species may have implications for mechanisms of cell signalling or damage that are based on cytochrome c/peroxide interactions.  相似文献   

15.
1. Physical studies of complex-formation between cytochrome c and yeast peroxidase are consistent with kinetic predictions that these complexes participate in the catalytic activity of yeast peroxidase towards ferrocytochrome c. Enzyme-ferricytochrome c complexes have been detected both by the analytical ultracentrifuge and by column chromatography, whereas an enzyme-ferrocytochrome c complex was demonstrated by column chromatography. Estimated binding constants obtained from chromatographic experiments were similar to the measured kinetic values. 2. The physicochemical study of the enzyme-ferricytochrome c complex, and an analysis of its spectrum and reactivity, suggest that the conformation and reactivity of neither cytochrome c nor yeast peroxidase are grossly modified in the complex. 3. The peroxide compound of yeast cytochrome c peroxidase was found to have two oxidizing equivalents accessible to cytochrome c but only one readily accessible to ferrocyanide. Several types of peroxide compound, differing in available oxidizing equivalents and in reactivity with cytochrome c, seem to be formed by stoicheiometric amounts of hydrogen peroxide. 4. Fluoride combines not only with free yeast peroxidase but also with peroxidase-peroxide and accelerates the decomposition of the latter compound. The ligand-catalysed decomposition provides evidence for one-electron reduction pathways in yeast peroxidase, and the reversible binding of fluoride casts doubt upon the concept that the peroxidase-peroxide intermediate is any form of peroxide complex. 5. A mechanism for cytochrome c oxidation is proposed involving the successive reaction of two reversibly bound molecules of cytochrome c with oxidizing equivalents associated with the enzyme protein.  相似文献   

16.
Ferricytochrome c showed low-level chemiluminescence, with a light-emission measured of about 1×103–3×103 counts/s, when supplemented with organic hydroperoxides. Tertiary hydroperoxides (cumene hydroperoxide and t-butyl hydroperoxide) showed a saturation behaviour at about 5mm-hydroperoxide, whereas primary hydroperoxides showed a quadratic dependence on the hydroperoxide concentration. Chemiluminescence depended linearly on cytochrome c concentration, and optimal light-emission was observed at [t-butyl hydroperoxide]/[ferricytochrome c] ratios of 160–500. Hydroperoxide-supplemented ferricytochrome c consumed O2 at a rate of 1.0μmol/min per μmol of cytochrome c; the rate of O2 uptake was linearly related to the concentration of cytochrome c. The Soret absorption band of ferricytochrome c decreased about 64% after incubation with t-butyl hydroperoxide, whereas the 530nm band was almost totally abolished. Light-emission was (a) inhibited competitively by cyanide. (b) inhibited by singlet-oxygen quenchers (e.g. β-carotene), scavengers (e.g. dimethylfuran) and traps (e.g. histidine and tryptophan) and (c) increased by singlet-oxygen-chemiluminescence enhancer 1,4-diazabicyclo[2.2.2]-octane. Superoxide dismutase had no effect on the present system. The participation of free radicals is suggested by the effect of the radical trap 2,5-di-t-butylquinol. Singlet-oxygen dimol emission seems to be mainly responsible for the observed light-emission; a mechanism that can account for the major part of the present experimental observations is proposed.  相似文献   

17.
When ferrocytochrome c reacts with delipidated cytochrome oxidase under conditions which prevent oxidation, one proton is taken up per molecule of ferrocytochrome c bound to cytochrome oxidase. When ferricytochrome c reacts with delipidated Complex III, one proton is released per molecule of ferricytochrome c bound to Complex III. From these data it can be concluded that the oxidation of ferrocytochrome c by cytochrome oxidase leads to the release of a proton and an electron, whereas the reduction of ferricytochrome c by Complex III leads to the uptake of a proton and an electron. Thus ferrocytochrome c like QH2 and NADH is both an electron and proton donor, and ferricytochrome c like Q and O2 is both an electron and proton acceptor. The pattern for the three mitochondrial electron transfer sequences NADH → Q, QH2 → ferricytochrome c and ferrocytochrome c → O2 involves separation of an electron and proton on the side of the membrane where electron transfer is initiated and recombination of an electron and a proton in the terminal acceptor on the side of the membrane where electron transfer terminates.  相似文献   

18.
The binding of horse heart cytochrome c to yeast cytochrome c peroxidase in which the heme group was replaced by protoporphyrin IX was determined by a fluorescence quenching technique. The association between ferricytochrome c and cytochrome c peroxidase was investigated at pH 6.0 in cacodylate/KNO3 buffers. Ionic strength was varied between 3.5 mM and 1.0 M. No binding occurs at 1.0 M ionic strength although there was a substantial decrease in fluorescence intensity due to the inner filter effect. After correcting for the inner filter effect, significant quenching of porphyrin cytochrome c peroxidase fluorescence by ferricytochrome c was observed at 0.1 M ionic strength and below. The quenching could be described by 1:1 complex formation between the two proteins. Values of the equilibrium dissociation constant determined from the fluorescence quenching data are in excellent agreement with those determined previously for the native enzyme-ferricytochrome c complex at pH 6.0 by difference spectrophotometry (J. E. Erman and L. B. Vitello (1980) J. Biol. Chem. 225, 6224-6227). The binding of both ferri- and ferrocytochrome c to cytochrome c peroxidase was investigated at pH 7.5 as functions of ionic strength in phosphate/KNO3 buffers using the fluorescence quenching technique. The binding in independent of the redox state of cytochrome c between 10 and 20 mM ionic strength, but ferricytochrome c binds with greater affinity at 30 mM ionic strength and above.  相似文献   

19.
20.
β-Lactoglobulin forms a soluble complex with cytochrome c in mildly alkaline solutions of low ionic strength. Sedimentation velocity experiments suggest that the complex (maximum s20 = 3.7) consists of one cytochrome c molecule per β-lactoglobulin monomer unit. At pH 8 or higher, the presence of β-lactoglobulin causes reduction of ferri- to ferrocytochrome c. The initial rate of reduction at a single temperature depends primarily on the concentration of β-lactoglobulin, although the final percentage ferrocytochrome c obtained is constant at molar ratios of three or more β-lactoglobulin monomers to one cytochrome c molecule. The temperature dependence of the initial rate of iron reduction resembles that for alkaline denaturation of β-lactoglobulin. The displacement of N-dansylaziridine, a sulfhydryl specific dye, from bovine β-lactoglobulin during iron reduction, and the formation of nonreducing complexes between the analogous swine protein (no sulfhydryls) and cytochrome c suggest that the sulfhydryl group of β-lactoglobulin is the electron donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号