首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ribosomal complexes containing elongation factor 2 (EF-2) were formed by incubation of 80 S ribosomes in the presence of EF-2 and the non-hydrolysable GTP analogue GuoPP[CH2]P. The factor was covalently coupled to the ribosomal proteins located at the factor binding site, by treatment with bifunctional reagents. After isolation of the covalent EF-2.ribosomal protein complexes, the proteins were labelled with 125I and the introduced covalent links cleaved. The ribosomal proteins were identified by electrophoresis in two independent two-dimensional gel systems, followed by autoradiography. After cross-linking with bis(hydroxysuccinimidyl) tartrate (4 A between the reactive groups), protein S3/S3a, S7 and S11 were found as the major ribosomal proteins covalently linked to EF-2. The longer reagent, dimethyl 3,8-diaza-4,7-dioxo-5,6-dihydroxydecanbisimidate (11 A between the reactive groups), covalently coupled proteins S7, S11, L5, L13, L21, L23, L26, L27a and L32 to EF-2. After cross-linking with dimethyl suberimidate (9 A between the reactive groups) proteins S3/3a, S7, S11, L5, L8, L13, L21, L23, L26, L27a, L31 and L32 were identified as belonging to the EF-2-binding site. The results indicate that the ribosomal domain interacting with EF-2 is located on both the small and the large ribosomal subunit close to the subunit interface.  相似文献   

2.
3.
We have used variations in the trypsin sensitivity of eukaryotic protein synthesis elongation factor 2 (eEF-2) to probe for structural alterations induced by phosphorylation, ribosomal binding, or guanosine nucleotides. We could not detect any nucleotide-related effect on the tryptic cleavage rate of Arg66. However, eEF-2 was protected from trypsin after ribosomal binding. Also, phosphorylation of eEF-2 led to a protection of Arg66. This indicates that phosphorylation leads to a structural rearrangement that could explain the reduced affinity of the phosphorylated factor for ribosomes (Carlberg, U., Nilsson, A., and Nyg?rd, O. (1990) Eur. J. Biochem. 191, 639-645). Cleavage of Arg66 led to a complete loss of the ability of the factor to be phosphorylated. Furthermore, ribosome-bound eEF-2 was found to be inaccessible for phosphorylation. Based on these findings and previously published data, we suggest that the region around the sites of phosphorylation and trypsin cleavage is vitally important for the factor function and ribosomal binding.  相似文献   

4.
Tryptic cleavage of EF-2, molecular mass 93 kDa, produced an 82-kDa polypeptide and a 10-kDa fragment, which was further degraded. By a slower reaction the 82-kDa polypeptide was gradually split into a 48-kDa and a 34-kDa fragment. Similarly, treatment with chymotrypsin resulted in the formation of an 82-kDa polypeptide and a small fragment. In contrast to the tryptic 82-kDa polypeptide the corresponding chymotryptic cleavage product was relatively resistant to further attack. The degradation of the 82-kDa polypeptide with either trypsin or chymotrypsin was facilitated by the presence of guanosine nucleotides, indicating a conformational shift in native EF-2 upon nucleotide binding. No effect was observed in the presence of ATP, indicating that the effect was specific for guanosine nucleotides. After affinity labelling of native EF-2 with oxidized [3H]GTP and subsequent trypsin treatment the radioactivity was recovered in the 48-kDa polypeptide showing that the GTP-binding site was located within this part of the factor. Correspondingly, tryptic degradation of EF-2 labelled with [14C]NAD+ in the presence of diphtheria toxin showed that the site of ADP-ribosylation was within the 34-kDa polypeptide. By cleavage with the tryptophan-specific reagent N-chlorosuccinimide the site of ADP-ribosylation could be located at a distance of 40-60 kDa from the GTP-binding site and about 4-11 kDa from the nearest terminus.  相似文献   

5.
Ribosomal protein L2 from Escherichia coli binds to and protects from nuclease digestion a substantial portion of 'domain IV' of 23S rRNA. In particular, oligonucleotides derived from the sequence 1757-1935 were isolated and shown to rebind specifically to protein L2 in vitro. Other L2-protected oligonucleotides, also derived from domain IV (i.e. from residues 1955-2010) did not rebind to protein L2 in vitro nor did others derived from domain I. Given that protein L2 is widely believed to be located in the peptidyl transferase centre of the 50S ribosomal subunit, these data suggest that domain IV of 23S rRNA is also present in that active site of the ribosomal enzyme.  相似文献   

6.
During the translocation of the nascent peptide chain from the ribosomal aminoacyl-site to the peptidyl-site, GTP is hydrolyzed by a mechanism dependent on both ribosomes and the elongation factor EF-2. For insight into the mechanism of GTP hydrolysis, we studied the ability of the GTP analogue 5′-p-fluorosulfonylbenzoylguanosine (FSO2BzGuo) to act as an affinity label of the guanine-specific site. Pre-incubation of EF-2 with FSO2BzGuo at increasing concentrations progressively inactivated the EF-2 and ribosome-dependent GTPase activity. Up to 0.5 mM FSO2BzGuo, the inactivation of the GTPase activity was stoichiometrically correlated with the covalent binding of [3H]FSO2BzGuo. Thus, one molecule of covalently bound FSO2BzGuo completely inactivated the GTPase activity of EF-2. Ribosomes or 60-S ribosomal subunits pre-incubated with FSO2BzGuo were not inactivated, consistent with the idea that the GTP hydrolysis involved in the ribosomal translocation takes place on EF-2.  相似文献   

7.
8.
The interaction between eukaryotic elongation factor eEF-2 and reconstituted 80 S ribosomes was investigated by analyzing the accessibility of 5 S ribosomal RNA for chemical and enzymatic modification. Ribosomes reconstituted from derived subunits were modified, and the positions of the modified sites were identified by primer extension using a 5 S rRNA-specific probe. All reactive sites were located between nucleotides 38 and 99, and most of them were found in putative single-stranded regions of the 5 S rRNA. Conversion of the ribosomes to the post-translocation type of particles by treatment with the translational inhibitor ricin resulted in the exposure of 3 additional bases for chemical modification, suggesting that the 5 S rRNA was more exposed in this type of ribosome. After binding of eEF-2 in complex with the non-hydrolyzable GTP analogue guanosine 5'-(beta, gamma-methylene)-triphosphate, most of the exposed bases in the 5 S rRNA were protected against both chemical and enzymatic modification.  相似文献   

9.
Ribosomal protein L11 of Escherichia coli was bound to 23 S rRNA and the resultant complex was digested with ribonuclease T1. A single RNA fragment, protected by protein L11, was isolated from such digests and was shown to rebind specifically to protein L11. The nucleotide sequence of this RNA fragment was examined by two-dimensional fingerprinting of ribonuclease digests. It proved to be 61 residues long and the constituent oligonucleotides could be fitted perfectly between residues 1052 and 1112 of the nucleotide sequence of E. coli 23 S rRNA.  相似文献   

10.
Eukaryotic elongation factor 2 (eEF2) catalyzed the translocation of peptidyl-tRNA from the ribosomal A site to the P site. In this paper, the interaction between eEF2 and GTD RNA, a synthetic oligoribonucleotide that mimicked the GTPase domain of rat 28S ribosomal RNA, was studied in vitro. The purified eEF2 could bind to GTD RNA, forming a stable complex. Transfer RNA competed with GTD RNA in binding to eEF2, whereas poly(A), poly(U) and poly(I, C) did not interfere with the interaction between eEF2 and GTD RNA, demonstrating that the tertiary structure of RNA might be necessary for the recognition of and binding to eEF2. The complex formation of eEF2 with GTD RNA was inhibited by SRD RNA, a synthetic oligoribonucleotide mimic of Sarcin/Ricin domain RNA of rat 28S RNA. Similarly, GTD RNA inhibited the interaction between eEF2 and SRD RNA. This fact implies that these small oligoribonucleotides probably share similar recognition or binding identity elements in their tertiary structures. In addition, the binding of eEF2 to GTD RNA could be obviously weakened by the ADP-ribosylation of eEF2 with diphtheria toxin. These results indicate that eEF2 behaves differently from prokaryotic EF-G in binding to ribosomal RNA.  相似文献   

11.
Eukaryotic elongation factor 1 alpha (EF-1 alpha) binds all the aminoacyl-tRNAs except the initiator tRNA in a GTP-dependent manner. While the GTP binding site is delineated by the three GTP binding consensus elements, less is known about the aminoacyl-tRNA binding sites. In order to better understand this site, we have initiated cross-linking and protease mapping studies of the EF-1 alpha-GTP-aminoacyl-tRNA complex. Two different chemical cross-linking reagents, trans-diaminedichloroplatinum(II) and diepoxybutane, were used to cross-link four different aminoacyl-tRNA species to EF-1 alpha. A series of peptides were obtained, located predominantly in domains II and III. The ability of aminoacyl-tRNA to protect protease digestion sites was also monitored, and domain II was found to be protected from digestion by aminoacyl-tRNA. Last, an aminoacyl-tRNA analog with a reactive group on the aminoacyl side chain, N epsilon-bromoacetyl-Lys-tRNA, was cross-linked to EF-1 alpha. This reagent cross-liked to histidine 296 in a GTP-dependent manner and thus localizes the aminoacyl group adjacent to domain II. A model is developed for aminoacyl-tRNA binding to EF-1 alpha based on its similarity to the prokaryotic factor EF-Tu, for which an x-ray crystal structure is available.  相似文献   

12.
13.
The biological activity of elongation factor 2 (EF-2) following NAD+ - and diphtheria-toxin-dependent ADP-ribosylation was studied (i) in translation experiments using the reticulocyte lysate system and (ii) in ribosomal binding experiments using either reconstituted empty rat liver ribosomes or programmed reticulocyte polysomes. Treatment of the lysates with toxin and NAD+ at a NAD+/ribosome ratio of 4 resulted in a 90% inhibition of the amino acid incorporation rate. The inhibition was overcome by the addition of native EF-2. At this level of inhibition more than 90% of the EF-2 present in the lysates was ADP-ribosylated and the total ribosome association of EF-2 was reduced by approx. 50%. All of the remaining unmodified factor molecules were associated with the ribosomes, whereas only about 3% of the ribosylated factor was ribosome-associated. The nucleotide requirement for the binding of EF-2 to empty reconstituted rat liver ribosomes and programmed reticulocyte polysomes was studied together with the stability of the resulting EF-2 X ribosome complexes using purified 125I-labelled rat liver EF-2. With both types of ribosomes, the complex formation was strictly nucleotide-dependent. Stable, high-affinity complexes were formed in the presence of the non-hydrolysable GTP analogue guanosine 5'-(beta, gamma-methylene)triphosphate (GuoPP[CH2]P). In contrast to the reconstituted ribosomes, GTP stimulated the formation of high-affinity complexes in the presence of polysomes, albeit at a lower efficiency than GuoPP[CH2]P. The formation of high-affinity complexes was restricted to polysomes in the pretranslocation phase of the elongation cycle. Low-affinity post-translocation complexes, demonstrable after fixation, were formed in the presence of GTP, GuoPP[CH2]P and GDP. In polysomes, these complexes involved a different population of particles than did the high-affinity complexes. In the binding experiments using reconstituted or programmed ribosomes, the pretranslocation binding of EF-2 observed in the presence of GuoPP[CH2]P was reduced by approx. 50% after ADP-ribosylation, whereas the post-translocation binding in the presence of GDP was unaltered. The data indicate that the inhibition of translocation caused by diphtheria toxin and NAD+ is mediated through a reduced affinity of the ADP-ribosylated EF-2 for binding to ribosomes in the pretranslocation state.  相似文献   

14.
15.
Polypeptide elongation factor 2 (EF-2) plays an essential role in protein synthesis and is believed to be indispensable for cell proliferation. Recently, it has been demonstrated that there are two kinds of EF-2 (EF-2A and EF-2B with 76.6% of sequence identity at the amino acid level) in Dictyostelium discoideum. Although the knockout of EF-2A slightly impaired cytokinesis, EF-2A null cells exhibited almost normal protein synthesis and cell growth, suggesting that there is another molecule capable of compensating for EF-2 function. Since EF-2B is the most likely candidate, we examined its function using ef-2b knockdown cells prepared by the RNAi method. Our results strongly suggest that EF-2B is required for protein synthesis and cell proliferation, functioning as the real EF-2. Interestingly, the expressions of ef-2a and ef-2b mRNAs during development are reversely regulated, and the ef-2b expression is greatly augmented in ef-2a null cells.  相似文献   

16.
The structure of the RNA binding site of ribosomal proteins S8 and S15.   总被引:12,自引:0,他引:12  
Proteins S8 and S15 from the 30 S ribosomal subunit of Escherichia coli were bound to 16 S RNA and digested with ribonuclease A. A ribonucleoprotein complex was isolated which contained the two proteins and three noncontiguous RNA subfragments totaling 93 nucleotides, that could be unambiguously located in the 16 S RNA sequence. We present a secondary structural model for the RNA moiety of the binding site complex, in which the two smaller fragments are extensively base-paired, respectively, to the two halves of the large fragment, to form two disconnected duplexes. Each of the two duplexes is interrupted by a small internal loop. This model is supported by (i) minimum energy considerations, (ii) sites of cleavage by ribonuclease A, and (iii) modification by the single strand-specific reagent kethoxal. The effect of protein binding on the topography of the complex is reflected in the kethoxal reactivity of the RNA moiety. In the absence of the proteins, 5 guanines are modified; 4 of these, at positions 663, 732, 733, and 741, are strongly protected from kethoxal when protein S15 is bound.  相似文献   

17.
18.
Partial localization of the 5S RNA binding site on 23S RNA   总被引:2,自引:0,他引:2  
P N Gray  R Monier 《Biochimie》1972,54(1):41-45
  相似文献   

19.
The primary nucleotide sequence of Novikoff hepatoma ascites cell 5.8S rRNA (also known as 5.5 or 7S RNA) has been determined to be:
This sequence is 75% homologous with the primary nucleotide sequence of yeast 5.8S rRNA and 100% homologous with oligonucleotide marker fragments from HeLa cell RNA. In constrast, only limited homology is evident with oligonucleotides from 5.8S RNA of several flowering plants and many of the characteristic fragments differ.  相似文献   

20.
This paper presents the updated version (Y2K) of the database of ribosomal 5S ribonucleic acids (5S rRNA) and their genes (5S rDNA), http://rose.man/poznan.pl/5SData/index.html. This edition of the database contains 1985primary structures of 5S rRNA and 5S rDNA. They include 60 archaebacterial, 470 eubacterial, 63 plastid, nine mitochondrial and 1383 eukaryotic sequences. The nucleotide sequences of the 5S rRNAs or 5S rDNAs are divided according to the taxonomic position of the source organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号