首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sin3a is the central scaffold protein of the prototypical Hdac1/2 chromatin repressor complex, crucially required during early embryonic development for the growth of pluripotent cells of the inner cell mass. Here, we compare the composition of the Sin3a‐Hdac complex between pluripotent embryonic stem (ES) and differentiated cells by establishing a method that couples two independent endogenous immunoprecipitations with quantitative mass spectrometry. We define the precise composition of the Sin3a complex in multiple cell types and identify the Fam60a subunit as a key defining feature of a variant Sin3a complex present in ES cells, which also contains Ogt and Tet1. Fam60a binds on H3K4me3‐positive promoters in ES cells, together with Ogt, Tet1 and Sin3a, and is essential to maintain the complex on chromatin. Finally, we show that depletion of Fam60a phenocopies the loss of Sin3a, leading to reduced proliferation, an extended G1‐phase and the deregulation of lineage genes. Taken together, Fam60a is an essential core subunit of a variant Sin3a complex in ES cells that is required to promote rapid proliferation and prevent unscheduled differentiation.  相似文献   

2.
3.
Gene inactivation studies of mammalian histone and DNA-modifying proteins have demonstrated a role for many such proteins in embryonic development. Post-implantation embryonic lethality implies a role for epigenetic factors in differentiation and in development of specific lineages or tissues. However a handful of chromatin-modifying enzymes have been found to be required in pre- or peri-implantation embryos. This is significant as implantation is the time when inner cell mass cells of the blastocyst exit pluripotency and begin to commit to form the various lineages that will eventually form the adult animal. These observations indicate a critical role for chromatin-modifying proteins in the earliest lineage decisions of mammalian development, and/or in the formation of the first embryonic cell types. Recent work has shown that the two major class I histone deacetylase-containing co-repressor complexes, the NuRD and Sin3 complexes, are both required at peri-implantation stages of mouse development, demonstrating the importance of histone deacetylation in cell fate decisions. Over the past 10 years both genetic and biochemical studies have revealed surprisingly divergent roles for these two co-repressors in mammalian cells. In this review we will summarise the evidence that the two major class I histone deacetylase complexes in mammalian cells, the NuRD and Sin3 complexes, play important roles in distinct aspects of embryonic development.  相似文献   

4.
5.
The pairing of sex chromosomes during meiosis in male mammals is associated with ongoing heterochromatinization and X inactivation. This process occurs in a specific area of the nucleus that can be discerned morphologically: the sex vesicle or XY-body. In contrast to X inactivation in the somatic cells of female mammals the reasons for X inactivation in the male germline remain obscure. We have recently demonstrated that the inactive X chromosome in somatic cells of female mammals is marked by a high concentration of histone macroH2A. Here we investigate X inactivation in the meiotic cells of the male germline. We demonstrate here that macroH2A1.2 is present in the nuclei of germ cells starting first with localization that is largely, if not exclusively, to the developing XY-body in early pachytene spermatocytes. Our results suggest that inactivation of sex chromosomes in the male germ cell includes a major alteration of the nucleosomal structure.  相似文献   

6.
7.
哺乳动物减数分裂后期的精子发生(spermatogenesis),即精子形成(spermiogenesis),是一个剧烈的细胞形态变化过程。伴随精子细胞中细胞核压缩和染色质重构,基因转录活性将逐渐降低直至完全停止,那些为精子细胞后期阶段发育所需的基因都需要提前转录为信使核糖核酸(mRNA),然后以翻译抑制状态储存在精子细胞中,直到特定发育阶段再被激活翻译,以合成蛋白质发挥作用。这个现象被称为“转录–翻译解偶联”,是精子发生中基因表达调控的一个典型特征。然而,目前对于精子细胞中被抑制的mRNA是如何被翻译激活的还知之甚少。我们当前的这项研究发现,MIWI/piRNA通过与翻译起始因子eIF3f、RNA结合蛋白HuR等因子形成功能性翻译激活复合物,特异性地激活小鼠精子细胞中包含AU序列富含元件(AU-rich element,ARE)mRNA的翻译。此项研究揭示了PIWI/piRNA在精子细胞翻译激活中的新功能,并证明此功能为精子细胞发育和功能性精子生成所必需。  相似文献   

8.
9.
J K Heath 《Cell》1978,15(1):299-306
A xenogeneic antiserum (PG-1) raised against the germ cells of the 13.5d p.c. mouse conceptus reacts with the fetal germ cells of both sexes and adult male germ cells, but not with any nongerminal tissue that has been tested. PG-1 can also react with the EC cells of four different teratocarcinoma cell lines. There are, however, marked differences in the absorptive capacity of the different EC cell lines. The antigen(s) recognized by the antiserum are confined to only a proportion of cells in some EC lines. This antiserum has a number of potential applications in studies of the origin and development of the mouse germ cell lineage.  相似文献   

10.
Prior to entry into meiosis, XX germ cells in the fetal ovary undergo X chromosome reactivation. The signal for reactivation is thought to emanate from the genital ridge, but it is unclear whether it is specific to the developing ovary. To determine whether the signals are present in the developing testis as well as the ovary, we examined the expression of X-linked genes in germ cells from XXY male mice. To facilitate this analysis, we generated XXY and XX fetuses carrying X chromosomes that were differentially marked and subject to nonrandom inactivation. This pattern of nonrandom inactivation was maintained in somatic cells but, in XX as well as XXY fetuses, both parental alleles were expressed in germ cell-enriched cell populations. Because testis differentiation is temporally and morphologically normal in the XXY testis and because all germ cells embark upon a male pathway of development, these results provide compelling evidence that X chromosome reactivation in fetal germ cells is independent of the somatic events of sexual differentiation. Proper X chromosome dosage is essential for the normal fertility of male mammals, and abnormalities in germ cell development are apparent in the XXY testis within several days of X reactivation. Studies of exceptional germ cells that survive in the postnatal XXY testis demonstrated that surviving germ cells are exclusively XY and result from rare nondisjunctional events that give rise to clones of XY cells.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Cell lineage determination in the mouse   总被引:5,自引:0,他引:5  
During the peri-implantation development of the mouse embryo from the blastocyst through gastrulation, Pou5f1 (OCT-4) down-regulation is closely linked to the initial step of lineage allocation to extraembryonic and embryonic somatic tissues. Subsequently, differentiation of the lineage precursors is subject to inductive tissue interactions and intercellular signalling that regulate cell proliferation and the acquisition of lineage-specific morphological and molecular characteristics. A notable variation of this process of lineage specification is the persistence of Pou5f1 activity throughout the differentiation of the primordial germ cells, which may underpin their ability to produce pluripotent progeny either as stem cells (embryonic germ cells) in vitro or as gametes in vivo. Nevertheless, intercellular signalling still plays a critical role in the specification of the primordial germ cells. The findings that primordial germ cells can be induced from any epiblast cells and that they share common progenitors with other somatic cells provide compelling evidence for the absence of a pre-determined germ line in the mouse embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号