首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar uptake by maize endosperm suspension cultures   总被引:1,自引:1,他引:0       下载免费PDF全文
Maize (Zea mays L.) endosperm suspension cultures are a useful model system for studying biochemical and physiological events in developing maize endosperm. In this report, sugar uptake by the cultures is characterized. Uptake of 14C-labeled fructose and l-glucose was linear with time, while the rate of uptake of radioactivity from sucrose increased over a 120 min period. Both saturable and linear components of uptake were observed for fructose, glucose, sucrose, 1′-deoxy-1′-fluorosucrose, and maltose. Uptake of mannitol, sorbitol, and l-glucose took place at lower rates and was linear with concentration. Rates of incorporation of radioactivity from fructose and glucose exceeded that of sucrose at all concentrations tested. Kinetics of 1′-deoxy-1′-fluorosucrose uptake indicated that 14C from sucrose can be taken up by a saturable carrier of intact sucrose as well as by invertase hydrolysis and subsequent uptake of hexoses. Cell wall invertase was demonstrated histochemically. Further study of fructose uptake at a concentration at which the saturable component predominated revealed sensitivity to metabolic inhibitors, respiratory uncouplers, the nonpermeant sulfhydryl reagent p-chloromercuribenzenesulfonic acid, and nigericin. Uptake was not affected by valinomycin plus K+ and was stimulated by fusicoccin. Fructose and glucose uptake was not pH-sensitive below pH 7.0, whereas uptake of radioactivity from sucrose and 1′-deoxy-1′-fluorosucrose declined as the pH was increased above 5.0. Fructose uptake was not completely inhibited by glucose and vice versa, suggesting the presence of specific carriers. These results indicate that maize endosperm suspension cultures (a) absorb fructose via a typical, energy-requiring, carrier-mediated proton cotransport system; (b) possess saturable carriers for glucose and sucrose; and (c) also absorb sucrose via hexose uptake after sucrose hydrolysis by extracellular invertase.  相似文献   

2.
The inhibitory effects of sucrose on rates of sucrose synthesis by sucrose phosphate synthase (SPS) from the maize scutellum and on net rates of sucrose production in maize scutellum slices from added glucose or fructose were studied. Scutellum extracts were prepared by freezing and thawing scutellum slices in buffer. The extracts contained SPS and sucrose phosphate phosphatase, but were free of sucrose synthase. SPS activity was calculated from measurement of UDP formation in the presence of UDPG, fructose-6-P and sucrose. The ranges of metabolite concentrations used were those estimated to be in scutellum slices after incubation in water or fructose for periods up to 5 hr. UDPG and fructose-6-P also were added at concentrations that saturated SPS. At saturating substrate levels, sucrose inhibition of SPS was less than that when tissue levels of substrates were used. With tissue levels of substrates and sucrose concentrations up to ca 166 mM, sucrose inhibitions of sucrose synthesis in vitro by SPS were similar to those observed in vivo. However, as the sucrose concentration rose above 166 mM, SPS activity was not inhibited further, whereas there was a further sharp decline in sucrose production by the slices. It is concluded that sucrose synthesis in vivo is controlled by sucrose inhibition of SPS over a considerable range of internal sucrose concentrations.  相似文献   

3.
Ketose reductase activity in developing maize endosperm   总被引:5,自引:5,他引:0  
Ketose reductase (NAD-dependent polyol dehydrogenase EC 1.1.1.14) activity, which catalyzes the NADH-dependent reduction of fructose to sorbitol (d-glucitol), was detected in developing maize (Zea mays L.) endosperm, purified 104-fold from this tissue, and partially characterized. Product analysis by high performance liquid chromatography confirmed that the enzyme-catalyzed reaction was freely reversible. In maize endosperm, 15 days after pollination, ketose reductase activity was of the same order of magnitude as sucrose synthase activity, which produces fructose during sucrose degradation. Other enzymes of hexose metabolism detected in maize endosperm were present in activities of only 1 to 3% of the sucrose synthase activity. CaCl2, MgCl2, and MnCl2 stimulated ketose reductase activity 7-, 6-, and 2-fold, respectively, but had little effect on NAD-dependent polyol dehydrogenation (the reverse reaction). The pH optimums for ketose reductase and polyol dehydrogenase reactions were 6.0 and 9.0, respectively. Km values were 136 millimolar fructose and 8.4 millimolar sorbitol. The molecular mass of ketose reductase was estimated to be 78 kilodaltons by gel filtration. It is postulated that ketose reductase may function to metabolize some of the fructose produced during sucrose degradation in maize endosperm, but the metabolic fate of sorbitol produced by this reaction is not known.  相似文献   

4.
Short-term transport studies were conducted using excised whole Zea mays kernels incubated in buffered solutions containing radiolabeled sugars. Following incubation, endosperms were removed and rates of net 14C-sugar uptake were determined. Endogenous sugar gradients of the kernel were estimated by measuring sugar concentrations in cell sap collected from the pedicel and endosperm. A sugar concentration gradient from the pedicel to the endosperm was found. Uptake rates of 14C-labeled glucose, fructose, and sucrose were linear over the concentration range of 2 to 200 millimolar. At sugar concentrations greater than 50 millimolar, hexose uptake exceeded sucrose uptake. Metabolic inhibitor studies using carbonylcyanide-m-chlorophenylhydrazone, sodium cyanide, and dinitrophenol and estimates of Q10 suggest that the transport of sugars into the developing maize endosperm is a passive process. Sucrose was hydrolyzed to glucose and fructose during uptake and in the endosperm was either reconverted to sucrose or incorporated into insoluble matter. These data suggest that the conversion of sucrose to glucose and fructose may play a role in sugar absorption by endosperm. Our data do not indicate that sugars are absorbed actively. Sugar uptake by the endosperm may be regulated by the capacity for sugar utilization (i.e. starch synthesis).  相似文献   

5.
The in vivo amounts of UDPG, UTP, UDP and UMP, metabolites known to influence the activity of sucrose phosphate synthase (SPS) and sucrose synthase (SS), were measured throughout 5 hr incubations of scutellum slices in fructose or water, i.e. under conditions of sucrose synthesis or breakdown. Cytosolic concentrations were estimated assuming that these metabolites were confined to the cytosol. Within the estimated in vivo concentration ranges, UDPG, UTP and UDP had little effect on the in vitro SS activity, but glucose (100 mM) inhibited SS in the synthesis direction by 63–70% and in the breakdown direction by 86–93%. Glucose inhibition of SS was considerably less when saturating levels of substrates were used. Sucrose did not inhibit SS. It is concluded that during germination the glucose produced from starch breakdown in the maize endosperm enters the scutellum and inhibits SS, preventing a futile cycle and limiting SS participation in sucrose synthesis.  相似文献   

6.
We report the ATP-mediated activation of sucrose-phosphate synthase in bundle sheath cells prepared from C4 species. Sucrose synthesis was followed by measuring the incorporation of [14C]fructose 6-phosphate into sucrose in bundle sheath cells also provided with uridine 5′-diphosphoglucose (UDPGlc). Studies with Panicum miliaceum L. cells showed that activation was largely due to an increase in the affinity for UDPGlc and was therefore only evident at limiting UDPGlc concentrations. The apparent K m UDPGlc for sucrose synthesis by cells pretreated and assayed with ATP was about 0.7 mM compared with 7–8 mM for control cells without ATP. The γ-thio derivative of ATP had a similar effect to ATP. The effect was also evident when ATP was rapidly removed from cells prior to assay. Sucrose-phosphate synthase activity in extracts from cells pretreated with or without ATP showed similar differences in K m UDPGlc. These observations support the view that ATP is inducing a covalent modification of the enzyme. However, several protein kinase inhibitors did not prevent activation. Changes of more than threefold were observed for the K m UDPGlc with sucrose-phosphate synthase extracted from bundle sheath cells rapidly isolated from attached leaves that were subjected to dark/light treatments. The possible relationship between these changes and those induced by ATP with isolated cells is discussed. Received: 22 October 1996 / Accepted: 7 January 1997  相似文献   

7.
A procedure is described which allows the purification of fructokinase (EC 2.7.1.4) from young tomato fruit. The procedure yielded a 400-fold purification and two isoenzymes designated fructokinase I and II (FKI and FKII) were separated by anion-exchange chromatography. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) the molecular mass was estimated to be 35 kDa. Gel filtration on Sepharose-12 indicated that for both fructokinases the functional form is a dimer. Two dimensional isoelectric focusing/SDS-PAGE combined with immunoblotting showed that FKI has two components with isoelectric points (pIs) of 6.42 and 6.55, while four components with pIs from 6.07 to 6.55 were detected for FKII. A mixture of both fructokinases showed that the components of FKI match the more alkaline components of FKII. The activity of both fructokinases increased with increasing pH to around 8.0 and equal activity was observed from 8.0 to 9.5. Both fructokinases were specific for fructose with K m values for fructose of 0.131 and 0.201 mM for FKI and FKII, respectively. At high concentrations (> 0.5 mM), fructose was also a strong inhibitor with inhibition constants (K i) of 1.82 and 1.39 mM for FKI and FKII, respectively. The preferred phosphate donor for both isoforms was ATP, and K m values of 0.11 and 0.15 mM were observed for FKI and FKII. At low concentrations (0.05–0.2 mM), fructose exhibited noncompetitive inhibition with respect to ATP for both fructokinases. This inhibition pattern changed to uncompetitive when higher fructose concentrations (0.5–10 mM) were used. These data indicated that substrate addition is ordered, with ATP adding first. Inhibition by ADP was also affected by the fructose concentrations. At 0.5 mM fructose, FKI showed non-competitive inhibition by ADP with respect to ATP and this inhibition changed to uncompetitive when 3 mM fructose was used. The isoform FKII showed a competitive inhibition pattern for ADP at 0.5 mM fructose which also changed to uncompetitive when 3 mM fructose was used. The features of the regulation of both fructokinases suggest that this enzyme might have a relevant role in carbon metabolism during tomato fruit development.  相似文献   

8.
The synthetic and degradative activities toward sucrose of maize (Zea mays L.) endosperm sucrose-UDP glucosyltransferase preparations behave differently in several respects. Mg2+ or Ca2+ stimulate the synthetic activity but inhibit the degradative activity. Nueleotides have no effect on the synthetic activity but inhibit the degradative activity. The two activities have different pH optima, and ATP inhibits the degradative activity across the pH range tested. However, both activities exhibit identical patterns of heat inactivation, and various purification procedures employed have failed to separate these two activities. The Km values at pH 6.5 (degradation) and pH 8 (synthesis) are sucrose, 40 mM; UDP, 0.14 mM; ADP, 1,25 mM; UDPglucose, 1. 14 rnM; and fructose, 2.08 mM. In the developing endosperm, sucrose-6-P synthetase activity is only ca 1 % of the synthetic activity of sucrose-UDP glucosyltransferase.  相似文献   

9.
Sucrose-phosphate synthase (SPS, E.C. 2.4.1.14) from spinach (Spinacia oleracea L.) was partially purified and the inhibition of the enzyme reaction by 1-deoxynojirimycin and Cibacron blue F3G-A analyzed. Cibacron blue was a high-affinity competitive inhibitor with respect to the substrate UDPglucose (Ki = 80 nM) and a mixed-type inhibitor with respect to fructose-6-phosphate. 1-Deoxynojirimycin was a mixed-type inhibitor of SPS with respect to UDPglucose [Ki(EI) = 5.8 mM] and a uncompetitive inhibitor with respect to fructose 6-phosphate. These results are discussed in relation to the mechanism of the reaction catalysed by SPS and the secondary structure of the enzyme.Abbreviations DN 1-deoxynojirimycin - Glc6P glucose-6-phosphate - Fru6P fructose-6-phosphate - SPS sucrose-phosphate synthase - UDPG1c UDPglucose We are grateful to M. Stitt (University of Heidelberg, Germany) for many helpful discussions and J. Harr and P. Bocion (both SANDOZ AGRO, Switzerland) for supporting the work.  相似文献   

10.
A soluble β-fructofuranosidase was isolated from sugar cane leaf-sheaths. The enzyme attacks sucrose with an activation energy of 5700 cal/mol above 30° and 17 000 cal/mol below 30°. The enzyme was inhibited by the reaction products. Glucose is a simple non-competitive inhibitor, but fructose is a competitive inhibitor. Kinetic studies using double reciprocal plots and replots of 1/Ki, slope vs inhibitor concentration showed that fructose binds to two interacting sites of the enzyme. Per cent residual activity plotted against inhibitor concentration, and Hill plots confirmed the regulatory properties of the invertase. n was found to be close to 2, the number of binding sites established with the double reciprocal method. The tissue and cellular levels of sucrose, fructose and glucose were measured. Fructose was found at inhibitory concentrations confirming that the activity of the enzyme is probably modulated by the hexose pool of the leaf-sheaths.  相似文献   

11.
Cobb BG  Hannah LC 《Plant physiology》1988,88(4):1219-1221
Kernels of wild-type maize (Zea mays L.) shrunken-1 (sh1), deficient in the predominant form of endosperm sucrose synthase and shrunken-2 (sh2), deficient in 95% of the endosperm ADP-glucose pyrophosphorylase were grown in culture on sucrose, glucose, or fructose as the carbon source. Analysis of the endosperm extracts by gas-liquid chromatography revealed that sucrose was present in the endosperms of all genotypes, regardless of carbon supply, indicating that all three genotypes are capable of synthesizing sucrose from reducing sugars. The finding that sucrose was present in sh1 kernels grown on reducing sugars is evidence that shrunken-1 encoded sucrose synthase is not necessary for sucrose synthesis. Shrunken-1 kernels developed to maturity and produced viable seeds on all carbon sources, but unlike wild-type and sh2 kernels grown in vitro, sucrose was not the superior carbon source. This latter result provides further evidence that the role of sucrose synthase in maize endosperm is primarily that of sucrose degradation.  相似文献   

12.
Metabolites and enzyme activities were measured in the phloem sap exuding from a cut hypocotyl of germinating castor-bean (Ricinus communis L.) seedlings. The sap contained considerable quantities of adenine nucleotides, uridine nucleotides, uridine diphosphoglucose (UDPGlc), all the major phosphorylated metabolites required for glycolysis, fructose-2,6-bisphosphate and pyrophosphate. Supplying 200 mM glucose instead of sucrose to the cotyledons resulted in high concentrations of glucose in the sap, but did not modify the metabolite levels. In contrast, when 200 mM fructose was supplied we found only a low level of fructose but a raised sucrose concentration in the sap, which was accompanied by a three-to fourfold decrease of UDPGlc, and an increase of pyrophosphate, UDP and UTP. The measured levels of metabolites are used to estimate the molar mass action ratios and in-vivo free-energy change associated with the various reactions of sucrose breakdown and glycolysis in the phloem. It is concluded that the reactions catalysed by ATP-dependent phosphofructokinase and pyruvate kinase are removed from equilibrium in the phloem, whereas the reactions catalysed by sucrose synthase, UDPGlc-pyrophosphorylase, phosphoglucose mutase, phosphoglucose isomerase, aldolase, triose-phosphate isomerase, phosphoglycerate mutase and enolase are close to equilibrium within the conducting elements of the phloem. Since the exuded sap contained negligible or undetectable activities of the enzymes, it is concluded, that the responsible proteins are bound, or sequesterd behind plasmodesmata, possibly in the companion cells. It is argued that sucrose mobilisation via a reversible reaction catalysed by sucrose synthase is particularily well suited to allow the rate of sucrose breakdown in the phloem to respond to changes in the metabolic requirement for ATP, and for UDPGlc during callose production. It is also calculated that the transport of nucleotides in the phloem sap implies that there must be a very considerable uptake or de-novo biosynthesis of these cofactors in the phloem.  相似文献   

13.
Fructose transport in lactococci is mediated by two phosphotransferase systems (PTS). The constitutive mannose PTS has a broad specificity and may be used for uptake of fructose with a fructose saturation constant (KFru) of 0.89 mM, giving intracellular fructose 6-phosphate. The inducible fructose PTS has a very small saturation constant (KFru, <17 μM), and the fructose 1-phosphate produced enters the Embden-Meyerhof-Parnas (EMP) pathway as fructose 1,6-diphosphate. Growth in batch cultures of Lactococcus lactis subsp. cremoris FD1 in a yeast extract medium with fructose as the only sugar is poor both with respect to specific growth rate and biomass yield, whereas the specific lactic acid production rate is higher than those in similar fermentations on other sugars metabolized via the EMP pathway, e.g., glucose. In fructose-limited chemostat cultures, the biomass concentration exhibits a strong correlation with the dilution rate, and starting a continuous culture at the end of a batch fermentation leads to large and persistent oscillations in the biomass concentration and specific lactic acid production rate. Two proposed mechanisms underlying this strange growth pattern follow. (i) Fructose transported via the fructose PTS cannot be converted into essential biomass precursors (glucose 6-phosphate or fructose 6-phosphate), because L. lactis subsp. cremoris FD1 is devoid of fructose 1,6-diphosphatase activity. (ii) The fructose PTS apparently produces a metabolite (presumably fructose 1-phosphate) which exerts catabolite repression of both mannose PTS and lactose PTS. Since the repressed mannose PTS and lactose PTS are shown to have identical maximum molar transport rates, the results indicate that it is the general PTS proteins which are repressed.  相似文献   

14.
Fructose transport was not apparently affected in a number of Pseudomonas putida strains with deranged activity of a common glucose-gluconate uptake system, indicating the existence of an independent fructose uptake system. Fructose uptake by glucose-gluconate uptake mutants was induced by fructose and obeyed saturation kinetics (apparent K m =0.3 mM). The fructose uptake system serves to transport glucose in addition to fructose. The entry of fructose into P. putida cells appears to be mediated also by the glucose-gluconate uptake system, as shown by the ability to accumulate fructose of wild type cells grown on glucose, a substrate that induces the glucose-gluconate uptake system but not the fructose uptake system. In addition, fructose was found to be an inducer of the glucose-gluconate uptake system. The physiological significance of these observations is not clear because the fructose uptake system can provide the cell with a high enough internal concentration of fructose to support maximum growth rate on this hexose, as shown by following the growth course of glucose-gluconate uptake mutants on fructose.  相似文献   

15.
The aim of this work was to examine the possibility that fructose 2,6-bisphosphate (Fru-2,6-P2) plays a role in the regulation of gluconeogenesis from fat. Fru-2,6-P2 is known to inhibit cytoplasmic fructose 1,6-bisphosphatase and stimulate pyrophosphate:fructose 6-phosphate phosphotransferase from the endosperm of seedlings of castor bean (Ricinus communis). Fru-2,6-P2 was present throughout the seven-day period in amounts from 30 to 200 picomoles per endosperm. Inhibition of gluconeogenesis by anoxia or treatment with 3-mercaptopicolinic acid doubled the amount of Fru-2,6-P2 in detached endosperm. The maximum activities of fructose 6-phosphate,2-kinase and fructose 2,6-bisphosphatase (enzymes that synthesize and degrade Fru-2,6-P2, respectively) were sufficient to account for the highest observed rates of Fru-2,6-P2 metabolism. Fructose 6-phosphate,2-kinase exhibited sigmoid kinetics with respect to fructose 6-phosphate. These kinetics became hyperbolic in the presence of inorganic phosphate, which also relieved a strong inhibition of the enzyme by 3-phosphoglycerate. Fructose 2,6-bisphosphatase was inhibited by both phosphate and fructose 6-phosphate, the products of the reaction. The properties of the two enzymes suggest that in vivo the amounts of fructose-6-phosphate, 3-phosphoglycerate, and phosphate could each contribute to the control of Fru-2,6-P2 level. Variation in the level of Fru-2,6-P2 in response to changes in the levels of these metabolites is considered to be important in regulating flux between fructose 1,6-bisphosphate and fructose 6-phosphate during germination.  相似文献   

16.
Doehlert DC 《Plant physiology》1989,89(4):1042-1048
Four forms of hexose kinase activity from developing maize (Zea mays L.) kernels have been separated by ammonium sulfate precipitation, gel filtration chromatography, blue-agarose chromatography, and ion exchange chromatography. Two of these hexose kinases utilized d-glucose most effectively and are classified as glucokinases (EC 2.7.1.2). The other two hexose kinases utilized only d-fructose and are classified as fructokinases (EC 2.7.1.4). All hexose kinases analyzed had broad pH optima between 7.5 and 9.5 with optimal activity at pH 8.5. The two glucokinases differed in substrate affinities. One form had low Km values [Km(glucose) = 117 micromolar, Km(ATP) = 66 micromolar] whereas the other form had much higher Km values [Km(glucose) = 750 micromolar, Km(ATP) = 182 micromolar]. Both fructokinases had similar substrate saturation responses. The Km(fructose) was about 130 micromolar and the Km(ATP) was about 700 micromolar. Both exhibited uncompetitive substrate inhibition by fructose [Ki(fructose) = 1.40 to 2.00 millimolar]. ADP inhibited all four hexose kinase activities, whereas sugar phosphates had little effect on their activities. The data suggest that substrate concentrations are an important factor controlling hexose kinase activity in situ.  相似文献   

17.
This work reports changes in sucrose synthase and invertase activities throughout endosperm development in wheat, together with the associated substrates and metabolites, sucrose, UDP, glucose, fructose and UDP-glucose. Throughout endosperm development, sucrose synthase had consistently higher activity than invertase and indeed invertase activity did not change appreciably. The observed variation in pattern and amounts of glucose and fructose present during the mid- and late stages of endosperm development confirmed the suggestion that invertase was not the preferred pathway of sucrose catabolism. Kinetic parameters for sucrose synthase were determined in crude extracts. Estimates of UDP and sucrose concentrations suggest that sucrose synthase is unlikely to achieve its potential maximum velocity. This limitation may however be overcome in part by the apparent excess catalytic activity measured during endosperm development.  相似文献   

18.
In the labellar sugar receptor cell of the blowfly, Phormia regina, soluble starch and dextran T500 inhibited the response to sucrose, to maltose or to glucose, but did not inhibit that to fructose. On the other hand, inulin inhibited the response to fructose, but did not inhibit that to sucrose. These results suggest that both soluble starch and dextran T500 compete with sucrose, with maltose or with glucose for the pyranose site (P site), and that inulin competes with fructose for the furanose site (F site) in a single sugar receptor cell. Each inhibition constant (Ki) was estimated to be 0.6–0.7% for soluble starch. about 4.5% for dextran T500, and about 1.3% for inulin.  相似文献   

19.
20.
Radioactive sucrose, supplied through the cut base to Pisum sativum epicotyls, was transported to the growing apex (plumule and hook) and used there for the synthesis mainly of uridine diphosphoglucose (UDP- glucose), fructose and cell wall glucan. Enzyme extracts of the apical tissue contained sucrose synthetase activity which was freely reversible, i.e. formed UDP-glucose and fructose from sucrose (pH optimum = 6·6 for the cleavage reaction, Km for sucrose = 63 mM). Particulate fractions of the same tissue contained a β-glucan synthetase which utilized UDP-glucose for formation of alkali-soluble and -insoluble products (pH optimum = 8·4, Km for UDP-glucose = 1·9 mM). Values for Vmax and yields of these two synthetase activities were sufficient to account for observed rates of cellulose deposition during epicotyl growth (15–25 μg/hr/epicotyl). When soluble pea enzyme was supplied with sucrose and UDP at pH 6·6 and then the preparation was supplemented with particles bearing β-glucan synthetase at pH 8·4, the glucose moiety of sucrose was converted to glucan in vitro. The results indicate that it is feasible for these synthetases to co-operate in vivo to generate β-glucan for expanding cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号