首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Many cellular signaling processes are governed by endocytosis through the internalization of plasma membrane receptors. This receptor clearance defines the quality with which a cell can react to extracellular stimuli. However, growing evidence indicates that endocytosis also enables the formation of endosome-specific signal transduction complexes. Their activity is controlled by the balanced trafficking of receptors and signaling molecules through the endocytic compartments. These are commonly divided into early endosomes, recycling endosomes, and late endosomes. Recent progress has been made in the understanding of the biogenesis of these organelles, highlighting their dynamic interconversion, maturation and also the generation of heterogenous subdomains on their surface. These multifunctional compartments represent the physical basis for the assembly and turnover of signaling complexes, which in turn themselves can define specialized endosomal-signaling platforms.  相似文献   

4.
Originally discovered nearly a century ago, the Notch signaling pathway is critical for virtually all developmental programs and modulates an astounding variety of pathogenic processes. The DSL (Delta, Serrate, LAG-2 family) proteins have long been considered canonical activators of the core Notch pathway. More recently, a wide and expanding network of non-canonical extracellular factors has also been shown to modulate Notch signaling, conferring newly appreciated complexity to this evolutionarily conserved signal transduction system. Here, I review current concepts in Notch signaling, with a focus on work from the last decade elucidating novel extracellular proteins that up- or down-regulate signal potency.  相似文献   

5.
Is there mitogenic signaling during endocytosis or is receptor internalization mainly an attenuator of signals? Recent data indicate that the answer appears to be yes to both questions. Signal transduction occurs physiologically from the cell surface and endocytosis downregulates signaling by removing receptors from the plasma membrane. In cancer, the involvement of endocytic/sorting proteins points to dysregulation of apparently unrelated pathways, which might account for an important causative role in neoplasia.  相似文献   

6.
Notch is a transmembrane receptor that mediates local cell-cell communication and coordinates a signaling cascade present in all animal species studied to date. Notch signaling is used widely to determine cell fates and to regulate pattern formation; its dysfunction results in a tremendous variety of developmental defects and adult pathologies. This primer describes the mechanism of Notch signal transduction and how it is used to control the formation of biological patterns.  相似文献   

7.
Cell-fate diversity can be generated by the unequal segregation of the Notch regulator Numb at mitosis in both vertebrates and invertebrates. Whereas the mechanisms underlying unequal inheritance of Numb are understood, how Numb antagonizes Notch has remained unsolved. Live imaging of Notch in sensory organ precursor cells revealed that nuclear Notch is detected at cytokinesis in the daughter cell that does not inherit Numb. Numb and Sanpodo act together to regulate Notch trafficking and establish directional Notch signalling at cytokinesis. We propose that unequal segregation of Numb results in increased endocytosis in one daughter cell, hence asymmetry of Notch at the cytokinetic furrow, directional signalling and binary fate choice.  相似文献   

8.
D(1) dopamine receptors are primary mediators of dopaminergic signaling in the CNS. These receptors internalize rapidly following agonist-induced activation, but the functional significance of this process is unknown. We investigated D(1) receptor endocytosis and signaling in HEK293 cells and cultured striatal neurons using real-time fluorescence imaging and cAMP biosensor technology. Agonist-induced activation of D(1) receptors promoted endocytosis of receptors with a time course overlapping that of acute cAMP accumulation. Inhibiting receptor endocytosis blunted acute D(1) receptor-mediated signaling in both dissociated cells and striatal slice preparations. Although endocytic inhibition markedly attenuated acute cAMP accumulation, inhibiting the subsequent recycling of receptors had no effect. Further, D(1) receptors localized in close proximity to endomembrane-associated trimeric G protein and adenylyl cyclase immediately after endocytosis. Together, these results suggest a previously unanticipated role of endocytosis, and the early endocytic pathway, in supporting rapid dopaminergic neurotransmission.  相似文献   

9.
《Epigenetics》2013,8(6):842-850
Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage.  相似文献   

10.
Endocytosis, actin cytoskeleton, and signaling   总被引:16,自引:0,他引:16       下载免费PDF全文
  相似文献   

11.
12.
Endocytosis conducts the cell signaling orchestra   总被引:10,自引:0,他引:10  
Polo S  Di Fiore PP 《Cell》2006,124(5):897-900
Endocytosis is used by eukaryotic cells to regulate nutrient internalization, signal transduction, and the composition of the plasma membrane. However, a more complex picture is emerging, in which endocytic pathways integrate diverse signals, thereby contributing to a higher level of cellular and organismal organization. In this way, endocytosis and cell signaling are intertwined in many biological processes, such as cell motility and cell fate determination.  相似文献   

13.
Notch信号通路在脊椎动物和无脊椎动物许多组织的发育过程和细胞间通讯中都发挥了关键的作用,包括调控细胞命运,调节细胞迁移,分化和增殖.Notch信号通路由Notch受体及其跨膜配体如Delta(Dl)和Serrate组成.Neuralized 蛋白(Neur)编码1个E3泛素连接酶,是Notch配体D1内吞所必需的.Neur蛋白包括3个从线虫到人高度保守的结构域:2个Neur同源重复结构域(NHR1和NHR2)和1个C端RING结构域.本文就Notch信号通路主要元件和Neru的结构与功能及其关系进行综述.  相似文献   

14.
The cell surface receptor Notch contributes to the development of nearly every tissue in most metazoans by controlling the fates and differentiation of cells. Recent results have now established that Notch also regulates the connectivity of the nervous system, and does so at a variety of levels, including specification of neuronal identity, division, survival and migration, as well as axon guidance, morphogenesis of dendritic arbors and weighting of synapse strength. To these ends, Notch engages at least two signal transduction pathways, one that controls nuclear gene expression and another that directly targets the cytoskeleton. Coordinating the many functions of Notch to produce neural structure is thus a pivotal aspect of building and maintaining the nervous system.  相似文献   

15.
16.
Notch signaling in cancer   总被引:3,自引:0,他引:3  
The evolutionarily conserved developmental pathway driven by Notch receptors and ligands has acquired multiple post-natal homeostatic functions in vertebrates. Potential roles in human physiology and pathology are being studied by an increasingly large number of investigators. While the canonical Notch signaling pathway is deceptively simple, the consequences of Notch activation on cell fate are complex and context-dependent. The manner in which other signaling pathways cross-talk with Notch signaling appears to be extraordinarily complex. Recent observations have demonstrated the importance of endocytosis, multiple ubiquitin ligases, non-visual beta-arrestins and hypoxia in modulating Notch signaling. Structural biology is shedding light on the molecular mechanisms whereby Notch interacts with its nuclear partners. Genomics is slowly unraveling the puzzle of Notch target genes in several systems. At the same time, interest in modulating Notch signaling for medical purposes has dramatically increased. Over the last few years we have learned much about Notch signaling in cancer, immune disorders, neurological disorders and most recently, stroke. The role of Notch signaling in normal and transformed stem cells is under intense investigation. Some Notch-modulating drugs are already in clinical trials, and others at various stages of development. This review will focus on the most recent findings on Notch signaling in cancer and discuss their potential clinical implications.  相似文献   

17.
González-Gaitán M  Stenmark H 《Cell》2003,115(5):513-521
The ability to internalize macromolecules by endocytosis is a property of all eukaryotic cells. Frontline research on endocytosis has been presented in a successful series of biannual meetings in Europe. This year's meeting on "Membrane Dynamics in Endocytosis" was held September 13-18 in Acquafredda di Maratea, on the coast of southern Italy. Four key questions were addressed: What are the molecular mechanisms of endocytic membrane trafficking? How does endocytosis modulate receptor signaling and vice versa? What is the importance of endocytosis during development? How do endocytic organelles contribute to immunity or susceptibility to pathogens?  相似文献   

18.
Notch信号通路研究进展   总被引:4,自引:0,他引:4  
Lu ZZ  Wang LS  Wu CT 《生理科学进展》2004,35(2):135-138
在无脊椎动物和脊椎动物发育过程中 ,Notch信号对细胞的命运决定起关键作用。通过Notch受体的信号传递能够扩大并固化相邻细胞之间的分子差异 ,最终决定细胞的命运。本文综述了Notch信号通路的相关细节 ,重点讨论了CSL非依赖的途径  相似文献   

19.
Endocytic regulation of Notch signaling   总被引:1,自引:0,他引:1  
  相似文献   

20.
Dendritic patterning exerts a profound influence on neuronal connectivity. Recent studies indicate that mammalian Notch receptors are expressed by postmitotic neurons and that Notch signaling has a considerable influence on dendritic growth and branching. Investigations into the intracellular effectors of dendritic development have revealed that dendritic growth and branching are differentially affected by activation of the Rho-family GTPases, RhoA, Rac1, and Cdc42. These observations suggest that the differential activation of Notch receptors and Rho-family GTPases by extracellular signals may be important in the generation of morphological diversity in the developing nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号