首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The response of individual Cryptomonas cells to continuous lightwas recorded using infrared video-micrography. Swimming directionsand temporal shifts in swimming direction of each cell weremeasured. White light of 0.1–1 W m–2 elicited apositive phototactic orientation, but did not induce any photophobicresponse. Light of 100 W m–2 induced a photophobic responseat the onset of actinic irradiation, but did not induce positivephototactic orientation. No correlation between positive phototacticorientation and photophobic response was found in this species.The direction toward the light source was defined as 0°,and the direction away from the source as 180°. Within 2s after the onset of lateral monochromatic light of 570 nm at0.1 W m–2, cells which were swimming in a direction ofless than 120° predominantly shifted their course towardthe light source. Cells swimming in directions of larger than120° shifted their course as randomly as those in the dark.Thus, for phototactic orientation, the cells must perceive thelight from their anterior side. (Received July 29, 1985; Accepted November 4, 1985)  相似文献   

2.
Tetrastigma hemsleyanum suspension cells were treated with four metal salts to screen suitable elicitors for the promotion of plant cell biomass and flavonoid production. The effects of calcium ions (Ca2+) on induction were also studied. It was found that the most effective elicitors were 50 μM of the heavy metal ion copper (Cu2+) and 100 μM of the rare earth element cerium (Ce3+). The maximal biomass levels under respective treatments over a 16-d culture period increased by 1.3- and 1.6-fold, and the total flavonoid content was 1.8- and 1.6-fold greater than the control, respectively. Reducing the exogenous Ca2+ concentration or adding Ca2+ antagonists (1 mM ethylene glycol-bis(2-aminoethylether)-N,N,N′,N-tetraacetc acid (EGTA) or 1 mM verapamil) strengthened inductive effects of metal elicitors and enhanced flavonoid production. However, 0.5 μM of the calcium ionophore A23187 showed contrary results. The increase in exogenous Ca2+ concentration in the presence of A23187 suppressed H2O2 bursts and peroxidase activity caused by metal elicitors. The results suggest that Ca2+ plays an inhibitory role in the plant cell response to metal elicitors. This suppression could have been caused by Ca2+ preventing the cells from absorbing metal ions and then easing the induction, or because the decrease of Ca2+ concentration worked as an induction signal. Therefore, reducing the Ca2+ concentration in culture medium, or adding Ca2+ antagonists could be used to improve flavonoid production and cell growth in combination with induction by metal elicitors during in vitro culture of T. hemsleyanum suspension cells.  相似文献   

3.
The channel of the glutamate N-methyl-d-aspartate receptor (NMDAR) transports Ca2+ approximately four times more efficiently than that of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPAR). To investigate the basis of this difference in these glutamate receptors (GluRs), we measured the ratio of Cs+ efflux and Ca2+ influx in recombinant NMDAR and Ca2+-permeable AMPAR channels expressed in human embryonic kidney 293 (HEK 293) cells over a wide voltage range. At any one potential, this biionic flux ratio was measured by quantifying the total charge and the charge carried by Ca2+ using whole-cell currents and fluorometric techniques (dye overload) with Cs+ internally and Ca2+ externally (1.8 or 10 mM) as the only permeant ions. In AMPAR channels, composed of either GluR-A(Q) or GluR-B(Q) subunits, the biionic flux ratio had a biionic flux-ratio exponent of 1, consistent with the prediction of the Goldman-Hodgkin-Katz current equation. In contrast, for NMDAR channels composed of NR1 and NR2A subunits, the biionic flux-ratio exponent was ∼2, indicating a deviation from Goldman-Hodgkin-Katz. Consistent with these results, in NMDAR channels under biionic conditions with high external Ca2+ and Cs+ as the reference ions, Ca2+ permeability (PCa/PCs) was concentration dependent, being highest around physiological concentrations (1–1.8 mM; PCa/PCs ≈ 6.1) and reduced at both higher (110 mM; PCa/PCs ≈ 2.6) and lower (0.18 mM; PCa/PCs ≈ 2.2) concentrations. PCa/PCs in AMPAR channels was not concentration dependent, being around 1.65 in 0.3–110 mM Ca2+. In AMPAR and NMDAR channels, the Q/R/N site is a critical determinant of Ca2+ permeability. However, mutant AMPAR channels, which had an asparagine substituted at the Q/R site, also showed a biionic flux-ratio exponent of 1 and concentration-independent permeability ratios, indicating that the difference in Ca2+ transport is not due to the amino acid residue located at the Q/R/N site. We suggest that the difference in Ca2+ transport properties between the glutamate receptor subtypes reflects that the pore of NMDAR channels has multiple sites for Ca2+, whereas that of AMPAR channels only a single site.  相似文献   

4.
Isolated basolateral plasmamembrane vesicles from rat duodenum epithelial cells exhibit ATP-dependent calcium-accumulation and Ca2+-dependent ATPase activity. Calcium accumulation stimulated by ATP is prevented by the calcium ionophore A23187, inhibited 80% by 0.1 mM orthovanadate but is not effected by oligomycin. Calcium accumulation is not observed with the substrate β-γ-(CH2)-ATP, ADP and p-nitrophenyl phosphate. Kinetic studies reveal an apparent Km of 0.2 μM Ca2+ and a Vmax of 5.3 nmol Ca2+/min per mg protein for the ATP-dependent calcium-uptake system. Calmodulin and phenothiazines have no effect on calcium accumulation in freshly prepared membranes, but small effects are inducable after a wash with a 5 mM EGTA. The kinetic parameters of Ca2+-ATPase are: Km = 0.25 μM Ca2+ and Vmax = 19.2 nmol Pi/min per mg protein. Three techniques, osmotic shock, treatment with Triton X-100 or the channel-forming peptide alamethacin, reveal that about 40% of the vesicles are resealed. Assuming that half of the resealed vesicles have an inside-out orientation, the Vmax of ATP-dependent calcium uptake amounts to 25 nmol Ca2+/min per mg protein and of the Ca2+-ATPase to 23 nmol Pi/min per mg protein. The close correlation between kinetic parameters of Ca2+-ATPase and ATP-dependent calcium-transport strongly suggests that both systems are expressions of a Ca2+-pump located in duodenal basolateral plasma membranes.  相似文献   

5.
Trochophore larvae of the tropical serpulid Spirobranchus giganteus (Pallas) swim by means of prototrochal and metatrochal rings of cilia. A system of developing neuntes carrying vesicles of several kinds is located on the inner surfaces of both prototrochal and metatrochal cells. The swimming cilia arrest on exposure to EDTA, Ba(OH)2, lanthanum chloride, trifluoperazine and Ca2+ -free sea water, i.e. under conditions that interfere with the supply of external Ca2+. Swimming cilia are also arrested by the β-blocker alprenolol, an effect ameliorated by the α1 agonist phenylephrine or the β agonist isoproterenol. We conclude that there is a Ca2+ -dependent, catecholaminergic excitation of the swimming cilia of the S. giganteus trochophore larva, involving β receptors and probably neurally mediated. Other cilia on the larval body are insensitive to the agents affecting the activity of swimming cilia.  相似文献   

6.
Dual wavelength microfluorometry was utilized to measure the cytoplasmic calcium concentration (Cai 2+) of single parathyroid cells loaded with the indicator fura-2. The method enabled the first registrations of Cai 2+ of normal human parathyroid cells, available only in minute numbers. At 0.5 mM extracellular Ca2+, the Cai 2+ levels were similar in normal human and bovine cells. Both cell types responded with an initial Cai 2+ transient followed by a sustained increase when raising extracellular Ca2+ to 3.0 mM. The sustained effect exhibited a sigmoidal relation to extracellular Ca2+ in the 0.5–3.0 mM range. Although the increase was somewhat greater in the human cells, the half maximal responses were obtained at almost identical extracellular Ca2+ concentrations. Whereas K+ depolarization decreased Cai 2+, the Cai 2+ channel blocker D-600 had dual actions, raising Cai 2+at 0.5 mM Ca2+ and decreasing it at 3.0 mM Cai 2+, and the effects were similar in the bovine and human cells. The present experimental approach verified the validity of utilizing bovine cells as controls in studies of human parathyroid tissue and it appears suitable for analysis of the role of different subpopulations of parathyroid cells in the abnormal parathyroid tissue of patients with hyperparathyroidism.  相似文献   

7.
A review of the literature on the flagellar undulations and phototactic movements of Euglena indicates that the flagellum functions as an ATP-using motor, triggered and mediated by cations, especially H3O+, K+, Mg2+ and Ca2+, and driven by energy from ATP. The undulatory waves are assumed to be started by means of repetitive pulses due to a redox reaction at the base of the flagellum. It is also assumed that the axoneme and paraflagellar rod are composed of asymmetrically-crystalline proteinaceous fibrils which are piezoelectric, i.e. they bend when energy passes through or along them, thus acting as a motor, and when bending they deliver a current, thus acting as a generator. This piezoelectric activity displaces cations and drives them ahead of it, triggering sequential bending and straightening of segments of the flagellum from base to tip. The paraflagellar swelling (“photoreceptor”) is also assumed to be piezoelectric, reactive to light, acting as a capacitor. It discharges as the intensity of light striking it is changed by the alternative shading effect of the stigma (“eyespot”) and exposure to light as the Euglena gyrates in swimming. The charge delivered by the photoreceptor augments the effects of ion-movements along the flagellum, also augmenting the amplitude and force of the flagellar undulations and altering the position of the flagellum relative to the body and the direction of swimming. The body is tipped away from the original path and swims either toward or away from the light, depending on the ultimate alteration of the path of swimming.  相似文献   

8.
The mechanism of the lymphocyte stimulatory action of sulfhydryl group-reactive mercuric ions was studied with respect to its potential ability to induce a protein tyrosine phosphorylation-linked signal for mobilization of free Ca2+ into cytoplasm and nucleus of the cell. Exposure of human leukamic T cell line (Jurkat) cells to high (1 mM) and low (0.01 mM) concentrations of HgCl2 induced tyrosine phosphorylation of multiple proteins in a concentration-dependent manner. Confocal microscopy directly visualized the time course localization of Ca2+ inside the cells after exposure to HgCl2. The onset and level of Ca2+ mobilization following HgCl2 exposure were in parallel to those of protein tyrosine phosphorylation. Interestingly, by either concentration of HgCl2, Ca2+ was mobilized in both cytoplasm and nucleus almost simultaneously, and the level of Ca2+ mobilization in the nucleus was more than that in the cytoplasm. All the HgCl2-mediated Ca2+ mobilization was prevented by addition of protein kinase inhibitor staurosporin prior to HgCl2. These results suggest that heavy metal stress triggers a protein tyrosine phosphorylation-linked signal that leads to a nuclear event-dominant Ca2+ mobilization.  相似文献   

9.
Negative phototactic orientation, step-up photophobic responses and light-induced action potentials have been studied in the ciliate Stentor coeruleus. A resolved action spectrum, based on fluence rate-response curves, is consistent with stentorin as the photoreceptor. Calcium flux blockers prolong the response time for ciliary stop and reversal and inhibit step-up photophobic responses. Drugs believed to affect the membrane-bound calcium pump likewise inhibit phobic responses. On the other hand, α-phosphatidic acid promotes Ca2+-influx and enhances the photophobic sensitivity of the organism, thus providing an unambiguous evidence for the role of Ca2+ influx. A change in the response time decreases the degree of phototactic orientation, indicating that negative phototaxis in this organism is brought about by subsequent phobic responses of individual rows of cilia as the associated photoreceptor granules experience an increase in light intensity when the organism rotates during forward locomotion in lateral light.  相似文献   

10.
M. G. Erwee  P. B. Goodwin 《Planta》1983,158(4):320-328
The hydrophyllic dyes fluorescein glutamic acid, fluorescein glutamylglutamic acid (F(Glu)2), fluorescein hexaglycine, fluorescein leucyldiglutamyl-leucine and 6-carboxyfluorescein are unable to pass the plasmalemma in leaves of E. densa. However, when injected into single cells the dye conjugates of molecular weight 665 dalton or less move freely from cell-to-cell. This intercellular movement presumably occurs via the plant symplast. Movement of F(Glu)2 from the injected cell occurs with greatly reduced frequency when Ca2+, Mg2+ or Sr2+ are injected into the cell immediately prior to the dye. The fraction of dye injections leading to movement declines with increasing group II ion concentration in the electrode tip, up to 10 mM. Sodium and K ions do not affect dye movement. When dye injection is delayed 30 min after Ca2+ injection, dye movement is no longer inhibited. Thus the cells recover from the Ca2+ injection, indicating that the ion does not cause major cell damage. Recovery from Mg2+ injection is not complete within 60 min. Treatment of leaves with chemicals expected to raise the concentration of free intracellular group II ions, notably the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, the inhibitor of mitochondrial Ca2+ uptake trifluralin, or the ionophore A23187 also inhibits dye movement, while the calmodulin inhibitor trifluoperazine does not. Cytoplasmic streaming is inhibited by Ca2+ or Mg2+ injection and by the metabolic inhibitors. However when streaming is stopped by cytochalasin B, dye movement is not inhibited. Hence steaming is not necessary for dye movement. Thus the cytoplasmic concentration of free group II ions may directly regulate the permeability of the plant symplast.  相似文献   

11.
A protein was isolated from the thermostable protein fraction of N. obtusa cells and purified by hydrophobic chromatography on phenyl-Sepharose and affinity chromatography on melittin-Sepharose. In 15% polyacrylamide gel, the protein has an electrophoretic mobility corresponding to Mr 17,000 in the presence of 1 mM Ca2+ and Mr no higher than 19,000 in the presence of 1 mM EGTA. Introduction of the protein isolated to a perfused N. obtusa cell affects the electric parameters of the plasmalemma Ca2+ channels. This influence shows up as a change in ICa2+, as well as an activation of the electrogenous processes in the plasmalemma. The protein produces restoration of ICa2+ in the Ca2+ channels blocked by chlorpromazine. Possible mechanisms of involvement of this protein in regulation of the functional state of potential-dependent Ca2+ channels of N. obtusa plasmalemma are assumed.  相似文献   

12.
The swimming movement of Cryptomonas sp. cells generates a helical path, as a result of rotations with an average period of 500 milliseconds. When a flash of light at 570 nanometers for 20 microseconds was applied unidirectionally at intervals of 500 milliseconds, only a fixed side of each rotating cell was repeatedly exposed to the flashes of light. The relationship between the irradiated side of a cell and the phototactic orientation of the cell, rotating with a period of 475 to 525 milliseconds, was determined by infrared videomicrography. Only when the ventral sides of the cells were exposed to the flashes of light did their courses shift predominantly toward the light source. This result suggests that light is efficiently detected by the ventral side of these organisms.  相似文献   

13.
Pathalogical changes in murine skeletal muscle cells induced by ACL (Agkistrodon contortix laticinctus, Broad-Banded Copperhead) myotoxin in vivo were compared to pathological changes induced by an influx of Ca2+ and other ions into cut skeletal muscle cells in vitro in the absence of myotoxin. In vivo, ACL myotoxin induced a rapid myonecrosis characterized by densely clumped myofibrils in the cytoplasm. In vitro, this pathological change was not produced by incubating skeletal muscle cells in Ca2+ concentrations as high as 200 mM, whereas skeletal muscle cells incubated in concentrations of 150 mM and 300 mM NaCl contained densely clumped myofibrils similar in morphology to muscle cells damaged by ACL myotoxin in vivo. Treatments of 300 mM KCl did not produce densely clumped myofibrils in muscle cells. These results suggest that an influx of Na+, possibly through disrupted regions of sarcolemma, be may primarily responsible for the pathological changes, including clumped myofibrils, induced by ACL myotoxin in vivo. However, an influx of extracellular Ca2+ which has been proposed to produce densely clumped myofibrils in muscle cells damaged by other snake venom myotoxins, may not be responsible for this pathological change since extracellular Ca2+ concentrations much higher than physiological levels did not produce this change in skeletal muscle cells in vitro.  相似文献   

14.
The interactions between Ca2+ and C-reactive protein (CRP) have been characterized using a surface plasmon resonance (SPR) biosensor. The protein was immobilized on a sensor chip, and increasing concentrations of Ca2+ or phosphocholine were injected. Binding of Ca2+ induced a 10-fold higher signal than expected from the molecular weight of Ca2+. It was interpreted to result from the conformational change that occurs on binding of Ca2+. Two sites with different characteristics were distinguished: a high-affinity site with KD = 0.03 mM and a low-affinity site with KD = 5.45 mM. The pH dependencies of the two Ca2+ interactions were different and enabled the assignment of the different sites in the three-dimensional structure of CRP. There was no evidence for cooperativity in the phosphocholine interaction, which had KD = 5 μM at 10 mM Ca2+. SPR biosensors can clearly detect and quantify the binding of very small molecules or ions to immobilized proteins despite the theoretically very low signals expected on binding, provided that significant conformational changes are involved. Both the interactions and the conformational changes can be characterized. The data have important implications for the understanding of the function of CRP and suggest that Ca2+ is an efficient regulator under physiological conditions.  相似文献   

15.
Grapevine (Vitis vinifera cv. Monastrell) cell suspension cultures were treated with 1.5 mM fosetyl-Al, a frequently used systemic fungicide for grapevine diseases caused by oomycetes. These cells showed a reduction in the level of peroxidase activity secreted into the culture media when compared to non-treated cells, the effect being mainly related to a decrease in the level of the basic B1 peroxidase isozyme. The effect of fosetyl-Al on peroxidase was analogous to that observed with the Ca2+-channel blockers Co2+, Cd2+ and La3+, and was counteracted by Ca2+ ions, but was not reversed when the Ca2+-ionophore A23187 was added to the culture media. Moreover, the effect of fosetyl-Al on peroxidase activity and peroxidase isozymes was also partially reversed by Mg2+ ions but not by Sr2+, and was accentuated by Ba2+ ions. These results suggested that Ca2+ and Mg2+ ions specifically overcome the inhibitory effect of fosetyl-Al on peroxidase. In this context, an apoplastic Ca2+/Mg2+-displacement hypothesis is proposed for the mechanism of action of fosetyl-Al on peroxidase from grapevine cells.  相似文献   

16.
The results here are the first demonstration of a family of carbohydrate fermentation products opening Ca2+ channels in bacteria. Methylglyoxal, acetoin (acetyl methyl carbinol), diacetyl (2,3 butane dione), and butane 2,3 diol induced Ca2+ transients in Escherichia coli, monitored by aequorin, apparently by opening Ca2+ channels. Methylglyoxal was most potent (K1/2 = 1 mM, 50 mM for butane 2,3 diol). Ca2+ transients depended on external Ca2+ (0.1-10 mM), and were blocked by La3+ (5 mM). The metabolites affected growth, methylglyoxal being most potent, blocking growth completely up to 5 h without killing the cells. But there was no affect on the number of viable cells after 24 h. These results were consistent with carbohydrate products activating a La3+-sensitive Ca2+ channel, rises in cytosolic Ca2+ possibly protecting against certain toxins. They have important implications in bacterial-host cell signalling, and where numbers of different bacteria compete for the same substrates, e.g., the gut in lactose and food intolerance.  相似文献   

17.
Net Ca2+ and Mg2+ absorption rates were measured in vivo from buffer solutions placed in the washed reticulo-rumen, isolated in situ in 30 conscious, trained sheep. An increase in concentration of short chain fatty acids (SCFA) in the buffer, over the range 0–50 mM, was shown to stimulate the net rates of absorption of Ca2+ and Mg2+ ions from the rumen. Similarly, the results of in vitro experiments, carried out with ovine rumen epithelium mounted in short-circuited Ussing chambers, showed that the absence of SCFA from the chamber fluid resulted in a reduction in Jnet Ca2+ caused by reduced flux of Ca2+ ions in the mucosal to serosal direction (Jms Ca2+). The addition of 1 mM acetazolamide, an inhibitor of carbonic anhydrase, to the ruminal buffer used in the in vivo experiments led to significant reductions in the net absorption rates of Ca2+and Mg2+ ions in the presence of SCFA (50 mmol l−1) but not in the absence of SCFA. However, in the in vitro experiments, the addition of 60 μM ethoxyzolamide had no significant effect on Jnet Ca2+. A reduction in pH of the intraruminal buffer in vivo from 6.8 to 5.4 led to significant increases in the net absorption rates of Ca2+and Mg2+ ions, an effect which was duplicated for Ca2+ in preliminary in vitro experiments in which the pH of the mucosal buffer was reduced from 7.4 to 5.4. This stimulatory effect was confined to Jms Ca2+ and Jnet Ca2+. Ussing chambers were also used to demonstrate that Jnet Ca2+ was reduced by a high transmural potential difference (PD), caused by voltage clamping, independently of the mucosal K+ concentration. Both unidirectional Ca2+ fluxes consisted of a PD-dependent and a K+-insensitive PD-independent component. The latter may be represented by a Ca2+/2H+ antiporter. It is postulated that SCFA, and to a lesser extent H2CO3, can stimulate Jms Ca2+ by activation of an apical Ca2+/2H+ antiporter through the provision of protons within the ruminal epithelial cell. A mild reduction in ruminal pH may also lead to a similar stimulation of this putative electroneutral exchange. Accepted: 26 July 2000  相似文献   

18.
Classic calcium hypothesis states that depolarization-induced increase in intracellular Ca2+ concentration ([Ca2+]i) triggers vesicle exocytosis by increasing vesicle release probability in neurons and neuroendocrine cells. The extracellular Ca2+, in this calcium hypothesis, serves as a reservoir of Ca2+ source. Recently we find that extracellular Ca2+per se inhibits the [Ca2+]i dependent vesicle exocytosis, but it remains unclear whether quantal size is regulated by extracellular, or intracellular Ca2+ or both [1]. In this work we showed that, in physiological condition, extracellular Ca2+per se specifically inhibited the quantal size of single vesicle release in rat adrenal slice chromaffin cells. The extracellular Ca2+ in physiological concentration (2.5 mM) directly regulated fusion pore kinetics of spontaneous quantal release of catecholamine. In addition, removal of extracellular Ca2+ directly triggered vesicle exocytosis without eliciting intracellular Ca2+. We propose that intracellular Ca2+ and extracellular Ca2+per se cooperately regulate single vesicle exocytosis. The vesicle release probability was jointly modulated by both intracellular and extracellular Ca2+, while the vesicle quantal size was mainly determined by extracellular Ca2+ in chromaffin cells physiologically.  相似文献   

19.
L-type Ca2+ channels select for Ca2+ over sodium Na+ by an affinity-based mechanism. The prevailing model of Ca2+ channel permeation describes a multi-ion pore that requires pore occupancy by at least two Ca2+ ions to generate a Ca2+ current. At [Ca2+] < 1 μM, Ca2+ channels conduct Na+. Due to the high affinity of the intrapore binding sites for Ca2+ relative to Na+, addition of μM concentrations of Ca2+ block Na+ conductance through the channel. There is little information, however, about the potential for interaction between Na+ and Ca2+ for the second binding site in a Ca2+ channel already occupied by one Ca2+. The two simplest possibilities, (a) that Na+ and Ca2+ compete for the second binding site or (b) that full time occupancy by one Ca2+ excludes Na+ from the pore altogether, would imply considerably different mechanisms of channel permeation. We are studying permeation mechanisms in N-type Ca2+ channels. Similar to L-type Ca2+ channels, N-type channels conduct Na+ well in the absence of external Ca2+. Addition of 10 μM Ca2+ inhibited Na+ conductance by 95%, and addition of 1 mM Mg2+ inhibited Na+ conductance by 80%. At divalent ion concentrations of 2 mM, 120 mM Na+ blocked both Ca2+ and Ba2+ currents. With 2 mM Ba2+, the IC50 for block of Ba2+ currents by Na+ was 119 mM. External Li+ also blocked Ba2+ currents in a concentration-dependent manner, with an IC50 of 97 mM. Na+ block of Ba2+ currents was dependent on [Ba2+]; increasing [Ba2+] progressively reduced block with an IC50 of 2 mM. External Na+ had no effect on voltage-dependent activation or inactivation of the channel. These data suggest that at physiological concentrations, Na+ and Ca2+ compete for occupancy in a pore already occupied by a single Ca2+. Occupancy of the pore by Na+ reduced Ca2+ channel conductance, such that in physiological solutions, Ca2+ channel currents are between 50 and 70% of maximal.  相似文献   

20.
The effect of euplotin C—a cytotoxic secondary metabolite produced by the protist ciliate Euplotes crassus—on the voltage-dependent Ca2+ channel activity was studied in a single-celled system by analyzing the swimming behavior of Paramecium. When the intraciliary Ca2+ concentration associated with plasma membrane depolarization increases, a reversal in the direction of ciliary beating occurs, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca2+ influx. The present study demonstrates that the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, is longer in euplotin C-treated cells. Using selective Ca2+ channel blockers, we demonstrate that euplotin C modulates Ca2+ channels similar to the T- and L-types that occur in mammalian cells. Indeed, the increase of CCR duration significantly decreased when flunarizine and nimodipine-verapamil blockers were employed. Membrane fluidity measurements using a fluorescent dye, 6-lauroyl-2-dimethylaminonaphtalene (laurdan), indicated that membranes in euplotin C-treated cells are more tightly packed and ordered than membranes in control cells. Our data suggest that euplotin C enhances backward swimming in our unicellular model system by interacting with the ciliary Ca2+ channel functions through the reduction of cell membrane fluidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号