首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了探讨听觉损伤与毛细胞损伤的关系,本实验比较了噪声暴露后豚鼠皮层听阈及其与基底膜单位长度上毛细胞损伤率的关系。暴露声源中心频率1000Hz,为1/3倍频程的窄带噪声。强度为136dB作用1小时。108dB每天暴露1小时,5天/周连续1个月。结果表明,毛细胞损伤呈灶性,损伤部位与周围界线十分分明。毛细胞损伤在豚鼠间及左右耳间均存在相当程度的个体差异。136dB暴露,毛细胞损伤最重的部位在基底膜1.5转到2.5转之间,符合1000Hz声音在基底膜的最大振动范围。108dB的损伤部位局限在1.5转,其范围及程度明显轻于136dB。136dB造成的听阈偏移高于108dB,尤其在4、8 KHz高频听阈偏移最明显,但耳蜗底转毛细胞多无明显损伤。  相似文献   

2.
Environmental assessments of underwater noise on marine species must be based on species-specific hearing abilities. This study was to assess the potential impact of underwater noise from the East China Sea Bridge wind farm on the acoustic communication of the marbled rockfish. Here, the 1/3 octave frequency band of underwater noise was 125 Hz with the level range of 78–96 dB re 1 μPa, recorded at distances between 15-20m from the foundation at wind speed of 3–5 m/s. Auditory evoked potential (AEP) and passive acoustic techniques were used to determine the hearing abilities and sound production of the fish. The resultes showed the lowest auditory threshold of Sebastiscus marmoratus was 70 dB at 150 Hz matching the disturbance sound ranging 140–180 Hz, which indicating the acoustic communication used in this species. However, the frequency and level of turbine underwater noise overlapped the auditory sensitivity and vocalization of Sebastiscus marmoratus. The wind turbine noise could be detected by fish and may have a masking effect on their acoustic communication. This result can be applied for further to the assessent of fish species released into offshore wind farm marine ranch.  相似文献   

3.
1.  We tested the long-standing hypothesis that female frogs are attracted to the sound of a chorus of conspecific males from a distance. We studied the barking treefrog (Hyla gratiosa) because the location of choruses is unpredictable; thus, chorus sound indicates the presence of conspecific males as well as the location of a suitable breeding site.
2.  We measured the sound pressure level (SPL in dB re 20 Pa) in the 500 Hz octave band at various distances from choruses. The primary spectral peak in the advertisement call of this species is 400–500 Hz.
3.  The pattern of chorus sound attenuation in the 500 Hz band at two different sites was very similar and generally followed the pattern expected from geometrical spreading from a point source (Fig. 3). At one of the sites the SPL measured near ground level was always higher than that at a point 1 m above the ground (Fig. 3).
4.  Spectral analyses of the chorus sound at different distances showed that the low-frequency spectral peak in the range of 400–500 Hz was a prominent component, especially at 80–160 m (Figs. 1, 4). Amplitude peaks that corresponded to individual calls ofH. gratiosa and other species were also evident in oscillograms of recordings made at 160 m (Fig. 1).
5.  Gravid females oriented and moved toward a source of conspecific chorus sounds (originally recorded at 160 m from the pond) played back at 38–40 dB SPL in the 500 Hz octave band (Fig. 1, Table 1). Background noise levels were 43–47 dB SPL (C-weighted) and 24–25 dB SPL in the 500 Hz octave band.
6.  In a two-stimulus, choice experiment, females ofH. gratiosa always chose the source of a mixed chorus (H. gratiosa andH. cinerea) sound with conspecific males to a source of a pure chorus sound ofH. cinerea (Fig. 2, Table 2).
  相似文献   

4.
Summary Physiological recordings were obtained from identified receptors in the tympanal organ ofGryllus bimaculatus. By immersing the prothoracic leg in Ringer solution and removing the anterior tympanic membrane the auditory receptors were exposed without significantly altering the frequency response of the auditory organ (Fig. 1). Each receptor was tuned to a specific sound frequency. For sound frequencies below this characteristic frequency the roll-off in sensitivity decreased from 20–30 dB/octave to 10–15 dB/octave as the characteristic frequency of receptors increased from 3–11 kHz (Fig. 4A). For each individual receptor the slope, dynamic range and maximum spike response were similar for different sound frequencies (Fig. 9A). The receptors were tonotopically organized with the characteristic frequency of the receptors increasing from the proximal to the distal end of the array (Figs. 5, 6). Several receptors had characteristic frequencies of 5 kHz. These receptors were divided into two groups on the basis of their maximum spike response produced in response to pure tones of increasing intensity (Fig. 7). Independent of the tuning of the receptor no two-tone inhibition was observed in the periphery, thus confirming that such interactions are a property of central integration.  相似文献   

5.
Middle Latency Auditory Evoked Potentials (MLAEPs) were recorded from 15 healthy subjects in order to evaluate the influence of different repetition rates on the latency and the amplitude of their main components Na, Pa and Nb. MLAEPs were obtained from Cz-ipsilateral ear lobe by averaging responses to 2000 monaural clicks delivered to both ears, at 65 dB SL of intensity, for each of 3 different repetition rates (1.1, 4.1, 8.1 Hz). Time base was 100 ms, analogical band-pass filter 5-1000 Hz (off-line digital bandpass: 20-100 Hz). The statistical analysis (repeated measures analysis of variance), demonstrated that, the latency and the amplitude of the Nb component were slightly influenced by repetition rate while Pa and Na were not. Moreover Nb showed the greatest interindividual variability (as already pointed out by other authors too); thus, we suggest that a stimulus rate of 8.1 Hz and the analysis of Na and Pa component only, can be regarded as the best assessment for MLAEPs evaluation when they are used for clinical purposes.  相似文献   

6.
This study was designed to identify psychophysical channels responsible for the detection of hand-transmitted vibration. Perception thresholds for vibration (16, 31.5, 63 and 125 Hz sinusoidal for 600 ms) at the distal phalanx of the middle finger and the whole hand were determined with and without simultaneous masking stimuli (1/3 octave bandwidth Gaussian random vibration centered on either 16 Hz or 125 Hz for 3000 ms, varying in magnitude 0 to 30 dB above threshold). At all frequencies from 16 to 125 Hz, absolute thresholds for the hand were significantly lower than those for the finger. Changes in threshold as a function of masker level were used to estimate the thresholds of three psychophysical channels (i.e. P, NP I, and NP II channels). Increased vibrotactile sensitivity of the hand compared to the finger seems to be not entirely due to increased spatial summation via the Pacinian system (P channel); non-Pacinian system (NP I and NP II channels) also contributed to perception. Differing transmission of vibration between the hand and the finger may have also influenced the thresholds.  相似文献   

7.
This study was designed to identify psychophysical channels responsible for the detection of hand-transmitted vibration. Perception thresholds for vibration (16, 31.5, 63 and 125?Hz sinusoidal for 600?ms) at the distal phalanx of the middle finger and the whole hand were determined with and without simultaneous masking stimuli (1/3 octave bandwidth Gaussian random vibration centered on either 16?Hz or 125?Hz for 3000?ms, varying in magnitude 0 to 30?dB above threshold). At all frequencies from 16 to 125?Hz, absolute thresholds for the hand were significantly lower than those for the finger. Changes in threshold as a function of masker level were used to estimate the thresholds of three psychophysical channels (i.e. P, NP I, and NP II channels). Increased vibrotactile sensitivity of the hand compared to the finger seems to be not entirely due to increased spatial summation via the Pacinian system (P channel); non-Pacinian system (NP I and NP II channels) also contributed to perception. Differing transmission of vibration between the hand and the finger may have also influenced the thresholds.  相似文献   

8.
The amplitude of sound transmission from the mouth to a site overlying the extrathoracic trachea and two sites on the posterior chest wall was measured in eight healthy adult male subjects at resting lung volume over the 100- to 600-Hz frequency range. The ratios of the estimated magnitude spectra of transmission of each of the chest wall sites to the tracheal site were determined, with the resulting spectra representing effective transfer functions of transmission in the subglottal system. For the group, the transfer functions exhibited a single peak, which occurred at 143 +/- 13 Hz (mean +/- SD) with a quality factor (Q) of 2.0 +/- 0.2 for the upper chest wall site and at 129 +/- 6 Hz with a Q of 2.2 +/- 0.4 for the lower site. The trend of decreasing spectral energy with increasing frequency was indicated by roll-offs of -10 +/- 4 and -17 +/- 5 dB/octave from 300 to 600 Hz at the two sites, respectively. The fundamental radial mode of a model thoracic cavity, which is a large rigid cylinder filled with lossless lung tissue, provides a good estimate of the observed low-frequency resonance. This agreement suggests that thoracic cavity resonances may have particularly important effects on sound transmission at frequencies below approximately 250 Hz, where the magnitude of parenchymal attenuation appears to be small.  相似文献   

9.
The influence of myogenic activity on the generation of slow negative evoked potentials (SN10) to octave, toneburst stimuli (0.5–2 Hz) was investigated in 5 rhesus monkeys (M. mulatta) by comparing responses obtained prior to and during total paralysis induced with curare. The SN10 could be easily elicited during paralysis, regardless of stimulus intensity, rate, or frequency. During paralysis, there were no systematic changes in either response latency or amplitude; variability in latency was less than 10% and changes in response amplitude were within 30%. These findings suggest that the myogenic contribution to the SN10 response is negligible and that this response is of neurogenic origin in the rhesus monkey.  相似文献   

10.
Effects of stimulus repetition rate on the slow and fast components of the auditory brain-stem response (ABR) were investigated in 10 adult subjects with normal hearing. The ABRs were recorded with click stimuli at repetition rates of 8, 13.3, 23.8, 40 and 90.9/sec and at an intensity level of 55 dB nHL. Power spectral analysis of the averaged responses was performed. Then the responses were divided into a slow component (0–400Hz) and a fast component (400–1500 Hz) by using digital filtering technique. The magnitude of the slow component was little affected with increasing stimulus rate from 8/sec to 90.9/sec, while successive waves of the fast component, including wave V, decreased in amplitude as stimulus rate was increased. The latency of the slow component and each wave of the fast component was prolonged with increasing click rates. The shift of latency became longer in the later waves than in the earlier waves.  相似文献   

11.
Summary For echolocation,Rhinolophus ferrumequinum emits orientation sounds, each of which consists of a long constant-frequency (CF) component and short frequency-modulated (FM) components. The CF component is about 83 kHz and is used for Doppler-shift compensation. In this bat, single auditory nerve fibers and cochlear nuclear neurons tuned at about 83 kHz show low threshold and very sharp filter characteristics. The slopes of their tuning curves ranged between 1,000 and 3,500 dB/octave and their Q-10 dB values were between 20 and 400, 140 on the average (Figs. 3–5). The peripheral auditory system is apparently specialized for the reception and fine frequency analysis of the CF component in orientation sounds and Doppler-shift compensated echoes. This specialization is not due to suppression or inhibition comparable to lateral inhibition, but due to the mechanical specialization of the cochlea. Peripheral auditory neurons with the best frequency between 77 and 87 kHz showed not only on-responses, but also off-responses to tonal stimuli (Figs. 1, 2, and 6). The off-responses with a latency comparable to that of N1-off were not due to a rebound from either suppression or inhibition, but probably due to a mechanical transient occurring in the cochlea at the cessation of a tone burst.We thank Alexander von Humboldt Stiftung, Deutsche Forschungsgemeinschaft (Grant No. Ne146/6-8), Stiftung Volkswagenwerk (Grant No. 111858), and American National Science Foundation (Grant No. 40018 and BMS 75-17077) for their support for our cooperative work.  相似文献   

12.
Experiment 1 elicited the P1, N1, P2, and N2 components of the long latency auditory evoked potential (AEP) using a 1000 Hz tone presented at 30, 50, or 70 dB SPL and 1-, 3-, or 5-second inter-stimulus intervals to assess the relative effects of the combination of these variables on component amplitude and latency. Four blocks of 16 tone presentations each were recorded from each subject to determine if changes in the AEP would occur because of short-term habituation. Both stimulus factors interacted significantly in a systematic fashion for the amplitude measures, with increases in latency also associated with increases in intensity and inter-stimulus interval. Only minor changes across the four trial blocks for either the amplitude or latency measures were observed over the various stimulus presentation conditions. Experiment 2 employed the same tone stimulus presented at 50 dB SPL and a 3-second inter-stimulus interval. Eight blocks of 64 trials were recorded from each subject on each day for four days to investigate long-term habituation effects. No substantial changes in any of the component amplitudes or latencies were obtained across the 32 trial blocks. It was concluded that intensity and inter-stimulus interval interact to determine AEP amplitude as well as latency values and that the constituent components do not change appreciably with repeated stimulus presentations, even after several days.  相似文献   

13.
Pacinian corpuscles (PCs) in cat mesentery have been studied extensively to help determine the structural and functional bases of tactile mechanotransduction. Although we, like many other investigators, have found that the mesenteric receptors are anatomically very similar to those found in mammalian skin, few physiological characteristics of the mesenteric PCs and those of the skin have been compared. Action-potential rate-amplitude and frequency characteristics (10 Hz–1 KHz), as well as interval (IH) and peri-stimulus-time (PSTH) histograms in response to sinusoidal displacements were obtained from nerve fibers innervating mesenteric PCs and from PC fibers innervating cat glabrous skin. The intensity characteristics obtained on both preparations showed similar response profiles, including equal slopes for low stimulus intensities (approximately 10, with impulse ratios/20 dB displacement) and one and two impulse/cycle entrainment. The frequency characteristics of both groups were U-shaped with similar low-frequency slopes (?12.5 dB/octave) and bandwidths (Q3dB = 1.4). The best frequency for both the tactile PCs' and mesenteric PCs was 250 Hz, which is in the expected range. The IHs showed entrainment and the PSTHs showed neither transient responses nor adaptation to steady-state sinusoidal stimuli. The functional similarity between mesenteric PCs' nerve responses and those of tactile PC afferents, as well as the receptors’ anatomical similarity, lead us to suggest that the mesenteric PC can act as a model for those in the skin. Furthermore, since the frequency characteristics of the two PC types are similar, it is concluded that the skin, while attenuating stimulus intensity, does not impart temporal filtering of vibratory stimuli.  相似文献   

14.
长江航运业的快速发展导致长江中船舶数量激增,相应的水体噪声污染可能对同水域的长江江豚(Neophocaena asiaeorientalis asiaeorientalis)产生一定的负面影响,本研究采用宽频录音设备对长江和畅洲北汊非正式通航江段的各类常见大型船舶(长>15m且宽>5m)的航行噪声进行了记录,并分析其峰值-峰值声压级强度(SPLp-p)和功率谱密度(PSD)等。结果表明,大型船舶的航行噪声能量分布频率范围较广(>100kHz),但主要集中于中低频(<10kHz)部分,各频率(20Hz~144kHz)处的均方根声压级(SPLrms)对环境背景噪声在该频率处的噪声增量范围为3.7~66.5dB。接收到的1/3倍频程声压级(TOL)在各频率处都大于70dB,在8~140kHz频段内都高于长江江豚的听觉阈值。说明大型船舶的航行噪声可能会对长江江豚个体间的声通讯及听觉带来不利影响,如听觉掩盖。  相似文献   

15.
Hearing of old world monkeys (Cercopithecinae)   总被引:1,自引:0,他引:1  
The characteristics of normal hearing were examined in the laboratory for seven species of Old World monkeys. Operant conditioning procedures, coupled with standard audiometric testing methods, were used to assess thresholds of hearing, frequency range of hearing, and differential sensitivity to auditory intensity and frequency. To produce tonal stimulation, an animal was trained to touch and maintain manual contact with a contact-sensitive key and to report hearing the tone by lifting his hand from the key; this response was followed by food reinforcement. When the reporting response occurred without the auditory signal, the animal was punished by a short suspension from the experiment. Additional contingencies were added to ensure stable and reliable responding, and threshold and differential acuity determinations were then made. Threshold was defined as the stimulus value responded to correctly 50% of the time. The frequency range of hearing of all the cercopithecoids tested extended from 60 to 40,000 Hz, an octave above the upper bound of 20,000 Hz for man but well below the 60–70,000 Hz limit for some prosimians. Absolute sensitivity for tonal stimulation in the most sensitive frequency range (1–8 kHz) was about 2 × 10?4 microbars, comparable to that of other primates tested, including man. Thus, the Old World monkey appears only slightly less sensitive than man to small changes in intensity and frequency of acoustic stimulation. At 1000 Hz at 60 dB above the threshold of audibility, his limit of resolution is about 5 Hz for frequency and 2 dB for intensity.  相似文献   

16.
Frequency selectivity of hearing was measured in the green treefrog, Hyla cinerea. A psychophysical technique based on reflex modification was used to obtain masked threshold estimates for pure tones (300-5,400 Hz) presented against two levels of broadband masking noise. A pure tone (S-1) presented 200 ms prior to a reflex-eliciting stimulus (S-2) inhibited the motor reflex response to S-2. The magnitude of this reflex modification effect varied systematically with the sound pressure level (SPL) of S-1, and threshold was defined as the SPL of S-1 at which the reflex modification effect disappeared. Masked thresholds were used to calculate critical ratios, an index of the auditory system's frequency selectivity. The frequency selectivity of the treefrog's hearing is greatest and critical ratios are lowest (22-24 dB) at about 900 and 3,000 Hz, the two spectral regions dominant in the male treefrog's species-specific advertisement call. These results suggest that the treefrog's auditory system may be specialized to reject noise at biologically-relevant frequencies. As in other vertebrates, critical ratios remain constant when background noise level is varied; however, the shape of the treefrog's critical ratio function across frequencies differs from the typical vertebrate function that increases with increasing frequency at a slope of about 3 dB/octave. Instead, the treefrog's critical ratio function resembles its pure tone audiogram. Although the shape of the treefrog's critical ratio function is atypical, the critical ratio values themselves are comparable to those of many other vertebrates in the same frequency range. Critical ratio values here measured behaviorally do not match critical ratio values previously measured physiologically in single eighth nerve fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In a series of experiments designed to explore the processes underlying adaptation of the sense of flutter-vibration, vibrotactile threshold was measured on the pad of the index finger, using Békésy tracking. Unadapted thresholds were first measured, for a number of frequencies (4-90 Hz) and contactor sizes (1-8 mm diameter). As expected, these measurements indicated the presence of (1) a Pacinian system possessing spatial summation and increasing in sensitivity, as frequency was raised, at the rate of 12 dB/octave; and (2) a non-Pacinian system showing little spatial summation, and with a frequency characteristic matching that of the NP I mechanism of Bolanowski et al. (1988). These baseline data of Experiment 1 guided the selection of stimulus parameters for subsequent experiments, in which threshold for a test stimulus was measured before, during, and after periods of vibrotactile adaptation. In Experiment 2, test stimuli of 10 Hz and 50 Hz were combined factorially with 30-dB SL adapting stimuli of the same two frequencies. When the test stimulus was 10 Hz, the two adapting frequencies were equally effective in raising threshold; however, when the 50-Hz test stimulus was used, the 50-Hz adapting stimulus raised threshold by a greater amount than did the 10-Hz adapter. These results confirm on the finger the independence of adaptation in Pacinian and non-Pacinian channels, a result previously established on the thenar by other workers. For all four frequency combinations, threshold rose exponentially with a time constant of 1.5-2 min. In Experiment 3, an action spectrum was determined, showing the adapting amplitude needed at each of a series of frequencies to raise the threshold of a 10-Hz stimulus by 10 dB; this spectrum was essentially flat from 30 to 90 Hz. The results, taken in conjunction with what is known about rapidly adapting cutaneous mechanoreceptors, imply that the effectiveness of an adapting stimulus is not determined solely by the amount of activity it generates in first-order afferents.  相似文献   

18.
Summary The auditory thresholds of three frogs-two subspecies of the genusHyla (H. a. arborea, H. a. savignyi) and one of the genusRana (R. r. ridibunda)—were measured at 5°, 12°, 20° and 28°C, by recording multi-unit activity from the torus semicircularis. In the tree frogs, the upper limit of the audible range is 7,000 Hz. At 5°C the best frequency is 3,000 Hz; the threshold (expressed in dB SPL in all cases) at this frequency is 49 dB (males) and 43 dB (females) forH. a. arborea and 42 dB (males) and 48 dB (females) forH. a. savignyi. At 12°C the thresholds are lower, and they are lower still at 20°, reaching a minimum, at 3,000 Hz, of 42 dB (males) and 38 dB (females) forH. a. arborea and 41 dB (males) and 40 dB (females) forH. a. savignyi. At frequencies of 1,000 Hz and lower, thresholds are high at 5°C; in part of this range they are considerably lowered at 20°C, whereas at 28°C there is a reduction in sensitivity to most frequencies inH. a. arborea, amounting to more than 10 dB in the males.H. a. savignyi differs in this regard; at 28° sensitivity is no less than at lower temperatures, and in fact is greater in the range 1,000–1,400 Hz. The audible range ofR. r. ridibunda is more restricted than that of the tree frogs, but it is more sensitive within this range. The highest frequency is 4,500 Hz. At 5°C the thresholds of the males are lowest at 500–600 Hz (42 dB) and 1,400–1,900 Hz (ca. 39 dB). The best frequencies of the females are 700 Hz (38 dB) and 1,400 Hz (36 dB). At 12°C the thresholds at 300 Hz and 1,000 Hz are markedly lowered, by 10–18 dB. The thresholds of the females at 20°C are still lower over almost the entire audible range, whereas in the males only part of the range is affected. This difference persists at 28°C, the threshold curve of the males being slightly raised, while that of the females is unchanged. Latencies are dependent upon temperature and sound pressure. With a rise in temperature from 5° to 20°C the latency falls by ca. 8 ms. An increase in sound pressure from 5 dB to 30 dB SPL shortens the latency by ca. 10 ms. These changes were found in all the frogs studied.  相似文献   

19.
The threshold of the acoustic reflex and its pattern in response to different intersity stimuli, was investigated by means of the signal-averaging technique in 10 normal ears. Trains of tone bursts between 100 and 0 dB HL were used. The frequencies tested were 500, 1000, 2000 and 4000 Hz. In all subjects the pattern of the acoustic reflex for stimuli between 110 and 100 dB HL was biphasic, with an initial positive plateau followed by a longer negative one. For stimuli < 80 dB HL the pattern of the reflex was monophasic, characterized by a single positive peak (latency between 120 and 170 msec).  相似文献   

20.
Pacinian corpuscles (PCs) in cat mesentery have been studied extensively to help determine the structural and functional bases of tactile mechanotransduction. Although we, like many other investigators, have found that the mesenteric receptors are anatomically very similar to those found in mammalian skin, few physiological characteristics of the mesenteric PCs and those of the skin have been compared. Action-potential rate-amplitude and frequency characteristics (10 Hz-1 KHz), as well as interval (IH) and peri-stimulus-time (PSTH) histograms in response to sinusoidal displacements were obtained from nerve fibers innervating mesenteric PCs and from PC fibers innervating cat glabrous skin. The intensity characteristics obtained on both preparations showed similar response profiles, including equal slopes for low stimulus intensities (approximately 10, with impulse ratios/20 dB displacement) and one and two impulse/cycle entrainment. The frequency characteristics of both groups were U-shaped with similar low-frequency slopes (-12.5 dB/octave) and bandwidths (Q(3dB) = 1.4). The best frequency for both the tactile PCs' and mesenteric PCs was 250 Hz, which is in the expected range. The IHs showed entrainment and the PSTHs showed neither transient responses nor adaptation to steady-state sinusoidal stimuli. The functional similarity between mesenteric PCs' nerve responses and those of tactile PC afferents, as well as the receptors' anatomical similarity, lead us to suggest that the mesenteric PC can act as a model for those in the skin. Furthermore, since the frequency characteristics of the two PC types are similar, it is concluded that the skin, while attenuating stimulus intensity, does not impart temporal filtering of vibratory stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号