首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method is presented which by subtraction of amplitudes of averaged evoked potentials (AEP) within regular time-intervals enables us to estimate differences in the course of the potential. First results demonstrate that all parts of the potential may be influenced and that most striking differences must not necessarily occur in the peak region of the AEP. The late negative complex of the AEP is likely to be a result of summation of some subcomponents, which may be altered differently. The method presented allows exact measurements of each of them.  相似文献   

2.
Auditory evoked potentials (AEP) can be simultaneously recorded on-line as a succession of 11 waves, through a single input channel of a mini-computer. Since the response waves differ widely in frequency, a computing routine has been developed to display the whole response pattern in a single picture. Based upon a non-linear samples reduction of the digitized response, this routine allows a logarithmic transformation of the time axis. The method improves the identification of the AEP components and provides an objective estimate of the central auditory pathway for both neurophysiological and neuroclinical studies.  相似文献   

3.
Sustained potential shift's (SPSs) and changes in acoustic evoked potential (AEP) amplitudes were recorded from medullary and mid-brain regions in restrained goldfish (Carassius auratus) in response to the onset of illumination against a sensory background restricted to repetitive (1/s) acoustic stimulation. At the tectal surface, a long duration negative SPS, significant 5–10 s after the onset of illumination, was recorded with a maximum negativity of ca. 145 V. Changes in acoustic responsiveness were also most apparent in the mid-brain where attenuations in AEP amplitude of ca. 15% were recorded.In general, AEPs exhibited attenuated amplitudes in response to the onset of illumination, perhaps reflecting attentional rather than arousal processes, arousal generally being associated with heightened sensory responsiveness. Changes in the amplitude of the medullary AEPs were directly related to the magnitude of bradycardiac responses such that lesser attenuations of the medullary AEP were associated with greater magnitude bradycardiac responses, suggesting a possible interaction of attentional and arousal processes.In response to repeated onset of illumination, SPSs tended towards increasing positivity (increasing in positivity at the medullary surface; decreasing in negativity at the tectal surface). The attenuation of AEPs recorded from the medulla and mid-brain habituated in response to stimulus repetition.Changes in amplitude of AEPs (AEP) recorded from the telencephalon and the torus semicircularis region of the mid-brain were correlated with locally recorded SPSs. At the telencephalon, this correlation was inverse; enhanced AEP amplitudes being associated with SPS negativity, attenuated AEP amplitudes with SPS positivity. In the torus semicircularis, experiential changes in SPS and AEP were directly correlated. As the SPS is considered to reflect glial redistribution of [K+]e (Roitbak 1983), glia may contribute to changes in measures of sensory responsivity, such as the AEP, during changes in behavioural state.Abbreviations AEP Acoustic Evoked Potential - AEP Event-related change in amplitude of AEP following onset of illumination - SPS Sustained Potential Shift - [K+]e Extracellular concentration of K+  相似文献   

4.
The brain-stem auditory evoked potential (BAEP), a sensitive test of the functional status of the neonatal brain, has not been studied in utero since no practical technique for human fetal recording is available. We have developed a simple recording technique which allows continuous monitoring of the fetal AEP during labor. Waves I, III and V of the fetal brain-stem AEP have been consistently identified. Wave form morphology, interpeak latencies, and latency-intensity relations are similar to postnatal recordings. Middle latency potentials have also been recorded, with wave forms that correspond to the neonatal middle latency AEP.  相似文献   

5.
Acute ethanol influence on field L auditory evoked potentials (AEP) was studied in 4-8-days-old altricial nestlings of pied flycatcher. Nestlings were presented with tone pips related with the realization of natural behaviour (2.0 and 5.0 kHz) and bearing no meaning for the behaviour of the young of the age under study (3.0 kHz). Ethanol ingestion was found to reduce the maturity index (MI) of AEP in response to "behavioural" but not to control frequencies; this effect was first observed at day 5, when nestlings eyes opened and defence behaviour appeared, while previously formed feeding behaviour was significantly modified. During the next 2 days alcohol had a greater effect upon the AEP in response to 2.0 kHz tone pips, related with feeding behaviour of increasing complexity than upon the AEP in response to 5.0 kHz, related with the defence behaviour that remained relatively constant. The previous data concerning the effect of alcohol on unit activity are used to support the view that MI increase during the early postembryonic ontogeny is due to the involvement of neurons with newly formed behavioural specializations into the subserving of new behavioural patterns while the decrease of MI under alcohol is due to the depression of activity in these neurons.  相似文献   

6.
1. Recordings were made from the region of the midbrain tectum and torus semicircularis of sustained potential shifts (SPS) to a non-acoustic priming stimulus and the change in subsequent acoustic evoked potentials (AEPs) to a train of six clicks after a long rest. 2. In the absence of priming stimuli (a jet of saline or water to the flank) the AEP to the first click in a train had the highest amplitude; with these stimuli it became the most attenuated. 3. The SPS to both non-acoustic stimuli was initially (ca 4 sec) negative, then became positive for a similar time period. 4. After saline jet the tectal and the torus AEP amplitude was significantly correlated with the torus SPS; after water jet, the tectal and the torus AEP durations were correlated with the SPS. 5. Application of alumina gel to the posterior telencephalic border caused elevation of the torus AEP amplitude after some 5 hr.  相似文献   

7.
Auditory evoked potential (AEP) measurements of two Florida manatees (Trichechus manatus latirostris) were measured in response to amplitude modulated tones. The AEP measurements showed weak responses to test stimuli from 4 kHz to 40 kHz. The manatee modulation rate transfer function (MRTF) is maximally sensitive to 150 and 600 Hz amplitude modulation (AM) rates. The 600 Hz AM rate is midway between the AM sensitivities of terrestrial mammals (chinchillas, gerbils, and humans) (80–150 Hz) and dolphins (1,000–1,200 Hz). Audiograms estimated from the input–output functions of the EPs greatly underestimate behavioral hearing thresholds measured in two other manatees. This underestimation is probably due to the electrodes being located several centimeters from the brain.  相似文献   

8.
Auditory evoked potentials (AEPs) were studied from scalp locations Cz and Oz on 37 adults aged 20-22 years during sensori-sensorial association of a weak sound (S) and a strong flash of light (L). After sound alone repetition (habituation), S-L association modified AEP: first, it caused a generalized orienting response expressed as increasing of Cz and Oz amplitude AEPs. Then, this pattern gave way to an activation limited to the Oz lead: the increase of amplitude was then concomitant with shortened latencies when compared to sound-alone-habituated responses. Inter-individual differences were observed since these occipital modifications were recorded only on 26 subjects. The other 11 subjects did not exhibit any occipital modifications following S-L association. For them, the main modification was a strong decrease of Cz AEP induced by S-L association. These two groups also differed in their capacity to ignore irrelevant stimuli which is higher in the first group (AEP amplitude habituation with sound-alone repetition) than in the second one (no AEP habituation).  相似文献   

9.
The characteristics of the averaged evoked potentials (AEP) (experiments with awake non-paralysed animals), of the evoked potentials (EP) and of the responses of single sensorimotor cortical neurons (acute experiments) of cats to tone-bursts with frequencies within 0.1-6.0 kHz were studied. Response selectivity to the tone-burst frequencies which are energetically pronounced in some biologically significant sounds for the cat was observed. The averaged curve of the dependence of the amplitude of AEP in the somatosensory cortical region (S1) on the tone-burst frequency has reliable maximum values at the frequencies of 0.8, 1.6 and 2.0-3.0 kHz. Most pronounced changes in the heart rhythm were observed within the tone-burst frequency ranges in which the AEP of the highest amplitudes were recorded. The amplitude of the AEP was found to increase during the conditioned reflex elaboration. The curve of the dependence of the probability of the EP occurrence on the frequency at equal sound pressure levels had maximum values at the frequencies of 1.6 and 3.2 kHz. The highest amplitude values of EP were found at frequencies of 0.8, 1.6 and 3.2 kHz. More than half of the recorded neurons revealed the lowest values of the response thresholds and the maximum values of the occurrence probability under suprathreshold stimulation at frequencies close to 0.8, 1.6, and 3.2 kHz. It is supposed that the above mentioned feature of the input frequency organization in sensorimotor cortex is connected with the selectivity as to the biological significance of acoustic stimuli.  相似文献   

10.
Fas habituation (FH) is defined as a general reduction in long-latency, vertex-recorded, averaged auditory evoked potential (AEP) amplitude that occurs in response to the second of a pair of acoustic stimuli. Our laboratory has been studying FH in a variety of human populations with different paradigms and has interpreted it to be a measure of neural attentional mechanism(s) and/or resource allocation related to the processing of cognitive information. We have also reported an analogous phenomenon in the rat. In the present investigation, we examined the relationship between FH (viz., averaged AEP component amplitude decrement) and the single-trial latency variability of the AEP peaks comprising that component. Specifically, AEPs were obtained to 60 paired-tone stimuli from unanesthetized and restrained albino rats previously implanted with chronic skull electrodes. Using a template-matching algorithm similar to that used by Michalewski et al. (Electroenceph. clin. Neurophysiol., 1986, 65:59–71), the latency variability for each animal was computed for the N1 and P2 peaks of the single-trial AEPs that were used to compose the averaged wave form. Findings indicated that (a) there was no difference in single-trial latency variability for these peaks either within or across tones, and (b) there was no relationship between single-trial latency variability for either the N1 or the P2 peaks and the overall peak-to-peak amplitude (N1-P2) of the averaged wave form in response to the second tone. Thus, FH of the N1-P2 (i.e. Peak 2) amplitude in the rat is not due to an increase in latency variability across tones.  相似文献   

11.
Auditory evoked potentials (AEP) of the frontal, central and parietal cortical areas of the left hemisphere in response to an indifferent sound stimulus and to a stimulus with same physical characteristics, but with acquired informational significance, were studied in healthy children of the 3-d year of life. In the last case the amplitude of the AEPs in all recorded areas rose and the latencies of late components in the parietal area became longer. Moreover, the components of AEP got more complex owing to a greater manifestation of the late positive component P3 in all recorded areas and particularly in the parietal one.  相似文献   

12.
Average evoked potentials (AEP) were recorded in practically healthy subjects to "meaningless" figures and letters, presented to different halves of the visual field. Analysis of the amplitudes of AEP late components to verbal and non-verbal stimuli reveals hemispheric asymmetry. A higher amplitude of the late positive evoked response (P300) to a "direct" stimulation both by verbal and non-verbal stimuli (in the contralateral field of vision) is recorded in the left hemisphere than in the right one. Similar stimulation of the right hemisphere does not reveal sucha difference. In the left hemisphere the P300 wave is of a clearly greater amplitude to a "direct" stimulation (contralateral visual field) than to an "indirect" one (ipsilateral visual field), regardless of the nature of the stimulus. No such difference is observed in the right hemisphere. The magnitude of the late negative wave (component N200) to non-verbal stimuli is greater in the right hemisphere both in response to "direct" and "indirect" stimulations. No intrahemispheric difference has been found in the amplitude of late evoked responses of the cerebral cortex to verbal and non-verbal stimuli.  相似文献   

13.
Averaged evoked potentials (AEP) to verbal (letters) and nonverbal (random shapes) stimuli exposed in the left and right visual fields were registered in healthy subjects with normal vision. Analysis of the later AEP latencies pointed to asymmetry in the temporal parameters of the interhemispheric interaction. The late AEP latency is shorter in the right hemisphere than in the left hemisphere. The difference is more pronounced in responses to nonverbal stimuli. The earlier development of the evoked potential in the right hemisphere (or the later one in the left hemisphere) accounts for the interhemispheric difference in the temporal parameters of the late AEP components. Comparison of the latency of the component P300 to verbal and nonverbal stimuli presented in the ipsilateral or the contralateral visual fields reveals a transfer of the results of the cortical processing of visual information in the course of interhemispheric interaction.  相似文献   

14.
Signal power, noise power and their ratio (SNR) are important variables underlying estimation of evoked potential signals, yet, they are rarely explicitly considered in the design or analysis of EP experiments. A model is developed which relates the reliability of the average evoked potential (AEP) wave form to signal power, noise power, SNR, and the number of single trials included in the average. Measurements taken from auditory and visual EP experimental in elderly subjects show that noise power is highly reliable across experimental conditions and probably reflects global CNS anatomic or physiologic factors. In contrast, signal power and SNR are variable across conditions and sensory modalities, but are stable across replications. Thus signal power reflects CNS processes specific to the experimental paradigm. These results have importance for EP estimation. The expected reliability of the AEP cannot be adequately predicted from estimates of a subject's noise power, or from SNR estimated under different experimental conditions. These findings suggest the need for on-line estimation of SNR during data acquisition to ensure adequate reliability of AEPs.  相似文献   

15.
Auditory evoked potential (AEP) measurements are useful for describing the variability of hearing among individuals in marine mammal populations, an important consideration in terms of basic biology and the design of noise mitigation criteria. In this study, hearing thresholds were measured for 16 male California sea lions at frequencies ranging from 0.5 to 32 kHz using the auditory steady state‐response (ASSR), a frequency‐specific AEP. Audiograms for most sea lions were grossly similar to previously reported psychophysical data in that hearing sensitivity increased with increasing frequency up to a steep reduction in sensitivity between 16 and 32 kHz. Average thresholds were not different from AEP thresholds previously reported for male and female California sea lions. Two sea lions from the current study exhibited abnormal audiograms: a 26‐yr‐old sea lion had impaired hearing with a high‐frequency hearing limit (HFHL) between 8 and 16 kHz, and an 8‐yr‐old sea lion displayed elevated thresholds across most tested frequencies. The auditory brainstem responses (ABRs) for these two individuals and an additional 26‐yr‐old sea lion were aberrant compared to those of other sea lions. Hearing loss may have fitness implications for sea lions that rely on sound during foraging and reproductive activities.  相似文献   

16.
The amplitudes of all deflections of the slow auditory evoked potential (AEP) regularly decrease in alert subjects with the increase of stimulation rate. As compared with the late deflections (P2N2), the decrease of the amplitude of comparatively early deflections (N1P2) is more pronounced. It is a rather logarithmic, than a linear function of the interstimulus interval. The degree of amplitude diminution of slow AEPs due to a greater stimulation rate depends on the intensity of acoustic stimul: at greater sound intensities the decrease is more pronounced. The higher rates of stimulation produce, along with a decreased amplitude, a shorter peak latencies of all slow AEP deflections (except the peak of deflection P1). In narcotic (chloralhydrate) sleep higher rates of stimulation are not attended with any regular changes in the amplitude and peak latencies of the slow AEP.  相似文献   

17.
Emitted biosonar clicks and auditory evoked potential (AEP) responses triggered by the clicks were synchronously recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to wear suction-cup EEG electrodes and to detect targets by echolocation. Three targets with target strengths of -34, -28, and -22 dB were used at distances of 2 to 6.5 m for each target. The AEP responses were sorted according to the corresponding emitted click source levels in 5-dB bins and averaged within each bin to extract biosonar click-related AEPs from noise. The AEP amplitudes were measured peak-to-peak and plotted as a function of click source levels for each target type, distance, and target-present or target-absent condition. Hearing sensation levels of the biosonar clicks were evaluated by comparing the functions of the biosonar click-related AEP amplitude-versus-click source level to a function of external (in free field) click-related AEP amplitude-versus-click sound pressure level. The results indicated that the dolphin's hearing sensation levels to her own biosonar clicks were equal to that of external clicks with sound pressure levels 16 to 36 dB lower than the biosonar click source levels, varying with target type, distance, and condition. These data may be assumed to indicate that the bottlenose dolphin possesses effective protection mechanisms to isolate the self-produced intense biosonar beam from the animal's ears during echolocation.  相似文献   

18.
Normal maturation and functioning of the central auditory system affects the development of speech perception and oral language capabilities. This study examined maturation of central auditory pathways as reflected by age-related changes in the P1/N1 components of the auditory evoked potential (AEP). A synthesized consonant-vowel syllable (ba) was used to elicit cortical AEPs in 86 normal children ranging in age from 6 to 15 years and ten normal adults. Distinct age-related changes were observed in the morphology of the AEP waveform. The adult response consists of a prominent negativity (N1) at about 100 ms, preceded by a smaller P1 component at about 50 ms. In contrast, the child response is characterized by a large P1 response at about 100 ms. This wave decreases significantly in latency and amplitude up to about 20 years of age. In children, P1 is followed by a broad negativity at about 200 ms which we term N1b. Many subjects (especially older children) also show an earlier negativity (N1a). Both N1a and N1b latencies decrease significantly with age. Amplitudes of N1a and N1b do not show significant age-related changes. All children have the N1b; however, the frequency of occurrence of N1a increases with age. Data indicate that the child P1 develops systematically into the adult response; however, the relationship of N1a and N1b to the adult N1 is unclear. These results indicate that maturational changes in the central auditory system are complex and extend well into the second decade of life.  相似文献   

19.
The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (−100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70–150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.  相似文献   

20.
Toothed whales and dolphins (Odontocetes) are known to echolocate, producing short, broadband clicks and receiving the corresponding echoes, at extremely rapid rates. Auditory evoked potentials (AEP) and broadband click stimuli were used to determine the modulation rate transfer function (MRTF) of a neonate Risso’s dolphin, Grampus griseus, thus estimating the dolphin’s temporal resolution, and quantifying its physiological delay to sound stimuli. The Risso’s dolphin followed sound stimuli up to 1,000 Hz with a second peak response at 500 Hz. A weighted MRTF reflected that the animal followed a broad range of rates from 100 to 1,000 Hz, but beyond 1,250 Hz the animal’s hearing response was simply an onset/offset response. Similar to other mammals, the dolphin’s AEP response to a single stimulus was a series of waves. The delay of the first wave, PI, was 2.76 ms and the duration of the multi-peaked response was 4.13 ms. The MRTF was similar in shape to other marine mammals except that the response delay was among the fastest measured. Results predicted that the Risso’s dolphin should have the ability to follow clicks and echoes while foraging at close range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号